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Kernels, Degrees of Freedom, and Power Properties
of Quadratic Distance Goodness-of-Fit Tests

Bruce G. LINDSAY, Marianthi MARKATOU, and Surajit RAY

In this article, we study the power properties of quadratic-distance-based goodness-of-fit tests. First, we introduce the concept of a root
kernel and discuss the considerations that enter the selection of this kernel. We derive an easy to use normal approximation to the power
of quadratic distance goodness-of-fit tests and base the construction of a noncentrality index, an analogue of the traditional noncentrality
parameter, on it. This leads to a method akin to the Neyman-Pearson lemma for constructing optimal kernels for specific alternatives. We
then introduce a midpower analysis as a device for choosing optimal degrees of freedom for a family of alternatives of interest. Finally, we
introduce a new diffusion kernel, called the Pearson-normal kernel, and study the extent to which the normal approximation to the power
of tests based on this kernel is valid. Supplementary materials for this article are available online.
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1. INTRODUCTION

There is a long literature related to the use of distance mea-
sures in statistics. These measures have been used to construct
estimators via the minimum distance principle and to construct
measures of goodness of fit for statistical models. Our interest
in this article is in distances with a relatively simple quadratic
structure that depends on the choice of a nonnegative definite
kernel K(s, t) on the sample space.

We will focus here on the goodness-of-fit aspect, and in partic-
ular on tools for studying power. We have a number of important
new achievements to report, both theoretical and practical. On
the theoretical side, we first show how the concept of root kernel
leads to tools for building kernels with targeted power proper-
ties (see Section 2). Second, we show how the concept of the
surrogate power function can greatly simplify the determination
of power for these tests (see Section 3). Also in 3 we show how
a simple summary of the surrogate power function, the noncen-
trality index, can be used to select kernels optimal for power.
This results in a midpower lemma akin to the Neyman-Pearson
lemma, which enables one to build kernels for specific problem.
Next, this index will be used in Section 4 in a fundamentally
new midpower analysis, as a way to select tuning parameters in
kernel distances. This analysis replaces a possibly very difficult
local-alternatives type of analysis. In this section, we also show
how one can build a new extension of the normal kernel that
mimics the Pearson chi-square kernel.

On the practical side, we use our tools to carefully study
our main example, testing for multivariate normality in high
dimensions. In Section 5, we study the structure of two kernels
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in high dimensions. Both kernels have bandwidths that need to
be tuned. In Section 6 we use our surrogate power analysis,
along with simulation, to show that there exist bandwidths that
result in testing methods that work well in high-dimensional
problems, and that a careful study of the sensitivity of the test
will reveal the interaction between sample size and dimension
in using such procedures.

We start with a formal definition. Let X be a sample space.
The building block of a statistical distance is the function
K(s, t), a bounded, symmetric, nonnegative definite (NND) ker-
nel defined on X × X . (As we shall see soon, the construction
of NND kernels is not hard.) We let G be a null distribution
whose fit we wish to assess.

Note that we allow the kernel K to possibly depend on the
null G, so that technically it should be written as KG, although
we will usually use the short form K for conciseness.

Definition 1. Given a NND kernel function K(s, t), the K-
based quadratic distance between two probability measures F
and G is defined as DK (F,G) = ∫∫

K(s, t)d(F − G)(s)d(F −
G)(t).

The empirical distance DK (F̂ ,G), where F̂ is a nonparamet-
ric estimator of the true F, is a goodness-of-fit measure. Note
that we will hereafter use D instead of DK. In this setting it
is also possible to construct kernels K suitable to a variety of
data settings, including multivariate problems and a mixture of
discrete and continuous spaces. The simple structure of these
distances makes it easy to estimate and easy to analyze. Lind-
say et al. (2008), hereafter written as LMR (2008), clarified this
structure and provided new theory for goodness-of-fit testing
based on quadratic distances. The class of quadratic distance
tests is central to goodness of fit, encompassing tests based on
characteristic functions, density estimation, and the chi-squared
tests. In the parametric world, score tests are of this class. The
class also provides quadratic approximations to many other tests,
such as those based on likelihood ratios.
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This recent article also introduced the idea of the spectral
degrees of freedom (DOF) of the kernel K. This single-number
summary was shown to provide a useful summary of the ap-
proximate chi-square distribution of the test under the null. The
DOF are also relevant to power. Intuitively, tests with low DOF
are more focused on a limited set of alternatives, and so have
high power there, but would have weak power elsewhere. On
the other hand, one would expect a test with high DOF to be
more omnibus, with widespread but low power.

However, in the settings we consider here, the DOF are in-
finitely tuneable. We would like to better know how to make a
rational decision about DOF. We will argue that the noncentral-
ity index

NCI(F ) = D(F,G)

σn

provides a useful one number summary of the power character-
istics to be used in such analyses. Here G is the null hypoth-
esis, F is the alternative, and σ 2

n is the asymptotic variance of
D(F̂ ,G) under the null. Note that G is viewed as a fixed quantity
throughout this article and so deleted from the notation when it
simplifies expressions.

This article cannot claim to be a final set of recommendations
on the choice of the kernel K or the DOF. In the end, the choice
of distance kernel K is a matter of design, with such important
design factors as the data type, the dimension of the data, the
ability to do explicit calculations, and the alternatives that are
of highest interest. We will offer some further guidance in the
discussion.

To make our wider purpose more concrete, however, we will
illustrate our methods with a narrower design problem that arises
in the following example:

Example 1. An example that we will follow through the ar-
ticle is a particular test based on kernel density estimation.
Suppose that nh(x, y) = (2πh2)−1/2 exp((x − y)2/2h2) is the
normal density, f̂h(x) = n−1 ∑

nh(x, yi) is the kernel density
estimator, and g is a null hypothesis density. Let g∗(x) =∫

g(y)nh(x, y)dy be the kernel smoothed null hypothesis and
let fτ be the true density. Then a test of H0 : fτ = g could be
based on the L2 distance D = ∫

(f̂h(x) − g∗(x))2dx. There is
a natural multivariate extension to a normal kernel. This is a
quadratic distance, whose kernel Kh will be identified in the
next section.

Much of the literature on quadratic goodness-of-fit testing is
focused on specific kernels, or, if more general, does not consider
the use of DOF as a tool in understanding power characteristics.
There is also considerable literature on the choice of bandwidths
in the context of density estimation where consideration of mean
squared error has been paramount. Rather than detail all this
literature here, we provide a review of some key articles in
the online supplementary materials. There is also some new
literature in the machine learning world relevant to this article
that will be reviewed in Section 2.

2. QUADRATIC DISTANCES

We start with some basic concepts about quadratic distances.

The canonical example of quadratic distance is the Pearson’s
chi-squared distance whose kernel is given by

K(r, s) =
m∑

i=1

I (r ∈ Ai)I (s ∈ Ai)

G(Ai)
. (1)

Here I is the indicator function and A1, A2, . . . , Am is a parti-
tioning of the sample space into m bins. The empirical distance
is then

m∑
i=1

(F̂ (Ai) − G(Ai))2

G(Ai)
.

To obtain the correct asymptotic theory, we must modify the
kernel K by centering it to obtain Kctr (details in Section 2.1), in
which case we can write D(F,G) = ∫∫

Kctr(s, t)dF (s)dF (t).
In this form it is clear that D(F̂ ,G) is a V-statistic. The corre-
sponding U-statistic that unbiasedly estimates the true distance
D(F,G) is given by the expression

Un = 1

n(n − 1)

∑
i

∑
j �=i

Kctr(xi, xj ). (2)

We will later use the simple form of Un, which has an explicit
mean and variance, to approximate the power properties of the
test.

2.1 Construction of Quadratic Kernels Using
Root Kernels

In a mathematical sense, the properties of the quadratic dis-
tance are completely determined by the kernel K(r, s) and the
model under investigation. However, in the previous literature
on distance kernels, there has been little or no work on the con-
struction of a nonnegative definite kernel K that is designed to
meet specific goals. Throughout this research we have found the
concept of the root kernel to be fundamental to the analysis and
construction of these distances. We introduce them here.

Let k(x, t) be an arbitrary user-chosen kernel (possibly de-
pending on G), where x is in the sample space and t is in some
space, which we will call the parameter space. In some cases the
parameter space is the sample space. This kernel k will be called
the root kernel. Let du(t) be a user-selected measure on the pa-
rameter space (also possibly depending on G). The symmetric
kernel K(x, y) = ∫

k(x, t)k(y, t) du(t) is always nonnegative
definite; it can be viewed as the functional analogue of a sym-
metric nonnegative definite matrix of the form AAT . Note that
both k and du can depend on G.

As an example, if one uses as the root kernel k the normal
kernel φh2 (x, t)with mean t and variance h2, and du(t) = dt,

then we are in the setting of Example 1. Then the distance
kernel K is a normal kernel φ2h2 (x, y) with variance 2h2. We
will call h the bandwidth parameter.

This construction also offers a second interpretation to
the quadratic distance. If we let f ∗(y) = ∫

k(y, t)dF (t) and
g∗(y) = ∫

k(y, t)dG(t), then we can, by reversal of orders of
integration, rewrite the quadratic distance as the L2 distance
D(F,G) = ∫

(f ∗(t) − g∗(t))2 du(t). If k(s, t) is a smoothing
kernel, as used in density estimation, then the quadratic dis-
tance is an L2 distance between kernel smoothed versions of F
and G. Much of the literature on quadratic distances has started
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from this L2 perspective, and so has focused on the root kernel
k rather than the distance kernel K.

