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Abstract

Use of seed-applied fungicides has become commonplace in the United States soybean

production systems. Although fungicides have the potential to protect seed/seedlings from

critical early stage diseases such as damping-off and root/stem rots, results from previous

studies are not consistent in terms of seed-applied fungicide’s ability to mitigate yield losses.

In the current study, the relationship between estimated soybean production losses due to

seedling diseases and estimated seed-applied fungicide use was investigated using annual

data from 28 soybean growing states in the U.S. over the period of 2006 to 2014. National,

regional (northern and southern U.S.), state, and temporal scale trends were explored using

mixed effects version of the regression analysis. Mixed modeling allowed computing gener-

alized R2 values for conditional (R2
GLMM(c); contains fixed and random effects) and marginal

(R2
GLMM(m); contains only fixed effects) models. Similar analyses were conducted to investi-

gate how soybean production was related to fungicide use. National and regional scale

modeling revealed that R2
GLMM(c) values were significantly larger compared to R2

GLMM(m)

values, meaning fungicide use had limited utility in explaining the national/regional scale var-

iation of yield loss and production. The state scale analysis revealed the usefulness of seed-

applied fungicides to mitigate seedling diseases-associated soybean yield losses in Illinois,

Indiana, North Carolina, and Ohio. Further, fungicide use positively influenced the soybean

production and yield in Illinois and South Dakota. Taken together, use of seed-applied fungi-

cide did not appear to be beneficial to many of the states. Our findings corroborate the

observations made by a number of scientists through field scale seed-applied fungicide tri-

als across the U.S and reiterate the importance of need base-use of seed-applied fungicides

rather than being a routine practice in soybean production systems.
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Introduction

Soybean [Glycine max (L.) Merr.] is among the most economically important crops in the

United States, presently the world’s largest soybean producer (United States Department of

Agriculture, World Agricultural Production Report 2019). In 2019, more than 30 million hect-

ares in the U.S. were under soybean cultivation with a total production of approximately 97

million metric tons (United State Department of Agriculture—National Agricultural Statistics

Service: USDA-NASS). Soybean production is often challenged by multiple factors such as

inclement weather, nutrient-poor soil, and yield-limiting weeds, insects, and diseases [1, 2].

Various diseases can have deleterious effects on soybean yield, affecting both grain quantity

and quality. In the U.S., approximately 11% of soybean yield is estimated to be lost annually

due to various diseases [3]. Between 1996 and 2016, the estimated total economic losses due to

soybean diseases in the U.S. was $95 billion [4]. Among various yield-limiting disease catego-

ries, seedling diseases (including root diseases) are of great importance. Even though an array

of soilborne pathogens can cause soybean seedling and root diseases, the major ones include

species of Fusarium and Rhizoctonia solani from the kingdom Fungi and the oomycetes

Pythium and Phytophthora from the kingdom Stramenopila [5]. In addition, seed-associated

organisms that generally result from the environment encountered during the prior season,

but more broadly considered to be the result of multiple species of Phomopsis can also cause

seedling disease-associated issues by reducing germination and producing poor stands. Seed-

ling diseases are typically characterized by lesions on roots and pre- and post-emergence

damping-off [5–7]. Decreased seedling vigor can occur when the infections are not severe yet

result in damaged root systems ultimately leading to reduced yield [8]. In general, poor plant

and poor stand establishment are the major causes behind yield losses due to seedling diseases

in soybean [6]. Taken together, the organisms that cause seedling diseases are considered a

complex as it is oftentimes difficult to determine which organism(s) are involved.

Seedling diseases can cause substantial soybean yield/economic losses. For example, the

seedling diseases as a group were estimated to cause losses of approximately 1.6 million metric

tons in 2014, which was second only to losses associated with the soybean cyst nematode [9].

Pathogenic organisms within the group broadly classified as the Oomycetes (Pythium and Phy-
tophthora) have previously been estimated to reduce soybean yield in the U.S. by 0.68 million

metric tons annually [10]. In the northern U.S., Phytophthora sojae has been estimated to

cause $200 million in annual losses to soybean production, and worldwide causes approxi-

mately $1–2 billion in losses [11]. As per Bandara et al. [4], the total economic loss due to soy-

bean seedling diseases in the U.S. between 1996 and 2016 was estimated at $17.6 billion which

accounted for approximately 18.8% of the total economic losses due to all reported diseases.

