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Abstract: Two homometallic Coordination Polymers (CPs) with composition [Ln(hfac)3bipy]n (Ln3+

= Eu3+, 1, and Tb3+, 2; hfac = hexafluoroacetylacetonato, bipy = 4,4′-bipyridine) were used to
develop a family of ratiometric luminescent thermometers containing Eu3+ and Tb3+ as red and
green emitters, respectively. The thermometric properties of pure CPs and of their mixtures having
an Eu3+/Tb3+ molar ratio of 1:1, 1:3, 1:5, and 1:10 (samples: Eu1Tb1, Eu1Tb3, Eu1Tb5, and Eu1Tb10)
were studied in the 83–383 K temperature range. Irrespective of the chemical composition, we
observed similar thermometric responses characterized by broad applicative temperature ranges
(from 100 to 165 K wide), and high relative thermal sensitivity values (Sr), up to 2.40% K−1, in the
physiological temperature range (298–318 K). All samples showed emissions endowed with peculiar
and continuous color variation from green (83 K) to red (383 K) that can be exploited to develop a
colorimetric temperature indicator. At fixed temperature, the color of the emitted light can be tuned
by varying composition and excitation wavelength.

Keywords: luminescence; europium; terbium; lanthanide coordination polymers; luminescent
molecular thermometers; ratiometric thermometers

1. Introduction

Nowadays, luminescence thermometry plays a relevant role due to its high impor-
tance in many societal needs. For example, contactless temperature measurements with
a sub-micrometric spatial resolution are required in countless technological applications
and industrial fields, such as microelectronics, microoptics, photonics, microfluidics, and
nanomedicine (e.g., in intracellular temperature measurements, or in microcircuit thermal
map) [1–3]. Among the different types of luminescent thermometers, intensity-based ones
are particularly useful for many applications such as real-time measurements on large
moving systems [4,5]. However, using a single emitter, fluctuations of the light source or
changes in the emitter local concentration are potential sources of error in temperature
readout [6–8].

The stated drawbacks can be easily overcome using the intensity ratio of different
emission bands of a given luminescent material, thus creating self-referencing thermome-
ters [6,7,9,10]. These thermometers, also called “ratiometric thermometers”, have been
developed using a variety of luminescent probes [7,8,11]. Among others, europium and
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terbium complexes have been extensively used due to their peculiar luminescent proper-
ties [6,12–17].

Lanthanide Metal–Organic Frameworks (MOFs) and Coordination Polymers (CPs)
immediately appeared to be excellent platforms for the development of ratiometric ther-
mometers [3,11,15,17,18]. Indeed, the possibility to introduce different metal ions simul-
taneously in MOFs and CPs, without altering their structure, marked them as two of the
most promising materials for the development of luminescent thermometers. Furthermore,
the rational fine tuning of their luminescent properties simply varying the nature of the
different building blocks (e.g., metal ions, spacer ligands, and guest molecules) or their
sequence within the network, i.e., the so-called “spatial composition” [19,20], give countless
possibilities for the creation of systems with desired properties [11,21,22]. Nevertheless,
dual metal center thermometers allow to associate temperature to the color of emitted
light, making them particularly appealing for the development of colorimetric temperature
sensors [23,24].

Polycarboxylates ligands have been extensively used for the development of lumi-
nescent thermometers based on Eu3+/Tb3+ MOFs and CPs [3,11,13,17,25,26] due to the
possibility of choosing from a wide variety of commercial/easily synthesized divergent
ligands whose photoluminescent properties were suitable for the design of luminescent
compounds. Conversely, examples of lanthanides MOFs and CPs endowed with thermo-
metric properties and based on β-diketonate (β-dike) ligands are relatively scarce in the
literature [27,28], though β-dike ligands have been widely employed in the synthesis of
low-nuclearity lanthanide luminescent complexes with thermometric properties [9,29–32].