If instead one uses k(x, t) = eitx, so f ∗(t) is the characteristic
function, and uses ‖f ∗(t) − g∗(t)‖2 as the argument, one has a
distance based on characteristic functions with distance kernel
K(x, y) = ∫

cos(t(x − y))du(t). A variation on this character-
istic function distance was used, for example, in the context
of testing for independence, by Szekely, Rizzo, and Bakirov
(2007).

It is less obvious, but this process is quite generally reversible.
That is, if one starts with a nonnegative distance kernel K(s, t),
there generally exists a symmetric “square root” kernel k(s, t)
satisfying the relationship

∫
k(s, r)k(t, r) du(r) = K(s, t), and

so it can be viewed as the root kernel in an L2 distance repre-
sentation of the quadratic distance.

Thus, rather than selecting kernels K, we will focus on select-
ing a root kernel k(x, t). Here are three goals in this selection:

• First, it should give good power properties. This is the main
focus of this article.

• Second, it should provide a well-behaved null distribution.
We will later give an example in which an attempt to grab
more power in the tails, via the Pearson-normal kernel,
degrades the null distribution.

• A third, more practical, consideration is that K should be
explicitly computable for the given k. Generally speak-
ing, we think the class of easy-to-compute kernels is rich
enough to suit almost every purpose.

As an example of the third item, using k(x, t) = eitx and du(t)
as φτ (t, 0)dt, we get the family of normal kernels back.

Kτ (s, t) =
∫

eit(x−y)φτ (t, 0)dt = e−τ 2(x−y)2
.

This example also illustrates the point that a single distance
kernel K will have many root kernel representations via the
choice of the measure du(t).

From the computational point of view, a particularly nice
family of root kernels are based on Markov diffusions. This is
because the Markov property dictates that the transition kernel
Kt (x, y) of the process, which indicates the chances of going
from state x to state y in time t, satisfies what we will call the
diffusion equation:

K2t (x, y) =
∫

Kt (x, z)Kt (z, y) du(z),

for time parameter t. Hence, the root kernel and distance kernel
are in the same family. See Kondor and Lafferty (2002) and
Lafferty and Lebanon (2005) for the use of diffusion kernels in
machine learning.

Finally, it is important to understand that the distance ker-
nel K that generates a particular distance is not unique. The
calculations for the basic theory require finding the G-centered
kernel

Kctr(s, t) = K(s, t) − K(s,G) − K(G, t) + K(G,G),

where we used the convention that when a distribution, here
G, replaces an argument, it means we have integrated the argu-
ment out with G. For example, K(s,G) = ∫

K(s, t)dG(t) and
K(G,G) = ∫∫

K(s, t)dG(s)dG(t). Note that Kctr generally de-

pends on G even if K does not. It is important to note that Kctr

gives exactly the same distance measure as K. The distinction
is that Kctr must be used in the theoretical calculations.

We note, as a new result, that if K has root kernel k, then the
centered kernel can be expressed as

Kctr(x, y) =
∫

(k(x, t) − k(G, t))(k(y, t) − k(G, t)) du(t).

That is, the root of the centered kernel Kctr is kctr(x, t) =
k(x, t) − k(G, t).

2.2 Distributional Properties of Quadratic Distance

Suppose we have a given parametric model {Gθ : θ ∈ �} and
a single sample x1, . . . , xn from an unknown distribution F. We
now wish to test whether F is in the family Gθ. In this section,
we bring forth the facts that will enable us to create a simple
power analysis in the next section.

We start with the simple null hypothesis, where {Gθ } is actu-
ally G, a single probability measure.

Simple Null Hypothesis. Quite generally there exists a
spectral decomposition of the kernel Kctr that depends
on G. Suppose the kernel K(s, t) satisfies the condition∫∫

K(s, t)dG(s)dG(t) < ∞, where G is the null probability
measure. The spectral decomposition theorem then gives a de-
composition of the form

Kctr(s, t) =
∞∑

j=1

λjφj (s)φj (t), (3)

where the λj ’s and φj ’s are the eigenvalues and the normalized
eigenfunctions of K under measure G. However, in most real
multivariate cases it is quite hard to determine the eigenvalues
and eigenfunctions, so we believe it is very important to focus
on approximation methods that avoid this difficulty.

If the decomposition has eigenvalues λi, then under the
null hypothesis the limiting distribution of the V-statistic
is nD(F̂ ,G) → ∑

j λjZ
2
j . The limiting distribution of the

U-statistic is

nUn →
∑

j

λj

(
Z2

j − 1
)
.

We denote the last distribution as χ2(λ∗), with λ∗ =
(λ1, λ2, . . .).

This limiting result is not particularly useful, given the depen-
dence on infinitely many eigenvalues. However, we can learn
about their key properties by integration of Kctr. The sum of the
eigenvalues is the trace of K under G, namely

tr(Kctr) =
∞∑

j=1

λj =
∫

Kctr(s, s)dG(s).

The trace of (Kctr)2
, with respect to G, is the sum of squared

eigenvalues,

tr((Kctr)2) =
∞∑

j=1

λ2
j =

∫∫
(Kctr)2(s, t)dG(s)dG(t) < ∞.



398 Journal of the American Statistical Association, March 2014

As a new result, we note that these fundamental quantities can
be represented using root kernel as

tr(Kctr) =
∫

varG(kctr(X, t))du(t),

and

tr((Kctr)2) =
∫∫

covG(kctr(X, t), kctr(X, s))du(s)du(t).

Given these quantities, we have the following definition.

Definition 2. The DOF, under measure G, of a kernel K are
defined to be

DOF(K) = [tr(Kctr)]2

tr((Kctr)2)
= (

∑
λj )2∑
λ2

j

. (4)

For the standard Pearson chi-squared distance there are a
finite number of positive eigenvalues, all equal, and DOF(Kctr)
is just the usual DOF. In other cases, DOF(Kctr) represents the
DOF of the Satterthwaite approximation of χ2(λ∗). LMR (2008)
showed that for large DOF both the Satterthwaite approximation
and the χ2(λ∗) are close to normal, a result we will use later.
Note that DOF(Kctr) = DOF(a · Kctr) for any constant a.

For our later interpretation, it is important to note from the
article by LMR (2008) that the standardized kernel Kstd =
Kctr · tr(Kctr)/tr((Kctr)2) has the “chi-squared” property of
tr(Kstd) = tr(K2

std) = DOF(K) = DOF(Kstd). Such a rescaled
distance provides exactly the same inference as K. This means
that we can, without loss of generality, interpret DOF as being
the mean and half of the variance of the standardized distance
statistics.

Under the Alternative. Under the alternative, the U-statistic
has mean D(Fτ ,G), where Fτ is the true distribution, and vari-
ance given as follows:

Proposition 1. The exact variance of Un under the true dis-
tribution Fτ is given by

var(Un(G)) = 2

n(n − 1)
EFτ

[Kctr(X1, X2)]2

+ 4

n
EFτ

[(
(X))2], (5)

where X1, X2 are independent replicates from Fτ , K is the cen-
tered kernel with respect to G, and


(x) = Kctr(x, Fτ )−Kctr(x,G)+Kctr(Fτ ,G) − Kctr(Fτ , Fτ ).

Proof. Given in the online supplementary materials. �
To simplify our notation hereafter, we will write

varFτ
(Un) = an� + bnυ,

where � = EFτ
[KG(X1, X2)]2, and υ = EFτ

[(
(X))2], an =
2

n(n−1) , bn = 4
n
.

Composite Null Hypothesis. We now suppose that one has
estimated the parameter θ under the null with some estimator θ̂

and that one proposes to use D(F̂ ,Gθ̂ ) as a test statistic for the
null model {Gθ }. The preceding results no longer directly apply.
Due to its dependence on θ̂ , the distance measure D(F̂ ,Gθ̂ ) is
no longer a simple quadratic function of F̂ and the corresponding

Un is not an unbiased estimator of distance. For example, we
know from the chi-squared example that the DOF are reduced
by the number of parameters estimated.

One can, however, hope to appeal to the preceding theory
by approximating D(F̂ ,Gθ̂ ) with a quadratic distance having
a modified kernel K∗. See LMR (2008) for the special case
when θ̂ is the maximum likelihood estimator. We here offer a
new generalization of this result to other estimators. We assume
that the estimator can be expressed as functional θ̂ (F ) that are
consistent for θ in {Gθ } in the sense that θ̂ (Gθ ) = θ for all θ.

This includes the minimum distance estimator based on K.

The simplest way to derive such an approximation is via a for-
mal von Mises expansion. This will in fact identify the correct
structure, although in any particular case such an expansion can-
not guarantee that the remainder is stochastically small, which
must be done by other means.

To enable this calculation, we assume that the vector g(ε) =
θ̂(Fε), where Fε = (1 − ε)F + εF̂ , has a linear first-order ex-
pansion of the form

g(0) = θ (F ),
d

dε
g(ε)|ε=0 =

∫
θ ′(x)dF̂ (x), (6)

so that θ ′(x) is the vector influence function for θ̂ .

Let the centered version of root kernel k(x, t) be kctr(θ, x, t),
where we express the dependence on Gθ through the first argu-
ment θ. Define the estimation-centered root kernel to be

vF (θ, x, t) = kctr(θ, x, t) − kctr(θ, F, t)

+ θ ′(x)T [∇θ k
ctr(θ, F, t)].