In the U.S., there has been a general increasing trend in soybean yield losses as a result of

seedling diseases [10, 12, 13]. The increased incidence of oomycete-related diseases could be

attributed to lack of commercial soybean cultivars resistant to Pythium spp., ability of Phy-
tophthora sojae pathotypes to overcome existing Rps resistance genes, changes in cultural prac-

tices used by growers such as earlier planting dates and reduced or minimum tillage, precision

planting practices that tend to place seed in the same spot within the furrow between seasons,

and changes in precipitation patterns such as greater rainfall in the spring and early summer

[14, 15]. Moreover, resistant cultivars are not available against the specific organisms that

cause seedling diseases broadly defined as damping-off [16]. Therefore, three methods have

been historically used to manage these seedling diseases include crop rotation, tillage, and

seed-applied fungicides. However, the wide host ranges of Pythium spp. as well as R. solani
may limit the effectiveness of crop rotation [17, 18]. Moreover, with the changes in crop rota-

tion practices, seedling diseases caused by the major soilborne pathogen groups are becoming
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more common [19]. As such, although crop rotation can be a useful strategy to control soil

inhabiting plant parasitic nematodes and certain soilborne fungal pathogen species that belong

to genera such as Verticillium, Fusarium, and Alternaria, it’s use can be limited in fields where

Phythium spp. and Rhizoctonia solani are more problematic. Therefore, the use of seed-applied

fungicides has become an important practice to manage seedling diseases in soybean. In fact,

anecdotal evidence indicates that more than 50% of soybean seeds was treated with at least one

fungicide in 2012 [20]. Farmers used to purchase and apply fungicides themselves or in close

cooperation with applicators. However, purchase of fungicide-treated seeds have become the

common practice nowadays.

Some of the more commonly used seed-applied fungicides include metalaxyl/mefenoxam

(Phenyl Amides: negatively affect nucleic acids synthesis by acting as RNA polymerase I inhib-

itors) and fludioxonil (Phenyl Pyrroles: inhibits transport-associated phosphorylation of glu-

cose, affect signal transduction). In general, these seed-applied fungicides reduce fungal/

oomycete spore germination as well as mycelial growth [21]. In addition to the aforemen-

tioned fungicides, azoxystrobin, pyraclostrobin, and trifloxystrobin (quinone-outside inhibi-

tors (QoI): disruption of electron transport chain, preventing ATP synthesis) are also used as

seed-applied fungicides because they have broad spectrum activity against numerous seed and

soilborne fungi. However, members of the QoI class of fungicides are most notably recognized

as foliar fungicides. Seed-applied fungicides are generally applied in the form of multiple prod-

ucts (a.i.) since normally a single organism is not responsible for seedling diseases and soil-

borne organisms can work as a complex to reduce stand establishment.

The protective effect of seed-applied fungicides on seedling disease-mediated soybean

stand and yield protection have previously been reported [19, 22–28]. The economic benefits

of using seed-applied fungicides appear to be conditional upon factors such as commodity

price, environment, quality of planting seed, as well as cultivar [19, 20, 29, 30]. However, the

one economic benefit that cannot go unstated is the benefit that seed-applied fungicides pro-

vide by reducing the likelihood of a replant situation. Soybean farmers rely on seed-applied

fungicide products to reduce stand losses that may occur as a result of catastrophic disease.

Ideally, as a means of reducing the increased costs associated with herbicide trait technology

fees and obtaining the best genetic offerings, soybean farmers attempt to offset those costs by

reducing seeding rates. Therefore, seed-applied fungicides attempt to maximize the surviving

stand with the first planting. However, many landscape level (location specific) studies have

failed to demonstrate the ability of seed-applied fungicides to reduce the seedling disease-asso-

ciated soybean yield losses [28, 31, 32].

Our companion paper [33] explored the relationship between estimated foliar fungicide use

and soybean yield losses due to foliar diseases at national, regional, and state level using long

term data. A joint analysis considering both foliar and seed-applied fungicides and associated

yield loses was not performed due to a number of reasons. Although the agglomeration of

both foliar and seed-applied fungicides under the central theme of “pesticides” seems techni-

cally sound, any conclusions derived from such an analysis are bound to be made about “pesti-

cides” as a whole, on their ability to reduce yield losses due to foliar and soilborne fungal

pathogens. Nonetheless, it should be noted that farmers make decisions on the use of foliar

and seed-applied fungicide categories independently. As such, it is apparent that results gener-

ated through a joint analysis and inferences/conclusions drawn from such results are less

meaningful from the actual production standpoint. Instead, partitioning of the pesticides into

foliar and seed-applied categories is appropriate to ask more biologically relevant and topic

specific research questions, recognizing that it is not possible to make any conclusions on the

causation of such relationships since it is not possible to partition the effect of foliar and seed-

applied fungicides on yield losses in the databases that we have available. Given such
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considerations, foliar and seed-applied fungicides were analyzed separately with appropriate

statistical approaches (i.e. generalized R2, see methods section) to explore the relationship

between estimated foliar/seed-applied fungicide use and soybean yield losses in our two com-

panion papers.

Although numerous field experiments based on seed-applied treatments have been con-

ducted and reported at a landscape level (i.e., location specific), a more comprehensive analysis

with long term historical data to reveal the relationship between estimated seed-applied fungi-

cide use and soybean yield losses as a result of seedling diseases is currently lacking. Therefore,

our objectives for this study were to (i) investigate long-term seed-applied fungicide use pat-

terns, (ii) investigate the relationship between seed-applied fungicide use and yield losses due

to seedling diseases, and (iii) investigate the relationship between seed-applied fungicide use

and soybean production/yield in the U.S. at national, regional, and state levels.