Recently, we developed a convenient strategy for the synthesis of a series of highly
luminescent one-dimensional lanthanide zigzag polymeric chains with composition [Ln(β-
dike)3(bipy)]n based on lanthanide tris-β-diketonato complexes as nodes (for Ln3+ = Eu3+

and Tb3+; β-dike = dibenzoylmethide, dbm; while for Ln3+ = Eu3+ β-dike = thenoyl-
trifluoroacetonate, tta, or hexafluoroacetilacetonate, hfac) and 4,4′-bipyridine (bipy) as
neutral spacer [33,34]. To develop a heterometallic ratiometric thermometer, the “antenna
ligand”, i.e., the organic molecule that sensitizes lanthanide emission [35,36], must have
a triplet energy level high enough to promote the indirect excitation of both lanthanides
ions. According to this requirement, the β-diketonate ligand hexafluoroacetylacetonate is a
good choice for the development of europium and terbium-based ratiometric luminescent
thermometers, since its excited triplet state (T ≈ 21,900 cm−1) [37] has energy higher than
europium 5D0 (≈17,200 cm−1) [38] and terbium 5D4 (≈20,500 cm−1) [31] emissive levels.

In this work, we studied a family of self-calibrating ratiometric thermometers, consist-
ing of [Eu(hfac)3(bipy)]n and [Tb(hfac)3(bipy)]n homometallic CPs and their mixture in a
KBr matrix, endowed with temperature- and composition-dependent emission intensity
and color between 83 and 383 K. We preferred to mix the two homometallic CPs in an
inert matrix over the direct synthesis of the corresponding heterobimetallic CPs to properly
control spatial composition [19,20] of the samples. In fact, due to the similar chemical
properties [39,40] of Eu3+ and Tb3+, the synthesis of heterobimetallic CPs will result in
zigzag polymeric chains having random, statistically defined, —(M—M’)n—sequences (—
= bridging ligand, M (M’) = Eu3+ and/or Tb3+).

Irrespective of the composition, the obtained materials are characterized by good
thermometric properties in the 213–383 K temperature range. We highlighted how the color
variation of the emitted light is exploitable to develop colorimetric thermometers even using
the eyes as detector. This feature is of particular interest because it evidences the possibility
for the spectroscopy-to-imaging readout transition for luminescence thermometers that
would greatly increase their use and implementation into more complex tags, like QR-codes,
easily readable with smartphones [24].

2. Materials and Methods

Anhydrous toluene was purchased from Merck and used without further purification.
[Eu(hfac)3] and [Tb(hfac)3] were prepared from the corresponding bi-hydrated complex
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[Ln(hfac)3(H2O)2] according to the literature [33]. 4,4′-bipyridine (bipy, Aldrich) was used
as received. All reactions have been carried out under inert Ar atmosphere using standard
Schlenk techniques.

FTIR spectra in solid phase were recorded with a Perkin–Elmer “Spectrum One” spec-
trometer, equipped with an ATR accessory (Perkin Elmer, Waltham, MA USA). Elemental
analyses (C, H, N) were performed at the Dipartimento di Chimica e Chimica Industriale,
Università di Pisa (Pisa, Italy). The metal content was determined by treating the samples
with diluted HNO3 in a platinum crucible. The resulting solution was then evaporated to
dryness. After calcination at 850 ◦C, solid residues were weighted as Eu2O3 or Tb2O3.

Photoluminescence experiments have been performed on KBr pellets (Sigma-Aldrich,
spectroscopic grade, Sigma-Aldrich, Burlington, MA, USA) containing pure CPs or their
mixtures. KBr has been previously heated at 100 ◦C overnight to remove H2O traces. Room
temperature luminescence spectra were recorded in a front-face acquisition geometry with
a Horiba JobinYvon Fluorolog-3 spectrofluorimeter (Horiba JobinYvon, Edison, NJ, USA)
equipped with double-grating monochromator in both the excitation and emission sides,
coupled to a R928P Hamamatsu photomultiplier and a 450 W Xe arc lamp as the excitation
source. Emission spectra were corrected for detection and optical spectral response of the
spectrofluorimeter supplied by the manufacturer. The excitation spectra were corrected for
the spectral distribution of the lamp intensity using a photodiode reference detector.

Temperature-dependent experiments (83–383 K) were carried out in backscattering
geometry using a Horiba T64000 triple spectrometer equipped with a Peltier-cooled charge-
coupled device detector (Horiba Synapse). A Xe arc lamp (450 W) has been used as
excitation source. The scattered radiation was collected through a 10×microscope objective
(Olympus MPLAN, 10 × 0.25, Olympus, Tokyo, Japan). The spectrograph, equipped with
300 lines/mm gratings, was used as a single-stage imaging monochromator. Temperature-
dependent experiments were performed by means of a Linkam THMS600 heating/freezing
microscope (Linkam, Tadworth, UK) stage having temperature stability <0.1 K over the
83–873 K temperature range.