Proposition 2. Suppose that θ̂ = θ (F̂ ) is an estimator of vec-
tor θ with vector influence function θ ′(x). Let h(ε) be the formal
von Mises approximation to the testing problem (see Appendix).
Then the first two formal von Mises derivatives of the empirical
distance D(F̂ ,G) are

h′(0) = 2
∫∫

vF (θ, x, t)(kctr(θ, F, t))du(t)dF̂ (x)

and

h′′(0) = 2
∫∫ (∫

vF (θ, x, t)vF (θ, y, t)du(t)

)
dF̂ (x)dF̂ (y).

In particular, h′(0) = 0 under the null hypothesis, and so the
estimation-centered root kernel vG(θ, x, t) is an approximate
root kernel for the null hypothesis.

Proof. Given in the Appendix. �
Remark 1. We recognize that virtually every real application

of goodness-of-fit testing involves nuisance parameters θ in the
null hypothesis. However, there are sufficient complexities in
the quadratic power problem, so our purpose here will be to
take the first, and most important, step of verifying that our
surrogate power analysis works in a simple null hypothesis.

Two-Sample Quadratic Tests. The quadratic distance for-
mulation lends itself naturally to the comparison of any two
distributions F and G, no matter how they arise. Thus, it is not
surprising that there is some literature relating them to the two-
sample problem where F and G are estimated by independent
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samples. There is a significant literature in machine learning,
represented by Gretton et al. (2012) and Poczos, Ghahramani,
and Schneider (2012).

This is relevant to our present purpose for two reasons. First,
they have found that kernel-based two-sample comparisons were
more powerful than other distance methods considered (Fried-
man and Rafsky 1979; Anderson et al. 1994; Biau and Gyorfi
2005; Sriperumbudur et al. 2010). This substantiates that we are
on a useful track. Second, if we cannot explicitly calculate the
integrals in D(F̂ ,G), but we can simulate, then we can easily
turn the goodness-of-fit problem into a two-sample problem.
We take a large sample from G, create the empirical Ĝ, and
compute D(F̂ , Ĝ) instead of D(F̂ ,G). There is, of course, a
theoretical difference in that the true distribution G for the sim-
ulation is known, so one can simulate with arbitrary accuracy.
We leave the details of this extension to future work.

3. POWER CONSIDERATIONS

One challenge in undertaking a study of power for quadratic
distances is that the distributional theory is rather complex.
This leaves two obvious options: numerical approximation and
simulation. A simulation approach usually leads to little insight,
so we construct a surrogate power function in this section. In
our numerical section, we will compare it with simulated power
curves.

3.1 The Surrogate Power Function

Under a general alternative Fτ , the U-statistics given in (2)
provides us with a simple relationship E(Un) = D(Fτ ,G). A
second nice feature of the U-statistic version of the test statistic
is that we have an explicit formula for the exact variance under
an arbitrary alternative (see (5)).

Our power approximation is based on two observations:

• Under the null hypothesis, the limiting distribution for nUn

is asymptotically χ2(λ∗). We know that this distribution is
approximately normal for large DOF. (And, as we will later
see, the best power tends to occur for large DOF.)

• Under a fixed alternative Fτ , the limiting distribution for Un

is again normal, with asymptotic variance 4
n
EFτ

[(
(X))2].
This follows from standard U-statistic theory.

We therefore propose to use a normal approximation under
both null and alternative, but when we create the approximation
we will use the exact mean and variance of the U-statistic under
the chosen alternative Fτ .

We first use the normal approximation under the null to write
the rejection region as {Un > zα

√
an�0}, where �0 is the vari-

ance calculated under the null hypothesis and zα is the normal
critical value for a size α test. (This critical value could be re-
placed by a simulated value if one desires more accuracy.) The
power can then be approximated using asymptotic normality un-
der the alternative Fτ , with D = D(Fτ ,G), using the surrogate
power function

β(Fτ ) = PFτ
(Un > zα

√
an�0) = P

(
Z >

zα
√

an�0 − D√
an� + bnυ

)
.

We note that the surrogate power function smoothly interpolates
between the null and alternative variance functions.

3.2 The Midpower Manifold and NCI

Our next observation is that the β(Fτ ) = 0.5 when
zα

√
an�0 − D = 0. This makes for an even simpler analytic

calculation than the full surrogate power, and so we will fo-
cus on power 0.5. Further, because it is equivalent asymptoti-
cally and makes calculations simpler, hereafter we will replace
an = 2/(n)(n − 1) with an = 2/n2.

We therefore define the noncentrality index to be

NCI(F ) :=
(

n
D(F,G)√

2�0

)
,

noting that {F : NIC(F ) = zα gives a manifold of alternatives
Fτ where the surrogate power β(Fτ ) of the size α test is 0.5.

Call this the midpower manifold.
We will compare the power structure of kernels by analysis

of this surrogate midpower manifold. As an additional heuristic
justification for NCI, we note that in the partitioned chi-square
case it equals the traditional noncentrality parameter used in an
analysis of local alternatives.

Note that the kernel K is implicitly involved in the numera-
tor and denominator of NCI. Indeed, it clarifies the key issue:
power at F is a tradeoff between increasing the sensitivity of
the distance D to the target distribution F and minimizing the
inflation of the null variance. After standardizing the distance,
the squared denominator equals the DOF, so we need to con-
trol DOF. Under an alternative distribution F, one can write the
numerator as

D(F,G) =
∑

j

λjE
2
F [φj (X)].

Thus, the distance, and so the numerator, is determined by the
eigenmoments EF [φj (X)], whose nonzero values signify de-
partures from the null, as well as the eigenvalues λj , as they de-
termine which eigenmoment failures are weighted most heavily.
For the normal kernel, the eigenmoments are damped Hermite
polynomial moments (LMR 2008).

Remark 2. We note that Gourieroux and Tenreiro (2001) stud-
ied the power properties of kernel-based goodness-of-fit tests
assuming that the bandwidth parameter hn → 0, under a se-
quence of local alternatives. Here, we have offered a simpler
approximation to the power that is approximately valid when
there is no bandwidth, or the bandwidth h is fixed. This is im-
portant because we will see that in a testing situation, it is highly
likely that the best selected bandwidths do not converge to zero
as n goes to infinity. Indeed, as d increases, they may become
infinite.

Remark 3. One might also think that a local alternatives
(Neyman 1937; Pitman 1948; McManus 1991) approach to our
problem would somehow offer a more useful or accurate power
approximation. We think Occam’s razor is the best guide. Note
that the midpower manifold clearly depends on the sample size
n, and always represents “local” alternatives that are of interest
at n. If one were to use a noncentral chi-square, or noncentral
χ2(λ∗), approach to this problem, we believe that one would end
up with essentially the same analysis, provided that one simpli-
fied the noncentral problem further and used suitable normal
approximations for the noncentral distribution calculations.
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3.3 The Midpower Lemma

We will first use our surrogate power analysis to show how
one can build a kernel that is targeted toward midpower for
a particular family of alternatives. This analysis will then be
applied to better understand the strengths of the Gaussian kernel.
We will also use the method to build a new class of kernels more
similar to the chi-square.

Let Fθ be a family of alternatives to the simple null hypothesis
G. Let W be a prior probability measure, with w(θ ) its density
on θ, that assigns weights to the values of the parameter. The
weighting density should be highest at those alternatives where
one wishes to focus on the midpower of the test. That is, as a
substitute for maximizing the full surrogate power function, we
consider the problem of choosing a centered kernel K(x, y) that
maximizes the following integrated noncentrality index over
this family of alternatives:

NCIw(K) =
(∫

D(Fθ,G)dW (θ )
)

var1/2
G (K)

.

Note that this problem has built into it the tradeoff between the
sensitivity of distance to {Fθ } and the variance of the test statistic
under the null.

This optimality problem has a simple solution B(x, y) that
should have good midpower properties over Fθ , with its greatest
emphasis on those alternatives with high weight w(θ ) = dW (θ ).
The uncentered version of B is

B∗(x, y) =
∫

fθ (x)

g(x)

fθ (y)

g(y)
dW (θ ).

This kernel has the root kernel fθ (x)
g(x) under measure du(θ ) =

dW (θ ). We can consider B∗ to be the ratio of the (x, y) density
fW (x, y) = ∫

fθ (x)fθ (y)dW (θ ) to the null density g(x)g(y). If
we center this kernel using measure G, we find the centered
likelihood ratio kernel

B(x, y) =
(∫

θ

[
fθ (x)

g(x)
− 1

] [
fθ (y)

g(y)
− 1

]
dW (θ )

)

= B∗(x, y) −
∫

fθ (x)dW (θ )

g(x)
−

∫
fθ (y)dW (θ )

g(y)
+ 1.

The last expression makes it easy to show that tr(B) = tr(B∗) −
1, where

tr(B∗) =
∫ [∫

fθ (x)2

g(x)
dx

]
dW (θ ).

We will call the following the midpower lemma.

Lemma 1 (Midpower Lemma). Suppose that tr(B2) =∫∫
B2(x, y)dG(x)dG(y) is finite. The objective function

NCIw(K) is maximized uniquely by kernels equivalent to B,

and has the value

NCIw(B) =
√∫∫

B2(x, y)dG(x)dG(y).

Proof. To solve the above optimization problem, we rewrite
the numerator of NCIw(K) as∫

D(Fθ,G)dW (θ ) =
∫

θ

(∫
y

∫
x

K(x, y)

[
fθ (x)

g(x)
− 1

]

×
[
fθ (y)

g(y)
− 1

]
dG(x)dG(y)

)
dW (θ )

=
∫

y

∫
x

B(x, y)K(x, y)dG(x)dG(y).