Materials and methods

Fungicide use, target diseases, and states considered

Annual state-level soybean seed-applied fungicide use estimates from 2006 to 2014 were

acquired from the Pesticide National Synthesis Project webpage (https://water.usgs.gov/

nawqa/pnsp/usage/maps/county-level/StateLevel/HighE stimate_

AgPestUsebyCropGroup92to16.txt). The fungicide use data are presented in kg of each active

ingredient (a.i.) in this source. Note that the database contains actual fungicide use estimates

but not amounts that were sold. A much broader explanation of the associated seed-applied

fungicide products contained within the report can be obtained by reading Thelin and Stone

[34]. To compute fungicide use in units of grams per hectare, the amount provided in the data-

base (in kg) was first converted to grams (g). For individual states, the soybean area harvested

was retrieved from the USDA-NASS database for each given year (https://quickstats.nass.usda.

gov). Fungicide use values (in g) were then divided by the respective harvested hectarage to

determine the fungicide concentration in grams of fungicide per harvested hectare (here after

mentioned as g/ha). The specific fungicide a.i.’s considered for this analysis included fludioxo-

nil, metalaxyl, and mefenoxam. Due to difficulties in extracting the information as it relates to

the use patterns of the QoI fungicides as seed treatments, we did not focus on the QoIs as seed

treatments. Fusarium wilt (Fusarium spp.), Phytophthora root and stem rot (Phytophthora
sojae), and seedling diseases caused by Fusarium, Phomopsis spp., Pythium, and R. solani were

the target disease causing organisms for the seed-applied fungicide products considered.

The time period selected (from 2006 to 2014) was based upon the availability of fungicide

use data, which spanned 28 soybean growing states (Alabama, Arkansas, Delaware, Florida,

Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maryland, Michigan, Minne-

sota, Missouri, Mississippi, Nebraska, North Carolina, North Dakota, Ohio, Oklahoma, Penn-

sylvania, South Carolina, South Dakota, Tennessee, Texas, Virginia, and Wisconsin). We also

classified the fungicide use data based on region where northern states considered for this

study included Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Nebraska, North Dakota,

Ohio, Pennsylvania, South Dakota, and Wisconsin and southern states included Alabama,

Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, Missouri,

North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia. The region

(northern and southern U.S.) classification was based on two groups of soybean pathologists

that have continued to compile disease loss estimate data on an annual basis as part of their

Extension efforts and comprising the Southern Soybean Disease Workers and NCERA-137

(North Central Extension and Research Activity for Soybean Diseases).
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Estimation of soybean production/yield losses

The historical statewide annual soybean production loss (MT) data due to seedling diseases

were acquired from soybean researchers and Extension specialists in each of the 28 soybean

growing states mentioned above. See our companion paper [33] for details on the methodol-

ogy adopted to compute soybean production loss data. We used the soybean production loss

data for the same periods where seed-applied fungicide data were available (i.e. 2006–2014).

To compute the per hectare yield loss due to a given disease within a given year, the total state-

wide annual soybean production loss (MT) due to that disease was divided by the respective

statewide harvested hectarage (here after mentioned as Kg/ha).

Computation of the relationship between yield losses and fungicide use

In order to model the relationship between yield losses and fungicide use at national (across 28

states and 9 years) and regional scales (Northern U.S. = across 12 states and 9 years, Southern

U.S. = across 16 states and 9 years), we employed a linear mixed model version of the regres-

sion analysis [35]. Both null and full models were fitted with the assumed normal distribution

for the response variable, yield loss. As yield losses and fungicide use data were classified by

year and state, they were considered as random factors in null and full models while ‘fungicide

use’ was specified as a fixed factor in the full linear model. Moreover, a quadratic model was

also fitted by including the square term of fungicide use as a fixed factor. The models fitted

were as follows.

Null model (contains only random factors):

Ljk ¼ b0 þ Sj þ Ykþejk

Full linear model (contains random and fixed factors):

Ljk ¼ b0 þ b1Fjk þ Sj þ Yk þ ejk

Full quadratic model (contains random and fixed factors):

Ljk ¼ b0 þ b1Fjk þ b2F
2

jk þ Sj þ Yk þ ejk

where, Ljk = soybean yield loss due to seedling diseases from jth state in kth year; Sj = random

effect of the jth state; Yk = random effect of the kth year; Fjk = seed-applied fungicide use from

jth state in kth year; F2jk = quadratic term for the seed-applied fungicide use from jth state in kth

year; β0 = intercept; β1 = slope related to the seed-applied fungicide use from jth state in kth

year; β2 = slope related to the quadratic term of the seed-applied fungicide use from jth state in

kth year; eij = error.