2.1. Synthesis of [Eu(hfac)3(bipy)]n (1)

[Eu(hfac)3] (0.603 g; 0.78 mmol) was suspended in toluene (90 mL), and 4,4′-bipyridine
(0.125 g; 0.80 mmol) was added. After 2 h stirring at about 60 ◦C, the yellowish solution
was slowly cooled to room temperature. The precipitated solid was filtered off and dried
in vacuo at room temperature for four hours (0.543 g yield 75.0% as [Eu(hfac)3(bipy)]). El.
Anal. Calc. for [Eu(hfac)3(bipy)], C25H11EuF18O6N2: C, 32.3; H, 1.2; Eu, 16.4; N, 3.0. Found:
C, 32.6; H, 1.3; Eu, 16.6; N, 2.8%. ATR IR: (range: 1700–700 cm–1) 1647 (s, νC=O), 1608 (mw,
νC=C), 1558 (mw, νC=O + δC-H), 1534 (m), 1461 (ms), 1418 (mw), 1251 (s), 1199 (s), 1141 (s),
1101 (s, νC-F), 1069 (m), 1047 (mw), 1005 (mw), 972 (w), 951 (w), 858 (w), 800 (ms), 767 (w),
733 (m).

2.2. Synthesis of [Tb(hfac)3(bipy)]n (2)

[Tb(hfac)3] (0.998 g; 1.28 mmol) was suspended in toluene (100 mL) and 4,4′-bipyridine
(0.200 g; 1.28 mmol) was added. The suspension was heated for 2 h at 60 ◦C, obtaining
a yellow solution which was slowly cooled to room temperature. A suspension of a
microcrystalline solid was obtained, filtered, and dried in vacuo at room temperature for
four hours (1.019 g yield 85.0% as [Tb(hfac)3(bipy)]). El. Anal. Calc. for [Tb(hfac)3(bipy)],
C25H11TbF18O6N2: C, 32.1; H, 1.2; N, 3.0; Tb, 17.0. Found: C, 32.0; H, 1.2; N, 3.3%; Tb,
17.8. ATR IR: (range: 1700–700 cm–1) 1647 (s, νC=O), 1608 (mw, νC=C), 1558 (mw, νC=O +
δC-H), 1534 (m), 1461 (ms), 1418 (mw), 1251 (s), 1199 (s), 1141 (s), 1101 (s, νC-F), 1069 (m),
1047 (mw), 1005 (mw), 972 (w), 951 (w), 858 (w), 800 (ms), 767 (w), 733 (m).

2.3. Preparation of KBr Pellets Containing [Ln(hfac)3(bipy)]n (Ln3+ = Eu3+, Tb3+) CPs

Known amounts of [Ln(hfac)3(bipy)]n (Ln3+ = Eu3+, Tb3+) were dispersed in the
proper amount of dried KBr to obtain the desired europium/terbium molar ratio. The
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total lanthanide (Eu3+ + Tb3+) molar concentration was kept constant. The mixtures were
grinded in an agate mortar, adding few drops of n-pentane, dried under a gentle N2
flow, and then pressed, forming the pellets. Six pellets were prepared, two containing
the pure CPs (1 and 2) and four made of a mixture of the two homometallic CPs with
a 1:1, 1:3, 1:5, or 1:10 Eu3+/Tb3+ molar ratio (Eu1Tb1, Eu1Tb3, Eu1Tb5, and Eu1Tb10).
Materials composition is summarized in Table 1. The reproducibility in samples preparation
was investigated through photoluminescence experiments comparing the intensity ratio
between Eu3+ 5D0→7F2 (614 nm) and Tb3+ 5D4→7F5 (543 nm) transitions (IEu/ITb) on three
different replicates of Eu1Tb3. An experimental error of ± 10% was found.

Table 1. [Eu(hfac)3(bipy)]n (1) and [Tb(hfac)3(bipy)]n (2) amounts dispersed in KBr in the differ-
ent samples.