The optimization problem is then to find the centered kernel K
that maximizes

NCIw(K) =
[∫∫

B(x, y)K(x, y)dG(x)dG(y)
]

√∫∫
K2(x, y)dG(x)dG(y)

.

The result now follows from the Cauchy–Schwarz inequality.
�

The following corollary shows the resemblance between the
midpower lemma and the Neyman-Pearson lemma.

Corollary 1. The maximum noncentrality index for testing
simple g versus simple f is attained by the centered rank one
kernel B(x, y) = [ f (x)

g(x) − 1][ f (y)
g(y) − 1]. That is, the likelihood

ratio f (y)
g(y) is a root kernel for the distance.

When one is creating the weighting prior w, one might need
to take some care to ensure that tr(B2) is finite. In particular, note
that for tr(B) to be finite it is necessary that the inner integral

h(θ ) =
∫

fθ (x)2

g(x)
dx

be finite with probability 1 under W. That is, one must choose the
family of alternatives Fθ so the elements have a finite chi-square
distance from g. Of course, this condition is not sufficient, and so
one also needs to check whether h(θ ) has a finite integral under
dW. However, the finiteness of tr(B∗) can be shown to suffice
for other key quantities to be finite, such as

∫
DB(Fθ,G)dW (θ )

and tr(B2), and hence DOF.

Reverse Interpretation of a Kernel. In this section we use
the midpower lemma in reverse to show that every kernel K has
an implicit set of alternatives against which it is optimal. This
in turn leads to a new interpretation of the Gaussian kernel.

Proposition 3. Let g(x) be the null density. Let k(x, t) be a
root kernel for K. Let the family Fθ of alternatives to g have the
form

f (x, θ ) = g(x)k(x, θ )/g∗
h(θ ),

where g∗(θ ) = ∫
g(x)k(x, θ )dx is the normalizing constant. Let

the prior weighting measure be dW (θ ) = Cg∗(θ )2du(θ ), where
C is the normalizing constant for dW. Then the optimal kernel
B is simply the kernel K.

Proof. This is an easy calculation. �
We can apply this result to the normal kernel with root

φh(x, t) to get some insight into its implicit weighting of al-
ternatives. This alternative distribution with density f (x, θ ) =
g(x)φh(x, θ )/g∗

h(θ ), converges to point mass at θ as h → 0. That
is, for h small, this alternative is very similar to putting mass 1
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in a small neighborhood of θ. Under continuity of g the weight
function wh(θ ) converges to C0g

2(θ ) where C−1
0 = ∫

g2(θ )dθ,

as h → 0.

Our conclusion is that the normal kernel with a small band-
width h has its midpower tuned particularly to a family of highly
concentrated alternatives at all possible locations θ, where we
assign larger weight to alternatives at those θ for which g(θ )2 is
large. The mean noncentrality for this scheme is

Ct

√
varG

(
φctr√

2h

)
,

where varG(φctr√
2h

) is the variance of the centered normal kernel.
One might compare the optimality properties of the normal

kernel with those of binned chi-squared kernel. In this case one
could use as alternatives to G the family of densities f (x, θ ) =
I (x ∈ Aθ )g(x)/G(Aθ ), where θ is the bin index. If one uses
the masses G(Aθ ) for w(θ ), then the optimal kernel is the chi-
square kernel. The key difference between the chi-squared and
Gaussian kernels is that the weights for the normal are not
proportional to g(θ ), but rather proportional to g(θ )2, and so
the normal kernel puts less weight in the tails of g than the
chi-square.

Pearson Normal Kernel. The possible limitations of the
Gaussian kernel suggest that one use the midpower lemma to
improve it. In the process we will arrive at a new kernel with a
number of interesting mathematical properties.

The following is a new method of constructing kernels. Let
kh(x, t) be a “basis” kernel with bandwidth parameter h. As
in the preceding case, let the class of parametric alternatives
have the form kh(x, θ )g(x)/g∗(θ ). If one applies the midpower
lemma using as a weighting density g∗

h(t) instead of g∗
h(t)2,

in the spirit of the chi-squared construction, one arrives at the
following Pearsonized kernel:

K(x, y) =
∫

kh(x, θ )kh(y, θ )

g∗
h(t)

dθ. (7)

After reversing orders of integration, we obtain

D(F,G) =
∫

(f ∗
h (t) − g∗

h(t))2

g∗
h(t)

dt.

This distance mimics the “squared standardized deviates” fea-
ture of the chi-squared distance while having DOF that are
continuously adjustable through the bandwidth h. The general
form of this kernel was given by Seo and Lindsay (2008) who
studied this kernel as a quadratic equivalent of the corresponding
doubly smoothed Kullback–Leibler discrepancy,∫

f ∗
h (x) log(f ∗

h (x)/g∗
h(x))dx.

The Pearsonized kernels described above always have a sim-
ple centering operation Kctr(x, y) = K(x, y) − 1. This makes
them particularly attractive for an eigenanalysis as the centered
and uncentered kernels have the same eigenfunctions. They dif-
fer only on the eigenvalue for the constant eigenfunction 1.

We apply this new methodology to our problem to arrive at a
new kernel, the Pearson normal kernel.

Example 2 (The Pearson-normal kernel). If the basis kernel
is φhI (x, t), a d-dimensional multivariate normal with variance

h2I, and the null distribution function G is multivariate standard
normal, the Pearson-normal kernel can be calculated as

Kh(r, s) = (h2 + 1)d

hd (h2 + 2)d/2
exp

[
− (r − s)T (r − s)

2h2(h2 + 2)
+ rT s

h2 + 2

]
.

This kernel is a product, Kh(x, y) = ∏
Kh(xi, yi), over the uni-

variate kernels

Kh(r, s) = h2 + 1

h(h2 + 2)1/2
exp

[
− (r − s)2

2h2(h2 + 2)
+ rs

h2 + 2

]
.

This kernel, which is new to our knowledge, has some in-
teresting mathematical properties. As a function of r and s the
Pearson-normal kernel has considerable superficial similarity to
the normal kernel. The following proposition shows that it can
be interpreted as a ratio of normal densities.

Proposition 4. In the univariate case the Pearson-normal ker-
nel can be represented as

Kh(x, y) = fρ(x, y)

n1(x, 0)n1(y, 0)
,

where fρ is a bivariate normal density function for variables X, Y
with means 0 and variances 1, and covariance ρ = 1/(h2 + 1).

Proof. Given in the online supplementary materials. �

4. THE MIDPOWER ANALYSIS

In the preceding section, we have shown that the optimality
properties of a kernel have value in the interpretation of the
kernel and even in construction of kernels. However, it still
only provides weak guidance on the selection of the bandwidth
parameters h in a kernel like the normal or Pearson normal. We
therefore develop a more precise strategy that could be useful in
comparing the sensitivity of a fixed class of kernels. We denote
this class as {Kh} where h is any index of the kernels, whether
a bandwidth, a collection of bandwidths, or some other index.
We call h bandwidth here for simplicity.

For each bandwidth h there is a midpower manifold Bh, sur-
rounding the null hypothesis G in the space of distributions that
corresponds to those F that have power 0.50. We cannot expect
that there will be any value of h that is superior to all others, in
the sense of having its manifold inside all the others. In fact, we
will have to set a statistically meaningful criterion to narrow our
choices. We illustrate with one possibility that we like because
of its ease in interpretation. It gives a way to select h as a way
to measure the sensitivity of the test.

4.1 Midpower in a Target Alternative Family

Our first step is to create one or more families of target al-
ternative hypotheses {Fδ}, each with a scalar parameter δ ≥ 0.

We think of {Fδ} as a one-dimensional curve of alternatives
through the space of all alternatives. These families should be
constructed so as to suit the purposes of the tester; they might
be “most plausible,” “most interesting,” or be based on the “de-
viations that are likely to negate the conclusions we would draw
if we used the null model.” We assume that δ = 0 corresponds
to the null, and that as δ increases the departure from the null
becomes more severe. Hence, {Fδ} includes local as well as re-
mote alternatives. As we shall see in the next section, this format
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can easily be extended to a larger family of alternatives {Fθ,δ},
with scalar δ and vector θ, together with a weighting prior W
on θ.

Assuming each target family Fδ is smooth in δ, then there
exists, for each h, a smooth power curve βh(δ) that depends on
n and on the DOF through the tuning parameter h. For each
bandwidth, we define the midpower sensitivity of the bandwidth
h by

δmid(h) = arg min{δ : βh(δ) = 0.5}.
This is the smallest value of δ where the test achieves power
0.5. Note that this step depends on δ being univariate. Otherwise
{δ : βh(δ) = 0.5} would be a set of δ values.

If the power curve is monotonically increasing in δ, then the
midpower alternative δmid(h) divides the values of δ into two
intervals where the chances of success in rejecting the alterna-
tive are below or above 0.5. We think the 50–50 nature of the
midpower alternative makes δmid(h) a natural measure of the
overall sensitivity of the test based on bandwidth h. If a test
with bandwidth h1 has a midpower alternative δmid(h1) smaller
than δmid(h), we will say h1 is more sensitive to the alternative
family than h.