According to the approach established by Nakagawa and Schielzeth [35], conditional R2

[R2
GLMM(c); fixed and random effects] and marginal R2 [R2

GLMM(m); fixed effects] versions of

the full model were computed to assess the relative contribution of (fixed + random) and

(fixed) factors to the observed yield loss variation. Akaike and Bayesian information criteria

were computed with maximum likelihood (ML) specification while restricted maximum likeli-

hood (REML) specification was used to estimate variance components. Models were fitted to

examine the relationship between total soybean production loss (1,000 MT) and total seed-

applied fungicide use (MT), as well as total yield loss per unit area (kg/ha) and total fungicide

use per unit harvest area (g/ha). Similar analyses were conducted to investigate the relatedness

of soybean production and yield with fungicide use. The packages MuMIn: version 1.43.15

[36], arm: version 1.10–1 [37], lme4: version 1.1–21 [38], and afex: version 0.28–0 [39] in R

(version 3.5.1) were used for mixed effect modeling.
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Further, the linear mixed model regression approach was extended to explore the relation-

ships between fungicide use and yield losses due to seedling diseases at state and year (= tem-

poral) scales. Models were constructed to simultaneously estimate state-specific (or year-

specific, depending on the model) intercepts as well as state-specific (or year-specific, depend-

ing on the model) slopes for each individual state. As state scale yield losses and fungicide use

data were classified by year, year was included as a random effect in the state-model. Similarly,

as year scale yield losses and fungicide use data were classified by state, state was included as a

random effect in the year-model. The regression model for state was:

Ljk ¼ b0j þ b1jFjk þ Yk þ ejk

where, Ljk = soybean yield loss due to seedling diseases from jth state in kth year; Fjk = seed-

applied fungicide use from jth state in kth year; Yk = random effect of the kth year; β0j = state-

specific intercept related to the jth state; β1j = state-specific slope related to the jth state; ejk =

error.

Similarly, the regression model for year was:

Ljk ¼ b0k þ b1kFjk þ Sj þ ejk

where, Ljk = soybean yield loss due to seedling diseases from jth state in kth year; Fjk = seed-

applied fungicide use from jth state in kth year; Sj = random effect of the jth state; β0k = year-spe-

cific intercept related to kth year; β1k = year-specific slope related to the kth year; ejk = error.

Analyses were performed to assess total fungicide use per unit harvest area (g/ha) and total

yield loss per unit area (kg/ha), as well as total fungicide use (MT) and total yield loss (1,000

MT). In addition, the relationship between soybean production/yield and fungicide use was

also explored. In all cases, same model structures (state and year, see above) were employed.

Classification of soybean harvest, production, and yield zones

One of our goals in the present study was to investigate if the mean per hectare seed-applied

fungicide use differ between the levels of yield/production/harvest zones. Moreover, we

needed to conduct an exploratory multivariate analysis (see below) by incorporating yield/

production/harvest zones and per hectare seed-applied fungicide use. Therefore, using the

approach outlined below, we first derived the said zone types: (i) Yield zone (1 to 4), based on

USDA-NASS estimates at the state level comparing yield (MT/HA) with all state by year com-

binations, (ii) Production zone (1 to 4), based upon USDA-NASS estimates at the state level

comparing total production (MT) with all state by year combinations, and (iii) Harvest zone (1

to 4), based upon USDA-NASS estimates at the state level comparing harvested area (HA)

with all state by year combinations. We then classified 252 yield/production/harvest data

points (28 states × 9 years) into zone levels where data points within the minimum to first

quartile were classified as Zone 1. Similarly, data points from the first quartile to median,

median to third quartile, and > third quartile were classified as zones 2, 3, and 4, respectively.

Note that the zones were not solely defined based on geography, in this case state, and are a

function of year (temporal scale). As such, the zone of a given data point was relative to the

other data points within the database.

Analysis of variance (ANOVA) and Factor Analysis of Mixed Data (FAMD)

Using the same specifications outlined in our previous paper [33], the main effects of harvest,

production, and yield zone on the total seed-applied fungicide use (g/ha) were investigated.
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The full linear model that was fitted with yield zone was:

Fijk ¼ mþ Zi þ Sj þ Yk þ ðZSÞij þ ðZYÞik þ ðSYÞjk þ eijk

where, Fijk is the observed total seed-applied fungicide use (in grams per hectare) for the ith

yield zone (i = 1–4), jth state (j = 1–28), and kth year (k = 1–9); μ is the overall mean seed-

applied fungicide use common to all yield zones; Zi is the fixed effect of ith yield zone; Sj is the

random effect of the jth state; Yk is the random effect of the kth year; (ZS)ij is the random two-

way interaction effect between ith yield zone and jth state; (ZY)ik is the random two-way inter-

action effect between ith yield zone and kth year; (SY)jk is the random two-way interaction

effect between jth state and kth year; eijk is the residual. Note that the residual term eijk com-

prises both error and the random three-way interaction Z × S × Y. The same model structure

was used for harvest and production zones.