Sample [Eu(hfac)3(bipy)]
(mmol)

[Tb(hfac)3(bipy)]n
(mmol) KBr (mmol)

1 1.49 mg (1.60 × 10−3) // 151.5 mg (1.27)
2 // 1.30 mg (1.39 × 10−3) 133.6 mg (1.12)

Eu1Tb1 1.05 mg (1.13 × 10−3) 1.04 mg (1.12 × 10−3) 209.6 mg (1.76)
Eu1:Tb3 0.55 mg (0.59 × 10−3) 1.65 mg (1.77 × 10−3) 222.8 mg (1.87)
Eu1:Tb5 0.59 mg (0.64 × 10−3) 2.99 mg (3.20 × 10−3) 362.1 mg (3.04)
Eu1:Tb10 0.28 mg (0.31 × 10−3) 2.90 mg (3.10 × 10−3) 325.3 mg (2.73)

3. Results and Discussion
3.1. Synthesis and Characterization

In our previous work, we carefully described the synthesis of monodimensional lan-
thanide β-diketonate coordination polymers based on bipy as connector ligand [33]. The
synthesis of these CPs must be carried out in anhydrous toluene, avoiding the use of oxy-
genated solvents. Indeed, the presence of O-donor molecules in the reaction environment
led to the formation of low-nuclearity products due to the higher affinity of lanthanide
ions towards oxygenated ligands than to N-donor ones [41–43]. We also showed that
1D zigzag CPs were obtained regardless of the employed [Ln(β-dike)3] precursors, using
an equimolar amount of bipy per metal center [33]. We also reported the synthesis and
the characterization of [Eu(hfac)3(bipy)]n (1). Its structure consists of 1D zigzag chains
extended along the b crystallographic axis (Figure 1). Each europium center is coordinated
to six oxygen atoms from the three hfac ligands and two N atoms of two different bipy in a
distorted square antiprismatic geometry [33].
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were omitted for clarity. CCDC number 1471967, from ref. [33]. (b) Schematic representation of
[Eu(hfac)3(bipy)·toluene]n.
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The terbium CP [Tb(hfac)3(bipy)]n (2) has been similarly synthesized, reacting [Tb(hfac)3]
and bipy in a 1:1 molar ratio, and characterized through elemental analysis and infrared
spectroscopy (Figure S1).

3.2. Photoluminescence and Thermometric Studies

Upon irradiation, 1 and 2 emissions are excited over a wide wavelength range, from
UV to visible, up to ≈450 nm for 1 and ≈400 nm for 2 (Figure S2). The lanthanides-
sensitized emission can be achieved through the so-called “antenna effect” exploiting the
absorption properties of the organic ligands. The process can be summarized in the three
following steps: (i) absorption of light by the organic ligand and population of its first
excited singlet state (S1); (ii) intersystem crossing (ISC) from the singlet to the triplet (T1)
level, and (iii) energy transfer (E.T.) from T1 to the lanthanide excited level [44]. Both the
compounds showed intense light emission, also visible at the naked eye (Figure 2), red for
1 and green for 2.
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Figure 2. (a) Picture of a pellet illuminated with white light (the length scale is in cm); and (b,c) picture
of KBr pellets containing 1 (b) and 2 (c) exposed to UV light (λexc =320 nm) at room temperature.

In particular, the emission spectrum of 1 (Figure 3a) is characterized by the typical
Eu3+ 5D0→7FJ (J = 0–4) transitions corresponding to the bands centered at 587, 595, 614, 652,
and 693 nm. Conversely, compound 2 emission spectrum (Figure 3b) showed Tb3+ 5D4→7FJ
(J = 6–3) transitions centered at 490, 543, 583, and 619 nm, respectively [45]. The spectra
(Figure 3) of 1 and 2, dominated by the 5D0→7F2 (Eu3+) and 5D4→7F5 (Tb3+), have a shape
that is typical for β-diketonato complexes [38,46].
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The photoluminescence excitation (PLE, see Figure S2) spectrum of 2 is predominantly
localized at λ < 380 nm with a low-intensity tail extending to the boundary with the visible
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region. Instead, the PLE spectrum of 1 is redshifted and extends in the visible up to about
450 nm. Based on the shape of PLE spectra, we decided to study 1, 2 and their mixtures,
exciting their luminescence at 320 and 370 nm. While at 320 nm both emitters are effectively
excited, PLE signals of 1 at 370 nm are more intense than for 2. However, the use of
370 nm excitation wavelength has distinctive applicative and technological advantages
compared to 320 nm, being compatible with organic substrates used in flexible electronics
and with low glass transition temperature glasses having a cutoff wavelength around
350 nm. Moreover, light-emitting devices (LEDs) emitting at 370 nm are quite common,
and generally cheaper than UV LED.