Next we define the midpower optimal bandwidth h∗
midopt =

arg minh(δmid(h)). This is the bandwidth that generates the most
sensitive test among all bandwidths. Note that such a test need
not be globally optimal for Fδ, in the sense that the power curve
satisfies βh∗ (δ) ≥ βh(δ) for all δ. However, if a globally optimal
test exists, it is also midpower optimal. Note that there is nothing
in this analysis that restricts h to be univariate.

Insisting on midpower optimality ensures that our focus is on
the range of alternatives where the power function is well away
from size α, that is, cases of very low power, and 1, that is, cases
with very high power.

This concludes the selection of the best h. As a summary
of how well the whole family of kernels performed for the
alternatives under consideration, define δ∗

sens = δmid(h∗
midopt)to

be the midpower sensitivity over h of the family of kernels Kh

in family Fδ.

Clearly, different target families Fδ could generate very dif-
ferent h∗

midopt, in which case a compromise would have to be
made among the resulting bandwidths. In our worked exam-
ples, this problem has been very mild. Another solution would
be to combine tests with different bandwidths, a subject that we
will not tackle here.

4.2 Midpower Analysis in Quadratic Distances

A special advantage of using the midpower analysis in the
quadratic distance problem is that h∗

midopt and δ∗
sens can be

straightforward to obtain from the surrogate power curve. As
we noted earlier, the power approximation is 0.5 when the non-
centrality index

NCI(δ, h) :=
(

n
D(Fδ,G)√

2�0

)

equals zα. Here D = D(Fδ,G) depends both on δ in the alter-
native and h, through the kernel Kh. However, �0, the variance
of the distance statistic under the null, depends only on h, not on
δ. If we wish to include nuisance parameters θ in the analysis,

thereby creating a larger family of alternatives {Fθ,δ}, we could
here replace D(Fδ,G) with

∫
D(Fθ,δ,G)dWδ(θ ).

The special structure of the noncentrality index suggests the
following shortcut to doing the midpower analysis. We start by
finding the upper envelope of the noncentrality index. We first
fix δ, and then maximize the noncentrality index over h. Call the
resulting bandwidth h∗

env(δ), and let the resulting upper envelope
be

NCIenv(δ) := sup
h

NCI(δ, h) = NCI(δ, h∗
env(δ)).

Let us then find the smallest δ, say δmin for which NCIenv(δ) =
zα, assuming continuity of the envelope. Values of δ smaller
than δmin cannot have power equal to 0.5 for any h because
their noncentrality index is too small. However, the bandwidth
h = h∗

opt(δmin) does attain power 0.5 at δmin, and so it must be
the midoptimal bandwidth h∗

midopt. Finally δmin is the midoptimal
sensitivity δ∗

sens.

5. KERNELS IN HIGHER DIMENSIONS

We have now built up a collection of tools for analyzing
power and making kernel selections. Before we apply them to
the problem of testing for multivariate normality, we must first
develop a greater understanding of how kernels work in higher
dimensions. We will focus on the Gaussian and Pearson-normal
as they are the keys to our detailed study.

As a smoothing kernel in higher dimensions, the normal
φhI (x, y) is one of a class of kernels of product form

φhI (x, y) =
d∏

i=1

φh(xi, yi).

More generally, one can always create a multivariate kernel by
taking a product of univariate kernels. This structure is flexible
and fast, and adaptable to different data types.

The multivariate Gaussian also has the feature of being in-
variant under orthornormal transformations of the variables: if
� is an orthonormal matrix, then φhI (�x, �y) = φhI (x, y). If
the model structure makes orthonormal invariance a desirable
feature, then one should be cautious of the product formulation
as Kprod(x, y) = ∏

K(xi, yi) is orthonormal invariant for only
a few base kernels K. (One can show that the product of Pearson
normal kernels is also invariant.) In general, a test will be invari-
ant if the kernel K(x, y) is a function of vectors x, y through
xT x, yT x, and yT y alone.

However, in a general problem in which the data vector could
have coordinates with range restrictions or some variables dis-
crete, or even other types of variables, then orthonormal in-
variance seems to be a less relevant criterion. In these settings,
creating a multivariate kernel simply by using a product of uni-
variate kernels has some advantages. First, univariate kernels
are readily available, or easily constructed, for many data types.
Second, the choice of any bandwidth parameters can be done
on a coordinate-by-coordinate basis.

The midpower lemma gives us some insight into the narrow
circumstances under which product kernels might be an ideal
construction. If the null hypothesis G has the product density
�igi(xi), if the family of interesting alternatives has product
structure �fθi

(xi), and if the weighting density w(θ ) has product
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structure �wi(θi), then the ideal kernel is simply a product of
the best kernels for each univariate problem:

B∗(x, y) =
∏

i

∫
fθi

(xi)fθi
(yj )

g(xi)g(yi)
dWi(θi).

If, however, the null model has independence structure but the
prior on interesting alternatives do not, then the optimality the-
ory would lead us away from the product construction. We give
a simple illustration in the following section.

5.1 Example of Kernel Construction

We now provide an example of optimal but nonproduct kernel.
Let the model G be a bivariate normal with mean vector 0 and
variance-covariance matrix the identity I. The family of alterna-
tives consists of bivariate normals with mean vector μ and the
same identity variance-covariance matrix. Write μ1 = ρ cos θ,

μ2 = ρ sin θ , where 0 ≤ θ ≤ 2π, 0 < ρ < ∞. For fixed ρ, let
the prior w(θ ) be uniform on (0, 2π ). Then

fμ(x) = 1

2π
exp

[
−x2

1 + x2
2 + ρ2

2
+ ρ(x1 cos θ + x2 sin θ )

]
,

and∫ 2π

0
fμ(x)dW (μ) =

∫ 2π

0

1

2π
exp

[
−x2

1 + x2
2 + r2

2

]

× exp [−ρ(x1 cos θ + x2 sin θ )]
1

2π
dθ

= 1

2π
I0

[
ρ

√
x2

1 +x2
2

]
exp

[
−x2

1 +x2
2 +ρ2

2

]
,

where I0 is the modified Bessel function of the first kind. There-
fore, the centered kernel B can be calculated as

B(x, y) = exp

(
−ρ2

2

) (
I0

[
ρ

{(
x2

1 + y2
1

)2 + (
x2

2 + y2
2

)2
}1/2

]

− I0

[
ρ

√
x2

1 + x2
2

]
−I0

[
ρ

√
y2

1 + y2
2

])
+ 1.

This new kernel has ρ as the tuning parameter, allowing one to
tune the kernel, by midpower analysis, to the best power for the
given sample size. In keeping with the symmetry of the prior,
the distance depends on the data only through the data radii√

x2 + y2.

5.2 Product Kernels and the Binning Index

Both the normal and Pearson normal kernels are examples of
what we call product kernels:

K(x, y) =
d∏

j=1

Kj (xj , yj ).

If each kernel Kj is nonnegative definite, with root kernel kj ,

then it is clear that the product K is nonnegative definite as
well. We have already shown that such a kernel might not be
ideal for dependent data. We here show how having such a
product structure can potentially simplify the calculations need
for finding DOF and the noncentrality index NCI.

A key example of such a construction would be a binned chi-
square, where the bins are products of coordinate-wise bins, and
where one specifies a product null: that is, the null hypothesis G

specifies that the individual variables Xi are independent with
distribution Gi. Then the kernel has the form given in (1). For
such a kernel, the DOF calculation is well known. It is the total
number of bins, minus 1. The product structure implies the total
number of bins is the product of the number of bins used for each
coordinate. If we used a fixed number of bins per coordinate,
say B, then the DOF would be DOF = Bd − 1.

That is, with a cross-product binning strategy, the DOF would
be exponential in d. To make comparisons with chi-square bin-
ning strategies, for a general quadratic distance we define its
binning index to be

B = (DOF + 1)1/d .

Thus, B = 2, for instance, would correspond to a chi-squared
test with two bins for each coordinate. This would be the mini-
mal number needed to gain information on the fit in all coordi-
nate directions using a chi-squared test.

It is an unfortunate fact that the DOF calculation for the
uncentered product kernel, which is wrong, can be much simpler
algebraically than for the centered kernel, which is right. The
simpler calculation still provides important insight as to the
effect of dimension. Under the product null G = ∏

Gi, we
have tr(K2) = ∏

trGi
(K2

i ) and tr(K) = ∏
trGi

(Ki), and so we
get the result that DOF(K) = ∏

DOF(Ki). That is, ignoring
centering, the DOF(K) would grow exponentially in d just as in
the binning chi-squared.

In the online supplementary materials we offer an argument as
to why DOF(K) is quantitatively close to DOF(Kctr) in general.
In particular, exponential growth of the DOF with d is to be
expected.

5.3 DOF for the Normal Kernel

Returning now to our example, we can see if we hold the
bandwidth fixed, we see an exponential growth in the DOF.

Example 1, continued. We return to study the DOF function
in Example 1. The following propositions offer the connection
between the exact DOF and data dimension for the case of a
multivariate normal kernel with covariance matrix �h applied
to a null hypothesis of standard multivariate normality.

Proposition 5. If the kernel is a multivariate normal kernel
with covariance matrix �h, and the model is a multivariate
normal with covariance matrix V , then the theoretical DOF of
the centered kernel are given by the expression

DOF = ((| �h |−1/2 − | �h + 2V |−1/2)2)

/ (| �h |−1/2| �h + 4V |−1/2 −2 | �h + V |−1/2

× | �h + 3V |−1/2 + | �h + 2V |−1).