Factor Analysis of mixed data (FAMD) was conducted using total seed-applied fungicide

use (g/ha) as a quantitative variable and the year, state, region, soybean harvest zone, produc-

tion zones, and yield zone as qualitative variables. FAMD is a principal component method to

analyze a data set containing both qualitative and quantitative variables. As such, FAMD

allows analyzing the similarity between individuals (individual data points) by taking into

account mixed-variable types. With this analysis, quantitative and qualitative variables are nor-

malized in order to balance the impact of each set of variables. Additional details on this analy-

sis are available in our companion paper [33].

Results

Spatiotemporal variation of soybean seed-applied fungicide use in the

United States

Across the nine-year period from 2006 to 2014, Florida reported the lowest per hectare (11.2

g) as well as total (0.13 MT) seed-applied fungicide use. Conversely, Louisiana reported the

greatest per hectare use (69.1 g) and Iowa (92.3 MT) reported the greatest total seed-applied

fungicide use in the U.S. (Fig 1A). When considered regionally, the total use (MT) of seed-

applied fungicides was approximately 3.1 times greater in the northern compared to southern

states (Fig 1B). However, per hectare total use (g/ha) of seed-applied fungicides was approxi-

mately 1.3 times greater in the southern states compared to the northern states (Fig 1B).

The lowest and greatest seed-applied fungicide uses were recorded in 2006 and 2013,

respectively (in both MT and g/ha). Despite the year-to-year variation, an increasing trend

towards increasing seed-applied fungicide use was observed over time (Fig 1C). The percent-

age use increment from 2006 to 2013 was 447% (total fungicide use in MT) and 477% (total

fungicide use in g/ha), respectively. The total uses (in MT) of fludioxonil and mefenoxam

across 28 states did not dramatically fluctuate over the period between 2006 and 2014, even

though metalaxyl usage fluctuated sharply within the same time period (Fig 1D). During the

time period between 2006 and 2013, metalaxyl use increased approximately ten-fold.

Mixed effect modeling of the relationship between seedling diseases

associated soybean production/yield losses and seed-applied fungicide use

at national and regional scales

At the national scale, where annual total soybean production loss and annual total fungicide

use were considered in 1,000 MT and MT, respectively, the conditional model had a rather

large R2 (= R2
GLMM(c)) value compared to that of the marginal model (= R2

GLMM(m) (Table 1).

Fitting the full model with an added square term for fungicide use (= full quadratic model) did
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Fig 1. Spatiotemporal use patterns of the soybean seed-applied fungicides in the United States. (A) state-wide use of total seed-applied fungicides across nine

years (2006 to 2014); (B) total seed-applied fungicide use between 2006 and 2014 by region (Northern states = Illinois, Indiana, Iowa, Kansas, Michigan,

Minnesota, Nebraska, North Dakota, Ohio, Pennsylvania, South Dakota, and Wisconsin; Southern states = Alabama, Arkansas, Delaware, Florida, Georgia,

Kentucky, Louisiana, Maryland, Missouri, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virgina. Fungicides included:

fludioxonil, mefenoxam, and metalaxyl). Temporal fluctuation of the (C) the total seed-applied fungicide use, (D) fludioxonil, mefenoxam, and metalaxyl use

across 28 states between 2006 and 2014.

https://doi.org/10.1371/journal.pone.0244424.g001
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not improve R2
GLMM(m). State had a greater variance component compared to year. Similar

results were observed when annual yield loss and total fungicide use were considered in kg/ha

and g/ha, respectively (Table 1).

Regional scale analyses conducted targeting the states defined within each region as either

Northern or Southern within the U.S. also revealed significantly smaller R2
GLMM(m) compared

to R2
GLMM(c) (S1 and S2 Tables). Inclusion of the square term for fungicide use in the full

model (= full quadratic model) did not result in an improved R2
GLMM(m) compared to the full

linear model.

Relationship between seed-applied fungicide use and soybean yield losses

due to seedling diseases at state and year scales

Per the state-specific regression slopes, the relationship between soybean production loss due

to seedling diseases (1,000 MT) and total fungicide use (MT) was significant (α = 0.1) for Illi-

nois (P = 0.055), Indiana (P = 0.008), Michigan (P = 0.039), and North Carolina (P = 0.002)

(S3 Table). Except for Michigan, slope (= regression coefficient) related to fungicide use for

other states were negative. When fungicide use (g) and yield losses (kg) were considered on a

per hectare basis, a significant (α = 0.1) relationship was observed for Indiana (P = 0.022),

Michigan (P< 0.001), and Ohio (P = 0.085) (S3 Table). The slope associated with fungicide

use (g) for Indiana and Ohio was negative (S3 Table).

The relationship between soybean production loss due to diseases (1,000 MT) and total fun-

gicide use (MT) was significant (α = 0.1) for 2008 (P< 0.001), 2009 (P = 0.069), and 2014

(P = 0.064) (S3 Table). Nevertheless, the slope associated with fungicide use (g) for each of

these years were positive (S3 Table). When losses (kg) and fungicide use (g) were considered

on a per hectare basis, a significant relationship was not evident for any of the year (S3 Table).