The temperature-dependent luminescence properties of compounds 1 and 2 were
studied in the 83–383 K temperature range. As visible from Figure 4c–e, the emission
intensity of both compounds decreases as temperature increases. The integrated areas of
Eu3+ 5D0→7F2 and Tb3+ 5D4→7F5 transitions were chosen as thermometric parameter (∆)
for 1 and 2, respectively, since they are the main contributions in the total emission spectra.
The ∆ curves of 1 and 2, normalized at 83 K, are reported in Figure 4.
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The shape of ∆ curves depends on the employed metal ion. In 1 (Figure 4a), the
thermometric parameter has small variations up to ≈223 K, and then decreases, keeping
25% ca. of the initial 5D0→7F2 transition intensity at 383 K (Figure 4c,d). This trend does
not depend on the employed excitation wavelength. Conversely, compound 2 showed a
well-defined S-shaped profile that gradually decreases above ≈113 K. Under the adopted
experimental conditions, 2 did not show residual emission intensity at 383 K (Figure 4b,e,f).
The emission of terbium-CP is partially quenched at room temperature, although still
clearly observable, and gains intensity lowering the temperature. Europium emission
is less effected and is very bright from physiological down to cryogenic temperatures
(T < 100 K) [27,39]. The shape of ∆ vs. T curves depends on the balance between radiative
and non-radiative deactivation pathways that contribute to the modulation of the lumines-
cence properties. The most encountered non-radiative processes determining the overall
thermometric response of the luminescent molecular thermometers are: (i) back energy
transfer from Ln3+ to the ligand triplet level, (ii) multiphonon relaxation promoted by high
energy oscillators (mainly−OH and−NH groups) directly bonded to the metal center, and
(iii) energy transfer to LMCT states. Depending on the activation energies, more than one
process can operate. Other deactivation paths can also be encountered but are less common
(ion–ion interaction, donor-acceptor phenomena, etc.). The different behavior displayed
by 1 and 2 is mainly correlated to the energy difference between Eu3+ or Tb3+ emitting
levels and antenna triplet level (ca. 4700 and 1500 cm−1 for Eu3+ and Tb3+, respectively)
that affect the efficiency of the energy transfer from T1 to the lanthanide excited level, i.e.,
from the back energy transfer that results more efficient in 2. A contribution from LMCT
states cannot be unambiguously ruled out [44].

For a better comparison of compounds 1 and 2 thermometric properties, we used the
relative thermal sensitivity (Sr, % K−1) [6], a figure of merit commonly adopted to compare
thermometers was used:

Sr =
1
∆

∣∣∣∣δ∆
δT

∣∣∣∣ (1)

In Equation (1), ∆ is the thermometric parameter and δ∆ is the variation of the
thermometric parameter on a certain temperature variation (δT). A value of Sr ≥ 1 was
assumed as quality criterion to determine the applicative temperature range of these
CPs [3].

Below 263 K, compound 1 (Figure 5a) has Sr close to zero. Instead, Sr is >1 above 323 K
and its temperature-dependence is almost independent from the excitation wavelengths.
Conversely, 2 (Figure 5b) has Sr 6= 0 in almost all the studied temperature range, with an
application range from 243 to 383 K.
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3.3. Development of Eu3+-Tb3+ Ratiometric Thermometers

1 and 2 are sensitive to temperature variation and can be efficiently employed to develop
a family of ratiometric luminescent thermometers using the 5D4→7F5 (Tb3+)/5D0→7F2
(Eu3+) intensity ratio as thermometric parameter (∆ = ITb/IEu).