Proof. Given in the online supplementary materials. �

Corollary 2. If �h = h2I and V = I , where I is the iden-
tity matrix, the DOF of the centered kernel are given by the
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expression

DOF = (h−d − (h2 + 2)−d/2)2

h−d (h2+4)−d/2−2(h2+1)−d/2(h2+3)−d/2+(h2+2)−d

=

(
1 −

[
h2

h2+2

]d/2
)2

[
h2

h2+4

]d/2
− 2

[
h2

h2+1

]d/2 [
h2

h2+3

]d/2
+

[
h2

h2+2

]d
.

It follows that for fixed d, the binning index satisfies

(h/2)Bh → 1 as h → 0.

The DOF of the uncentered kernel satisfies

DOF1/d
unc =

(
1 + 4

h2

)1/2

.

Proof. Given in the online supplementary materials. �

The corollary provides some heuristic insights into the re-
lationship of DOF and the bandwidth. If we think of DOF as
equating to a number of chi-squared bins, then this last approx-
imation for Bh indicates that 2/h, for a standard normal, can
be interpreted as the number of bins in that dimension, with
h = 1 thereby being roughly equivalent to a split into two bins
on that coordinate. For small h the binning index based on the
uncentered kernel, which is much simpler, gives an equivalent
approximation.

5.4 Properties of the Pearson Normal Kernel

Since the Pearson-normal kernel is new, we start by gaining
a deeper understanding of its structure. One very nice feature
in the testing of multivariate normality is its simple and elegant
eigenanalysis.

Theorem 1. The univariate Pearson-normal kernel K has a
spectral decomposition under the null standard normal density
represented by

Kρ(x, y) =
∑ ρkHk(x)Hk(y)

k!
,

where Hk(x) is the kth Hermitian polynomial and ρ = 1/(1 +
h2).

Proof. Given in the online supplementary materials. �

We note that the spectral decomposition has the same eigen-
functions for every value of ρ, and hence for every value of h2.

The following corollary is a consequence of this fact.

Corollary 3. There is a diffusion equation for the Pearson-
normal kernel given as∫

Kρ1 (x, z)Kρ2 (z, y)n1(z, 0)dz = Kρ1ρ2 (x, y).

Thus, the Pearson-normal kernel is our second example of a
diffusion kernel. Additionally, the following corollary provides
the DOF associated with the Pearson-normal kernel.

Corollary 4. Let the distribution G be the uncorrelated mul-
tivariate normal with zero mean vector. Then, in the univariate

case, the DOF of the Pearson-normal kernel are given as

DOF(K) = 1 + ρ

1 − ρ
= 1 + 2h−2,

where ρ = 1/(1 + h2), and that of the centered kernel are the
same

DOF(Kctr) = [(1 − ρ)−1 − 1]2

(1 − ρ2)−1 − 1
= ρ2/(1 − ρ)2

ρ2/(1 − ρ2)
= 1 + 2h−2.

In the multivariate case, the DOF of the centered kernel are
given by the formula

DOF(Kctr) = [(1 − ρ)−d − 1]2

(1 − ρ2)−d − 1

= [1 − (1 − ρ)d ]2

{1 − ρ}d × {(1 + ρ)−d − (1 − ρ)d} .

It follows that as ρ goes to 1 (and h2 → 0) the binning index
satisfies

(1 − ρ)Bh → 2.

Since the binning index is therefore approximately 2h−2for
h small, unlike the Gaussian 2h−1, we can see that the test has
much larger DOF for small h than does the Gaussian kernel.

Recall that the Pearsonized kernels were designed to increase
testing sensitivity for model deficiencies in regions of low null
density. When one does this, there is a risk of inflating testing
variability. Our first glimpse of this comes in the binning index
calculation above. We will also show its disappointing behavior
in our null simulation study. Our heuristic explanation for this
is that in the pursuit of improved sensitivity to alternatives, we
lost ground in both the null variance and in the null sampling
behavior. The following theorem gives a partial explanation
for the latter phenomenon through the heavy tails of the null
sampling distribution.

Theorem 2. Let X1, X2, . . . , Xn be independent d-
dimensional random vectors. Then the statistic Un formed by us-
ing the d-dimensional Pearson-normal kernel can be expressed
as

Un = 1

n(n − 1)
· (1 + h2)d

hd (h2 + 2)d/2

×
n∑

i=1

n∑
j �=i

exp

[
1

2(h2 + 2)
Wij − 1

2h2
Yij

]
,

where

Wij =
d∑

l=1

(
Xil + Xjl√

2

)2

,

and

Yij =
d∑

l=1

(
Xjl − Xil√

2

)2

.

Under the normal null hypothesis Wij , Yij are independent ran-
dom variables from a chi-squared distribution with d DOF. It
follows that the third and higher moments of the distribution of
the statistic Un do not exist.

Proof. Given in the online supplementary materials. �
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6. TESTING FOR MULTIVARIATE NORMALITY:
A DETAILED STUDY

We have now developed a set of tools for analysis of the power
of a quadratic test. We have also identified the key structures of
the Gaussian and Pearson-normal kernel. We now delve into a
more detailed study of power properties when testing the null
hypothesis that G is standard multivariate normal. As noted
earlier, this setting was chosen because we can carry out all
necessary calculations analytically and thereby avoid simulation
or numerical integration errors.

6.1 Bowman and Foster Tests

To give further context to our study, we bring up some back-
ground. Bowman and Foster (1993) studied tests of multivariate
normality. Their integrated squared error statistic was defined
as

ISE =
∫

[f (x) − f̂ (x)]2dx,

where f (x) indicates a multivariate normal distribution with
zero mean vector and covariance matrix (1 + h2)Id , and f̂ (x)
indicates a density estimator constructed by using the normal
kernel. This distance is identical to the quadratic distance test
we will be using. They indicate that they chose the smoothing
parameter based on

h =
(

4

(d + 2)n

) 1
d+4

, (8)

where d is the dimension of the normal model. This is the
optimal tuning parameter for MSE when the true density is
normal (Bowman and Foster 1993, p. 535).

Bowman and Foster (1993) reported, via simulation, excel-
lent power results for the ISE test procedure. It outperformed
four competitors in power in a crossed study design that in-
cluded two distributional types, a bimodal normal mixture and
a gamma(2,1) distribution, data dimensions from d = 1 up to
6, and sample sizes n of 25, 50, and 100. It is therefore of in-
terest to see if their chosen bandwidth is similar to the optimal
bandwidth for testing.

6.2 The Study Design

One of our main goals here was to evaluate the quality of
the surrogate power function. To do so, we accompanied our
theoretical analysis with a painstaking simulation study. We also
sought to evaluate the role of dimension of the data in the choice
of the binning index, so our design goes up to 16 dimensions.

To accomplish these ends with greater clarity, we designed
our study as follows:

• First, we assumed that the null normal model has known
parameters. This removes from our investigation the com-
plicating question of the role of parameter estimation in a
composite null. Simulation of the size under the null can
then be easily compared with the surrogate power approx-
imation.

• We used a midpower analysis with a variety of alternative
families to see how stable the choice of bandwidth was over
alternatives and sample sizes and how the choice depends

on data dimension. We also compared the surrogate power
with simulated power.

• We chose to assess power using target alternatives based on
mixture models. Certainly our methods could also be used
to evaluate this test, and select bandwidth parameters, when
the alternatives, based on scientific needs, were heavier
tailed than normal or even marginally normal with depen-
dency structures. However, the midpower lemma suggests
that one might wish to use a different kernel distance in
those cases. We used midpower sensitivity analysis to mea-
sure how sensitive the possible tests were to these mixture
alternatives.

• We considered only normal kernels and Pearson normal
kernels with bandwith matrix hI, so that the issue of best
power could be resolved with the choice of a single parame-
ter. If the null variance matrix � were unknown, but � was
known under a fixed null hypothesis, we would consider a
bandwidth matrix of the form h�. This would create a test
procedure that was affine invariant, and so have a single
distribution for the compound null hypothesis.

Our midpower study had the following design parameters.
The dimensions d were 2, 4, 8, and 16. The sample sizes were
200, 500, 750, and 1000. We did work with larger samples as
well, looking at sample sizes of 10,000, 100,000, or larger for
dimensions 8 and 16. All programs were written in C++.

Our choice of bandwidths h were dictated by the need to
find the midoptimal bandwidth for each midpower problem.
These results could have been reported in terms of DOF(h),
a more universal measure, but the near exponential growth in
optimal DOF with dimension made it more useful to express the
bandwidths in terms of the binning index B(h) = (DOF(h) +
1)1/d . Note that for the normal kernel, the approximation given
in Theorem 1 means that the binning index is approximately
B(h) ≈ 2/h for the normal kernel. For the Pearson-normal, the
binning index is approximately 2/h2.

The null hypothesis was standard multivariate normal. In our
study design the alternatives were chosen to be multicoordinate
mixtures in which all the coordinates are mutually independent.
As noted earlier, this is ideal for the product kernels under
consideration. Some of the coordinates were set to be standard
normal, while the remaining coordinates, m in number, were
nonnormal. We varied m as a design parameter. Each of the
nonnormal coordinates was a mixture of univariate normals,
either of the symmetric form 0.5N (a, 1 − a2) + 0.5N (−a, 1 −
a2) for a between 0 and 1, or the asymmetric form 0.75N (a, 1 −
3a2) + 0.25N (−3a, 1 − 3a2) for a between 0 and

√
1/3. For a

fixed value of m, and with the symmetric or asymmetric nature
of the mixture fixed, the parameter a will be treated as the
univariate parameter for the midpower analysis (δ in our earlier
notation).