Table 1. National scale mixed-effects regression modelling of the effect of seed-applied fungicide use on soybean production/yield losses due to seedling diseases

from 28 soybean growing states in the United States during the time period between 2006 and 2014.

Model name A B

Null model Full model (L) Full model (Q) Null model Full model (L) Full model (Q)

Fixed effect a ± SE a ± SE a ± SE a ± SE a ± SE a ± SE

Intercept 68.6 ± 19.2 68.6 ± 18.8 68.6 ± 18.2 72.9 ± 14.5 72.9 ± 14.8 72.9 ± 14.8

Fungicide use - 96.7 ± 111.3 169.1 ± 119.6 - 131.4 ± 94.3 123.8 ± 97.9

Fungicide use2 - - -153.1 ± 103.1 - - 25.5 ± 87.2

Random effects VC VC VC VC VC VC

State 7,370 7,104 6,509 4,492 4,711 4,706

Year 938 868 836 344 350 363

Residuals 6,575 6,619 6,651 5,389 5,365 5,379

R2
GLMM(m) - 0.002 0.012 - 0.005 0.005

R2
GLMM(c) - 0.547 0.530 - 0.488 0.488

AICj 3,678 3,679 3,679 3,604 3,604 3,606

BICk 3,693 3,697 3,701 3,619 3,623 3,628

A = relationship between annual total fungicide use (MT) and annual total production loss (1,000 MT); B = relationship between annual total fungicide use (g/ha) and

annual yield loss (kg/ha); L = linear; Q = quadratic; SE = standard error; VC = variance components; States included Illinois, Indiana, Iowa, Kansas, Michigan,

Minnesota, Nebraska, North Dakota, Ohio, Pennsylvania, South Dakota, Wisconsin, Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland,

Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia. The national scale is a composite of all 28 states; Fungicide use2 =

quadratic term of the fungicide use; R2
GLMM(m) = generalized R2 for marginal model; R2

GLMM(c) = generalized R2 for conditional model
jAIC = Akaike Information Criterion
kBIC = Bayesian information criterion.

https://doi.org/10.1371/journal.pone.0244424.t001
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Mixed effect modeling of seed-applied fungicide use and soybean

production/yield at national and regional scales

At the national scale, when annual total production and annual total fungicide use were con-

sidered in 1,000 MT and MT, respectively, the R2 for the conditional model (= R2
GLMM(c)) was

significantly larger than that of the marginal model (= R2
GLMM(m)) (Table 2). The conditional

model explained almost the entire (98%) observed variation for soybean production at the

national scale. Inclusion of the squared term for fungicide use in the full model (= full qua-

dratic model) did not improve the R2
GLMM(m) compared to the full linear model. The variance

component for state was larger than that for year. Similar results were observed when soybean

yield and total annual fungicide use were considered in kg/ha and g/ha, respectively (Table 2).

Regional scale analyses conducted targeting the states within the Northern and Southern U.

S. also revealed significantly smaller R2
GLMM(m) compared to R2

GLMM(c) (S4 and S5 Tables).

Inclusion of the square term for fungicide use in the full model (= full quadratic model) did

not improve the R2
GLMM(m) compared to the full linear model.

Relationship between seed-applied fungicide use and soybean production/

yield at state and year scales

The relationship between total seed-applied fungicide use (MT) and soybean production

(1,000 MT) was significant (α = 0.1) for Iowa (P = 0.006), Illinois (P = 0.098), and South

Table 2. National scale mixed-effects modelling of the effect of seed-applied fungicide use on soybean production/yield from 28 soybean growing states in the

United States during the time period between 2006 and 2014.

Model name A B

Null model Full model (Lc) Full model (Qd) Null model Full model (L) Full model (Q)

Fixed effect a ± SEe a ± SE a ± SE a ± SE a ± SE a ± SE

Intercept 3,101 ± 670 3,101 ± 662 3,101 ± 638 2,543 ± 113 2,542 ± 116 2,543 ± 113

Fungicide use - 920 ± 993 2,907 ± 1114 - -458 ± 421 -323 ± 464

Fungicide use2 - - -2,624 ± 735 - - -281 ± 426

Random effects VCf VC VC VC VC VC

Stateg 122,232,88 11,905,823 11,096,306 176,415 178,096 175,403

Year 111,065 104,048 90,748 54,664 59,348 55,605

Residuals 235,466 236,951 227,765 101,380 100,909 101,591

R2
GLMM(m)

h - 0.000 0.005 - 0.002 0.002

R2
GLMM(c)

i - 0.980 0.980 - 0.703 0.695

AICj 4,033 4,034 4,023 3,729 3,729 3,731

BICk 4,047 4,051 4,044 3,743 3,747 3,752

A = relationship between annual total fungicide use (MT) and annual total soybean production (1,000 MT); B = relationship between annual total fungicide use (g/ha)

and annual yield (kg/ha)
cL = linear
dQ = quadratic
eSE = standard error
fVC = variance components
gStates included Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Nebraska, North Dakota, Ohio, Pennsylvania, South Dakota, Wisconsin, Alabama, Arkansas,

Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia. The

national scale is a composite of all 28 states; Fungicide use2 = quadratic term of the fungicide use
hR2

GLMM(m) = generalized R2 for marginal model
iR2

GLMM(c) = generalized R2 for conditional model
jAIC = Akaike Information Criterion
kBIC = Bayesian information criterion.

https://doi.org/10.1371/journal.pone.0244424.t002
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Dakota (P = 0.045) (S6 Table). However, the slope associated with fungicide use was positive

for only Illinois and South Dakota (S6 Table). When fungicide use (g) and soybean yield (kg)

were considered on a per hectare basis, a significant (α = 0.1) relationship was observed for

Iowa (P = 0.014), Kansas (P = 0.003), and Texas (P = 0.065) (S6 Table). However, for each of

these states, the slope associated with fungicide use (g) was negative (S6 Table).

The relationship between total seed-applied fungicide use (MT) and soybean production

(1,000 MT) was significant (α = 0.05) for all years except for 2009, 2010, and 2011 (S6 Table).

However, except for years 2006 and 2014, the slopes associated with fungicide use (g) for other

years were negative (S6 Table). When yield (kg) and fungicide use (g) were considered on a

per hectare basis, a significant (α = 0.05) relationship was only observed for 2012, yet the slope

related to fungicide use was negative (S6 Table).

Analysis of variance (ANOVA)

ANOVA showed a non-significant main effect of yield zone, harvest zone, and production

zone (α = 0.05) on seed-applied fungicide use. Consequently, mean per hectare seed-applied

fungicide use (in g) was not significantly different among each of the previously defined levels

of yield/harvest/production zones (Fig 2).

Factor analysis of mixed data (FAMD)

The variance maximizing data point distribution in the factor map did not reveal a clear clus-

tering pattern based upon state, year, or yield zone. However, a clear clustering was observed

based upon region, harvest zone, and production zone (Fig 3). Factor maps showed that yield/

harvest/production zones 2 and 3 clustered closely while zones 1 and 4 were distantly

clustered.

Fig 2. Comparison of the mean per hectare seed-applied fungicide use (in g) among yield/harvest/production

zones. Within each zone type, means followed by a common letter are not significantly different after adjustment for

multiple comparisons using Tukey-Kramer test at the 5% level of significance. Error bars represent standard errors.

The fungicides included: fludioxonil, mefenoxam, and metalaxyl. The selected fungicides are effective against

Fusarium wilt, Phytophthora root and stem rot, and seedling diseases caused by Fusarium, Phomopsis spp., Pythium,

and Rhizoctonia solani.

https://doi.org/10.1371/journal.pone.0244424.g002
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Discussion

An increasing number of inputs including seed-applied fungicides have become an integral

component of farmer’s soybean management strategies to achieve maximum yield [40, 41].

Fig 3. Factor maps generated through factor analysis of mixed data (FAMD) approach showing the variance maximizing distribution pattern of data points

(n = 252) in the map space with their clustering patterns based upon region (n = 2), and yield/harvest/production zones (n = 4 in each case). Yield/Harvest/

Production zones = represent four levels (zone 1 to 4) based on the quartiles within a database containing 252 yield (kg/ha)/harvest area (ha)/production (MT) data points

(252 = 9 years × 28 states). Within this database, data points from the minimum to the first quartile were classified as zone 1. Similarly, data points from the first quartile to

median, median to the third quartile, and> third quartile were respectively classified as zones 2, 3, and 4. Fungicides included: fludioxonil, mefenoxam, and metalaxyl

which are effective against Fusarium wilt, Phytophthora root and stem rot, and seedling diseases caused by, Fusarium, Phomopsis spp., Pythium, and Rhizoctonia solani.

https://doi.org/10.1371/journal.pone.0244424.g003
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Over the past two decades the cost of soybean seed has increased as a result of the increasing

costs associated with herbicide trait technologies and the technology fees associated with those

herbicide traits. More specifically, since 1975, the cost of soybean seed has increased $3.37 to

$23.79 per hectare in 2016, a 7-fold increase [42]. To offset those costs, farmers have attempted

to decrease seeding rates and therefore have increased the use of seed-applied fungicides as a

method to protect the seed planted; a type of “insurance” has been a common term applied to

the use of seed-applied fungicides [20, 40, 43]. Seed-applied fungicides therefore serve as a

method to reduce overall production costs by reducing the likelihood of a replant situation

which increases overall soybean production costs if and when stand failures result in the need

for purchasing additional seed and then the subsequent costs associated with planting (e.g.,

fuel, labor, equipment depreciation) [32, 42, 44]. As a result of increasing soybean production

costs and decreasing seeding rates to offset increased seed costs, seed-applied fungicide use has

significantly increased over the past two decades. More specifically, Munkvold [45] reported

that some seed companies estimated that in 1996, nearly 8% of soybean seed was treated with a

seed-applied fungicide while in 2008 estimates of total seed receiving a seed-applied fungicide

had reached 30%. In addition, the most recent estimates of soybean seed having received at

least one fungicide prior to planting suggest that 60–75% are treated [44, 46].