Known amounts of the two homometallic CPs (see Table 1) were mixed in KBr,
obtaining homogeneous dispersions. The mixtures have been finely grinded in an agate
mortar, adding a few drops of n-pentane to facilitate the milling process. The organic
solvent was then removed under N2 flow. Finally, the resulting powders have been pressed,
forming non-friable easy-to-handle pellets. Four samples with different europium/terbium
molar ratios have been prepared, keeping constant the Ln3+/KBr molar ratio (Ln3+ = Eu3+

+ Tb3+). The samples were labelled Eu1Tb1, Eu1Tb3, Eu1Tb5, and Eu1Tb10 according to
the Eu3+/Tb3+ relative amount (1:1, 1:3, 1:5, and 1:10 respectively).

At room temperature, the samples showed a bright homogeneous emission also visible
to the naked eye. The color of the emitted light is a combination of the Eu3+ (red) and Tb3+

(green) emissions, which varies from orange to pale green, increasing the terbium content
in the mixture (see Figure 6, Figure 7a,b, Figures S3 and S4).

Switching the excitation wavelength from 320 nm to 370 nm, we modified the relative
intensity of Eu3+ and Tb3+ emissions (compare Figure 7a,b, Figures S3 and S4), since
the longer wavelengths favor europium emission with respect to the terbium one (see
Figure S2). To check the sample homogeneity, we measured the emission spectra (λexc=
320 nm and 370 nm) on different spots on each pellet (sampling size = 200 µm). We
observed small differences in the ITb/IEu intensity ratio, within 10%, thus confirming a
homogeneous dispersion of the two CPs inside the specimens.

The temperature-dependent luminescent properties of the mixed samples were stud-
ied in the 83–383 K range. As an example, emission spectra of Eu1Tb1 at 320 nm and 370 nm
recorded at different temperatures are reported in Figure 7c,d (see also Figures S5 and S6
for the other samples).

Noteworthy, in all the samples the intensity of terbium 5D4→7F5 transition is strongly
influenced by temperature variations, while the europium 5D0→7F2 band is less affected
(Figure 7c,d, Figures S5 and S6), as also previously observed in the homometallic CPs 1 and
2. The color of the emitted light changes from green/yellow to orange/red depending on
the sample composition and the excitation wavelength going from low to high temperature.

For all samples, ∆ curves have a well-defined S-shape. Irrespective of the excitation
wavelength, the higher the terbium content in the sample, the higher the ∆ value at 83 K
(Figure S7). To get qualitative information on the thermometric response among the mixed
samples, the ∆ curves were normalized at 83 K (Figure 8a,b).

In the mixed samples, the normalized ∆ curves showed similar S-shapes regardless of
the relative europium/terbium amount and excitation wavelength. As a result, the Sr vs. T
curves, and hence the thermometric properties, of the different samples are quite similar
(Figure 8c,d). All the Sr curves showed an asymmetric bell shape with a Sr maximum
(Srmax) of 2.4% K−1 ca. between 303 and 323 K with an extended applicative temperature
range (Sr ≥ 1, 100 K ÷ 165 K wide), depending on the sample composition (see Table 2).

Table 2. Applicative temperature range (Sr ≥ 1) and Sr maximum value (Srmax) of the studied Eu3+/Tb3+ mixed samples.

λexc = 320 nm. λexc = 370 nm.

Sample Applicative Temperature Range Srmax (T) Applicative Temperature Range Srmax (T)

Eu1Tb1 213–373 K 2.20 (303 K) 203–353 K 2.30 (303 K)
Eu1Tb3 223–363 K 2.10 (323 K) 243–343 K 1.95 (303 K)
Eu1Tb5 233–373 K 2.10 (303 K) 243–383 K 1.95 (323 K)

Eu1Tb10 233–373 K 2.40 (303 K) 233–363 K 2.60 (303 K)

Interestingly, excellent Sr values in the physiological temperature range (298–318 K) [27,47]
were found for these ratiometric thermometers.
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The reproducibility of the thermometric response of the samples has been tested
performing three different heating–cooling cycles on each sample. All the studied materials
showed a highly reproducible thermometric response as well as the absence of thermal
hysteresis (Figure 9).
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The temperature resolution of our thermometers, i.e., the smallest detectable tem-
perature variation (δT), was determined by the heating/freezing cycles, according to
literature [2,3,18], using the following equation:

δT =
1
Sr
·δ∆

∆
(2)

where δ∆ is the ∆ uncertainty at a given temperature [3,6] determined by calculating the
standard deviation of three heating/freezing cycles. All the samples showed comparable
resolution in the order of 0.01 K (average value over the thermometer operational range),
in line with literature values for Ln-based luminescence thermometers [2,3].