We let the number of nonnormal coordinates be m = 1, 2, 4,

and 8 in d = 8 dimensions, but considered only m = 1 in d = 2
and 4 dimensions.

Remark 4. Note that the mixtures in each coordinate are
designed so that the mean of X is zero and the variance is 1,
regardless of a. When this is so, the first and second moments
no longer contain information about the alternative. By doing
so we are emulating the situation where the first and second



406 Journal of the American Statistical Association, March 2014

moments are estimated under the null, and so contain no
lack-of-fit information.

In the alternatives we considered, the symmetric mixture al-
ternatives also agree with the null in the third moment, but the
asymmetric do not. Thus, we expect to see some difference in
the midpower analysis that depends on m and on the symmetry
of the mixture.

6.3 The Null Hypothesis Distribution

We created a Monte Carlo sample to find the null distribution
for all of our design settings and used it to find critical values for
the normal kernel test and Pearson normal test. Given that we
will later do a simulated power, we felt it necessary to understand
the true size of the test based on zα.

To identify the empirical 95th quantile of the distribution
of the test statistic under the null hypothesis, we generated
r = 1000 replicate samples from a multivariate normal distribu-
tion with mean vector zero and identity covariance matrix. For
each sample, we computed the distance between the empirical
cumulative distribution function F̂ and the MVNd (0, I ) model.
We then order the values of the test statistic from smallest to
largest. The empirical cutoff value was the 95th quantile of the
above list of numbers, and the standard error for estimating
the nominal 0.05 level was 0.00218. To compute the simulated
power of the tests, we simply counted the number of model
rejections in our set of r = 1000 replicates at the given settings.

For the normal kernel, the results were very consistent over
d, B(h), and n. If one used the normal theory critical value zα

with α = 0.05, the simulated sizes of the distance test ranged
from 0.05 to 0.08. After accounting for the simulation error
involved, the results were largely consistent with the existence of
a constant size of 0.065 across all cases. Thus, for the following
power analysis, it would be more reasonable to say the power
curves were for tests with true size of about 0.065. We think this
should have little effect on the choice of the best DOF, however,
or the relative sensitivity of the tests.

For the Pearson-normal kernel, however, we found some dis-
turbing results. We found that repeated simulations gave very

different estimated critical values. This is due to the wide dis-
persion of the largest-order statistics. We think an explanation
for this is, as we noted earlier, that the third moment of the test
statistic fails to exist under the null hypothesis. We were not
aware of this initially, as the first and second moments do exist,
and so all of our theoretical calculations could be carried out.
Just the same, the normal distribution for the null hypothesis
distribution is a very, very bad approximation in the tails, where
the critical value is determined.

6.4 Theoretical and Simulated Power

We start with the surrogate power function given in Section
3.1. We first contrast two rather different viewpoints of power
in our problem. One viewpoint takes a fixed alternative a, and
plots βh(a) as a function of h. (In our case, we replaced h
with the binning index B(h) so as to relate it to the number
of chi-squared bins.) The right end of these plots, with larger
B, represents small bandwidths, and so greater variance in the
test statistics. These curves have a mound shape showing that
for bandwidths that are either too small or too large, the power
is quite low, and that it is important to select bandwidth/DOF
carefully (see Figure 1).

We can also view βh(a) as a function of a, as needed to do
the midpower analysis. For a fixed binning index, we can plot
this curve as a function of a. We can then overlay the curves for
various values of B on a common plot, and then choose the first
one to cross 0.5 as the midoptimal binning index. Such a plot is
found in Figure 2. All of these plots showed that the midoptimal
bandwidth was optimal more widely than the power 0.50.

One of our key goals was to demonstrate that these theoretical
plots are useful guides for choosing bandwidths. We therefore
carried out a large number of simulations at a variety of alterna-
tives, values of binning index B, and sample sizes. The plots for
the normal kernel were consistent in showing that the power ap-
proximation was slightly larger than the simulated power, with
slightly greater error for B small. (This is consistent with the
enlargement of size that we found.) Based on these plots, we
feel very confident in saying that choosing B based on the power

Figure 1. Theoretical power (solid black) overlaid on simulated power (dotted green) for coordinate mixtures with alternative a = 0.8. The
power curve is plotted against the binning index B for (a) n = 200 in eight dimensions, and (b) n = 750 in two dimensions.
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Figure 2. Power curves for symmetric eight-dimensional (m = 2
mixtures) plotted against alternatives (x-axis) for four distinct B values
near the optimal value with sample sizes 200 and 1000.

approximation gives a value that would lead to true midpower
being very nearly optimal.

For the Pearson-normal kernel, when we carried out the sim-
ulations under the alternatives, the statistic was somewhat better
behaved than under the null, and so we found it reasonable to
show a family of empirical power curves as they depended on the
bin index and on the endpoints of the nonparametric confidence
interval for the 0.05 quantile (see Figure 3).

This figure shows that the normal kernel has a significantly
higher power curve than the Pearson kernel, no matter the cho-
sen critical value. It also shows that the surrogate curve and the
simulated curves for the Pearson kernel agreed very well for
larger bandwidths, but failed for smaller ones, possibly reflect-
ing the overall challenges that arise in using this kernel.

The Pearson-normal kernel had an unstable null distribution
and relatively poor sensitivity against mixture alternatives, lead-
ing us to conclude that the normal kernel was superior for such
targets. Although we do not investigate it further here, it could
be superior for other target alternatives, such as heavy-tailed
distributions.

6.5 The Role of h, DOF, and B

We concentrate hereafter on the Gaussian kernel due to its
superior performance. Table 1 summarizes, for the symmetric
alternatives, the results of our search for the value of B that gives

Figure 3. Comparison of theoretical power with normal kernel (dot-
ted green) and Pearson kernel (dotted red) with the empirical power
given by the solid line along with its 95% confidence band.

optimal power, expressed as a function of the data dimension,
sample size, and alternative family considered. Additionally,
Table 2 and Table S-1 in the online supplementary materials
present results, for the same symmetric alternatives, for large
sample sizes and for dimension d = 16, respectively. From these
three tables, we can draw the following general observations.

The optimal binning indices/DOF have the nice property that
they depend very little on sample size, and so we can summarize
their behavior based on other indicators. (See also Figure S-1
and Table S-1 in the online supplementary materials.) From
Table 1 it seems that for a fixed dimension d, there is little
dependence on the m, the number of nonnormal coordinates;
this becomes even more clear in the large samples of Table 2.
This is a good feature, as the value of m would not be known in
advance. Overall, the dimension d of the data, which is known
to the user, appears to be the single, most important factor in
determining the optimal value of B.

Table 3 presents simulation results for the asymmetric data
case for sample sizes 200, 500, 750, and 1000 and dimensions
2, 4, and 8. Here again we see that sample size has a relatively
weak effect on optimal bin width. Since m = d in all these
examples, there is no information on the effect of the number
of nonnormal coordinates. Once again dimension, a user-known
quantity, is the key determinant in the optimal choice.

Table 1. Optimum B for symmetric mixture alternatives

n = 200 n = 500 n = 750 n = 1000

Dimension m B DOF B DOF B DOF B DOF

8 1 2.875 4671 2.750 3268 2.750 3268 2.750 3268
2 2.750* 3268 2.750 3268 2.625 2256 2.625* 2256
4 2.625 2256 2.625 2256 2.5 1526 2.5 1526
8 2.5 1526 2.5 1526 2.5 1526 2.5 1526

4 1 3.756 198 3.505 150 3.505 150 3.505 150
2 3.505 150 3.505 150 3.26 112 3.26 112
4 3.26 112 3.26 112 3.26 112 3.001 81

2 1 5.099 25 4.58 20 4.58 20 4.58 20
2 4.58 20 4.58 20 4.58 20 4.58 20

∗Cases plotted in Figure 2.
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Table 2. Optimum B for symmetric mixture alternatives (eight
dimensions) with larger n’s

n = 10e4 n = 10e5 n = 10e6 n = 10e7

m B DOF B DOF B DOF B DOF

1 2.5 1526 2.5 1526 2.375 1011 2.375 1011
2 2.5 1526 2.375 1011 2.375 1011 2.375 1011
4 2.5 1526 2.375 1011 2.375 1011 2.375 1011
8 2.5 1526 2.375 1011 2.375 1011 2.375 1011

If we compare Table 1 (with m = d) with Table 3, we can see
that the optimal bandwidth does depend mildly on the type of
alternative; one needs a slightly smaller bandwidth (and larger
binning index) for power against asymmetric mixtures. One
might wish to choose a compromise bandwidth in this setting.

6.6 Comparison With Bowman–Foster

One of our key points in this article is that if kernel den-
sity estimators are used in testing, the old rules about selecting
bandwidth are no longer valid. Indeed, it can be seen from our
analyses that for the alternatives we have chosen, the optimal
binning index converged to a constant. This means that the band-
width h does not go to zero, in contrast with the standard MSE
theory. In this section we briefly compare our results with the
results we would obtain if using the optimal MSE bandwidth
for the problem.

Table S-2 of the online supplementary materials presents a
comparison of our DOF calculation with that by Bowman and
Foster (1993). We convert the bandwidth parameter suggested
by Bowman and Foster to DOF for comparison and called it
the BF-DOF. The table provides a numerical comparison over
the cases we consider. In Figure 4, we show how the power is
reduced for the BF-DOF in two special cases.