The change of the excitation wavelength produces a variation of the samples color
outputs. Indeed, at 370 nm, the green component due to terbium emission is less intense
than at 320 nm, thus producing an overall chromatic shift towards red (Figure 10).
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Figure 10. Overall chromatic variation for the studied samples excited at (a) 320 nm and (b) 370 nm.

Figure 10 shows a schematic diagram representing the color variation of the different
samples over the 83–383 K temperature range. The color at the different temperatures is
defined by the CIE coordinates determined from the emission spectra obtained exciting
the samples at 320 and 370 nm. Note how the temperature can be mapped by a chromatic
reading generating something similar to the litmus paper, the famous pH testing papers,
that can work with one or more chromatic channels simply defined by the composition
of the mixture of 1 and 2. Noteworthy, the correlation between the color of the emitted
light and sample composition can also be used for the development of luminescent QR-
codes [24] in which the temperature can be associated to a single color or a combination
of two or more tints. In principle, the tuning of the europium/terbium relative amount
should enable the optimization of the color gradient, thus allowing the detection of even
narrower temperature intervals.
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4. Conclusions

In this work, the temperature-dependent luminescent properties of the two ho-
mometallic 1D zigzag [Ln(hfac)3bipy]n CPs (Ln3+ = Eu3+, 1, and Tb3+, 2) were studied in
the 83–383 K temperature range. 1 and 2 showed Sr values higher than 1 starting from
323 K and 223 K, respectively. The two homometallic compounds were then used to pre-
pare a family of Eu3+/Tb3+ ratiometric thermometers in which terbium acts as probe and
europium as reference. Four different thermometers were prepared by mixing different
amounts of 1 and 2 in KBr matrix with Eu3+/Tb3+ molar ratio of 1:1, 1:3, 1:5, and 1:10,
respectively. Sample composition and the excitation wavelength influenced the color of
the emitted light but not the thermometric response. All the thermometers were sensitive
to temperature variation between 83–383 K, showing a wide applicative range (Sr ≥ 1)
from 100 K to 165 K depending on the sample composition. The samples showed high
relative thermal sensitivity values in the physiological temperature range (298–318 K), with
a Sr maximum value of about 2.40% K−1. The thermometric response of the samples did
not vary significantly in changing the excitation wavelength that, instead, influences the
color of the emitted light. The well-defined and peculiar color variation of heterobimetallic
materials is used as a colorimetric thermometer. Using the eyes as a detector, temperature
difference in the order of 10–20 K can be appreciated. To improve the temperature reso-
lution, using the color of the emitted light as probe, calibrated luminance/color meters
are required. The results here reported pose the basis for future activity oriented to bring
luminescent molecular thermometer into daily life by measuring temperature by reading
the color of the emitted light with a smartphone camera.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/ma14216445/s1, Figure S1: Superimposed infrared spectra of [Eu(hfac)3(bipy)]n (1, red) and
[Tb(hfac)3(bipy)]n (2, green) CPs in the 2000–650 cm−1 wavenumber range; Figure S2: Excitation
spectra of compound 1 (red) and 2 (green), λem = 614 and 543 nm, respectively. The vertical dashed
lines highlight the two excitation wavelengths used in the work (320 and 370 nm); Figure S3:
Room temperature emission spectra of samples (a) Eu1Tb3, (b) Eu1Tb5 and (c) Eu1Tb10. λexc =
320 nm; Figure S4: Room temperature emission spectra of samples (a) Eu1Tb3, (b) Eu1Tb5 and
(c) Eu1Tb10. λexc = 370 nm; Figure S5: Temperature-dependent emission spectra of samples (a)
Eu1Tb3, (b) Eu1Tb5 and (c) Eu1Tb10. λexc = 320 nm; Figure S6: Temperature-dependent emission
spectra of samples (a) Eu1Tb3, (b) Eu1Tb5 and (c) Eu1Tb10. λexc = 370 nm; Figure S7: ∆ vs. T curves
of Eu-Tb mixed samples. (a) λexc = 320 nm, (b) λexc = 370 nm.
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