It is particularly striking how much larger the BF-DOF is in
higher dimensions, corresponding to smaller bandwidths. For
n = 10,000 the binning index is about twice as large, putting
it into the range of very low power. There is a simple expla-
nation. Our DOF calculation is based on the variability of the
test statistic, not its bias. The fact is that the null model and the
data have the same kernel smoothing and so there is no bias.
However, the BF-DOF is based on the mean squared error and
it is clear that to reduce bias squared in higher dimensions, a
very small bandwidth is required.

6.7 A Sensitivity Analysis

To compare the sensitivity of the tests across our targeted al-
ternative families, we created the following measure of the dis-

Table 3. Optimum B for asymmetric mixture alternatives

n = 200 n = 500 n = 750 n = 1000

Dimension B DOF B DOF B DOF B DOF

8 3.00 6567 2.875 4671 2.875 4671 2.75 3268
4 4.004 256 3.755 198 3.755 198 3.755 198
2 4.590 30 5.099 25 5.099 25 5.099 25

Figure 4. Comparison of power using Bowman–Foster DOF or its
implied B (2.98 for n = 200 and 3.56 for n = 1000) versus the optimal
B (2 for all sample sizes) for 16 dimensions with m = 2.

agreement between null and alternative. Given a finite mixture
of multivariate normals

∑
k πknV (x, μk) in which the compo-

nent distributions have a common covariance matrix V , we can
write the variance of the random vector X as

var(X) = var(D) + V,

where D is the discrete distribution with mass πk at μk. Thus,
we can measure the strength of the mixing distribution, relative
to the normal errors, via the root variance ratio

M∗ =
√

tr(var(D) · V −1).

This measure is zero if there is no mixing, and otherwise it
compares how much of the total variance of X is due to mixing
and how much is due to normal errors.

For a second interpretation, note that if there are just two mix-
ture components, so the density is π1nV (x, μ1) + π2nV (x, μ2),
then

M∗ = √
π1π2

√
(μ1 − μ2)′V −1(μ1 − μ2),

where the second square root is the Mahalanobis distance be-
tween the two component distributions. We note that for the
symmetric case, M∗ ≤ 1 means the density for X is unimodal
whereas for M∗ > 1, it is bimodal (Ray and Lindsay 2005).
In our class of mixture alternatives, we will transform the pa-
rameter a in each coordinate to the corresponding value of M∗.
We will consider it a benchmark for high sensitivity if the test
is sensitive enough to detect a unimodal alternative. That is,
if the midoptimal M∗ is 1 or smaller. We will call the sensi-
tivity inadequate if the test cannot detect M∗ = 2, which is a
well-separated mixture.

Tables 4 and 5 present sensitivity results for the high-
dimensional cases. In the symmetric cases with d = 8, there
is a clear increase in sensitivity as either m increases or n

Table 4. Sensitivity analysis for symmetric case with dimension 8

m n = 200 n = 750 n = 1000

1 2.35 1.49 1.38
2 1.76 1.25 1.17
4 1.43 1.07 1.02
8 1.25 0.95 0.85
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Table 5. Sensitivity analysis for asymmetric case in dimensions 8
and 16

d n = 200 n = 500 n = 750 n = 1000 n = 10,000 n = 1,00,000

8 1.70 1.25 1.12 1.04 0.61 0.39
16 4.42 1.91 1.58 1.41 0.75 0.47

increases. However, high sensitivity was not attained even at
n = 1000 when m was fixed at one. Indeed at that sample
size, we had this degree of sensitivity only for m = 8. On the
other hand, we did not have inadequate sensitivity except when
n = 200 and m = 1. In the asymmetric cases, Table 5, where m

was fixed at d, we can see the interplay between sensitivity of
the test, dimension d, and sample size n. Very poor sensitivity
occurred only for n = 200 and d = 16, but high sensitivity
only occurred for sample sizes above n = 1000.

6.8 Discussion of the Analysis

Determining whether a distribution is a normal or a mixture of
normals is actually quite hard when the two components are not
well separated. This difficulty is compounded in higher dimen-
sions, when, for m = 1, one is searched through d-dimensional
space for the one coordinate with a signal. Thus, we do not find
our sensitivity results disappointing, especially in the light of
earlier results that ascribed good power to the normal kernel test
relative to other tests. Certainly the midpower lemma suggests it
should do well at detecting lumps in the normal distribution. Our
comparison of the normal and Pearson normal kernels suggests
that attempts to increase sensitivity of the distance D(F,G)
could backfire by causing greater variance under the null and so
decrease the noncentrality index. One route around this might be
to build a kernel more specifically tuned to the mixture problem.

7. CONCLUDING DISCUSSION

Our focus in this article has been on building a set of straight-
forward tools that a methodologist could use to build kernel-
based goodness-of-fit procedures for a wide variety of prob-
lems. One goal was to make the analyses as simple as possible,
especially emphasizing the avoidance of the need to work with
infinite-dimensional noncentral distributions. We wanted to go
beyond the rather crude guidance given by the DOF of the test,
and indeed also better understand how one could choose DOF in
higher dimensions. We think we have, through the study of the
normal bandwidth problem, given some evidence that a simple
surrogate power function approach will work more insightfully
than simulation studies.

In the process of creating this analysis, it became clear that it is
imperative that one focus on local alternatives, the ones that give
extra power where it is needed. We have done so by identifying
the midpower alternative, and shown that this yields a lovely
reduction of the surrogate power function to a single number
summary, the noncentrality index. This reduction enabled us to
take a further step, through the midpower lemma, and create a
new tool for building kernels with power targeted to a class of
alternatives.

The midpower lemma is just a starting point, however, for
building a good kernel-based procedure. Just as in nonparamet-

ric density estimation, there is a need to have procedures that
have a bandwidth parameter that allows one to tune the pro-
cedure to the changing landscape as the sample size changes.
We have therefore provided a recipe, the midpower analysis, for
choosing the best bandwidth parameter h when considering a
one parameter family of alternatives. If one uses careful thought
as to the alternatives that are truly of interest, then one can gain
some insights about the behavior of the test through changes in
dimension and sample size. In our example, we were interested
in the ability to detect multimodal mixtures, and in particular
how sensitive the normal kernel test would be.

Along the way we converted DOF to the binning index to
better account for the effects of dimension. In our selected ex-
amples, we found that the data dimension was the main factor
in choosing the optimal DOF. Our analysis showed that if tra-
ditional rules from the density estimation literature are used to
obtain h (and hence the DOF), the resulting tests will have
suboptimal power. A detailed simulation study verified that
our proposed analysis, based on a number of simplifications,
gave reasonable answers without the burden of an extensive
simulation.

We think of this article as offering guidance to a method-
ologist who might be working on a particular goodness-of-fit
problem. Indeed, we intend to use it ourselves in more focused
investigations. As to someone who is seeking advice for a test
for multivariate normality, our results directly give guidance as
to the sensitivity of the test for mixture models. We also think
that the normal kernel test is currently the best option for high-
dimensional testing of multivariate normality. However, we do
think that the very rich set of possibilities for kernel construc-
tion, including the tools we describe here, will lead to even better
methodologies in the future. For example, the works by Hui and
Lindsay (2010) and Lindsay and Yao (2012) point to the promise
of a matrix extension of the quadratic distance methodology that
is useful for testing for normality and independence. This allows
for additional diagnostics for the lack-of-fit problem, including
finding linear combinations of the data that fit poorly.

APPENDIX: PROOF OF PROPOSITION 2

To carry out this expansion, we let Fε = (1 − ε)F + εF̂ , then create
a function of ε defined by h(ε) = D(Fε, Gθ̂ (Fε )), noting that for a con-
sistent estimator, with θ̂ (Gθ ) = θ, then h(0) = D(F,Gθ(F )) and h(1)
is our test statistic D(F̂ , Gθ̂ ). We will use the one-term approximation

h(1) − h(0) ≈ εh′(0)|ε=1,

when h′(0) is not zero. Otherwise we will use

h(1) − h(0) ≈ εh′(0) + 2−1ε2h′′(0)|ε=1 = 2−1h′′(0).

We have

d

dε
D(Fε, Gθ̂ (Fε )) = d

dε

∫
[kctr(θ (Fε), X, t)dFε(X)]2du(t)

= 2
∫ [∫

[kctr(θ (Fε), X, t)dFε(X)]

]

×
[

d

dε

∫
kctr(θε, X, t)dFε(X)

]
du(t),
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where

d

dε

∫
kctr(θε,X, t)dFε(X) =

∫
θ ′T
ε ∇θ k

ctr(θ (Fε), Y, t)dFε

+
∫

kctr(θ (Fε), X, t)d(F̂ − F ).

This gives

h′(0) = 2
∫∫

vF (x, t)[kctr(θ, F, t)]du(t)dF̂ (x).

Since kctr(θ, F, t) = kctr(θ,Gθ , t) = 0 under the model, we take one
more term in the expansion to find

d2

dε2
D(Fε, Gθ̂ (Fε ))|ε=0 = 2

∫ [
d

dε

∫
kctr(θε, X, t)dFε(X)

]2

du(t)|ε=0

= 2
∫ [∫

v(θ, X, t)dF̂ (x)

]2

du(t).

SUPPLEMENTARY MATERIALS

The supplement to the article contains an extensive literature
review and proofs of several results that appear in this article. It
also contains a section on the relationship between the centered
and uncentered DOF. Additionally, the supplementary materi-
als contains tables and figures related to the simulation studies
presented in Section 6 of the main article.
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