In the current study, the regional scale data revealed that the total seed-applied fungicide

use (in MT) was greater in the northern states compared to the southern states. The associated

differences between the northern and southern U.S. may be predominantly attributable to the

greater land use for soybean production in the north compared to the south. In general, and

over the period of time in question, approximately three times more land area was devoted to

soybean production in the northern states (12 states) compared to the southern states (16

states). However, the per hectare use (g) of seed-applied fungicides was greater in the southern

compared to the northern region. Greater per hectare use of seed-applied fungicides in the

southern U.S. may be associated with prolonged periods of conducive environment for the

development of seedling-associated diseases. However, one additional factor likely contributes

to greater seedling disease occurrence probabilities due to factors such as an extended period

of soybean planting (March to July) and seedling disease conducive soil conditions. In the

southern U.S., the soil environment can greatly impact the incidence of seedling-associated

diseases that result from extended periods of excessive soil moisture and planting into soils

early in the season when marginal temperatures occur [47]. As such, farmers in this region

generally opt to use seed-applied fungicides with greater frequency to reduce the probabilities

of poor seed emergence or reduced stands that can in some cases necessitate a replant situation

which increases production costs and can result in reduced yield potential by altering the

planting date. Moreover, the different crop rotations used in the southern U.S. could also con-

tribute to the increased adoption of seed-applied fungicides as a form of “cheap insurance”.

For example, crops are planted within a narrow window, and a farmer may need to plant the

soybean crop before moving onto another commodity. Therefore, the seed-applied fungicide

may reduce the likelihood of having to go back to planting a previous crop which can not only

delay the soybean crop, but a crop that is historically planted a little later than soybean, such as

cotton.

One of the primary objectives of our study was to investigate the relationship between fun-

gicide use and soybean production/yield loss due to seedling diseases using data from different

soybean growing states and years. Given that soybean production/yield loss data and fungicide

use data were classified by year and state, we deployed a linear mixed model approach to

model the effect of seed-applied fungicide use on soybean yield losses due to seedling diseases

at a national and regional scale by specifying state and year as random effects. The difference

of generalized R2 values between conditional (fixed and random effects; fungicide use + state
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+ year = R2
GLMM(c)) and marginal (only fixed effects; fungicide use = R2

GLMM(m)) models were

large and R2
GLMM(c) >>> R2

GLMM(m). Therefore, national and regional scale analyses did not

establish strong relationship between seed-applied fungicide use and seedling diseases associ-

ate soybean production/yield loss. However, as the addition of random effects (state and year)

into the models resulted in significantly larger R2, we focused on individual state and year to

further explore the trends.

As mentioned in the methods section, to obtain state and temporal scale insights, we used

total fungicide use (i.e. summation of the three fungicide active ingredients) as the regressor

variable within the mixed model regression framework. The use of the mixed model version of

the of multiple linear regression to make inferences on the utility of individual active ingredi-

ents in reducing yield losses due to seedling diseases was not appeared to be appropriate due to

three reasons. (i) it is not legitimate to regress the total yield lose due to seedling diseases (the

regressand) against individual active ingredients as each individual active ingredient does not

necessarily effective in controlling the yield loss due to all seedling diseases considered in the

study, (ii) some active ingredients are effective against more than one seedling diseases. There-

fore, yield loss reduction due to a given disease (the regressand) cannot be attributable to a sin-

gle active ingredient. As such, yield loss due to a single disease cannot be regressed against

individual active ingredients, (iii) although the pesticide database contains information on

fungicide use in terms of active ingredients, that does not necessarily mean that active ingredi-

ents were used by farmers as stand-alone products. For instance, while commercial products

such as Allegiance LS1 (Metalaxyl), Apron XL LS1 (Mefenoxam), and Maxim 4FS1 (Fludiox-

onil) are stand-alone fungicides, many trademarks/products contain a pre-mix of active ingre-

dients. For example, Apron Maxx1, Cruiser Maxx1, and Warden RTA1 are some of the

heavily used pre-mixed products, consist of a combination of Fludioxonil and Mefenoxam.

Importantly, it is possible that the interaction effect between active ingredients of pre-mixed

products play a role in disease suppression (thus the magnitude of the yield loss). Although the

representative interaction terms for different active ingredients can be included in the multiple

regression, with the data available in the pesticide data base, it is impossible to know what pro-

portions of each active ingredient was used as stand-alone and pre-mixed products. Therefore,

fitting multiple regression models using individual active ingredients and their combinations

as regressor variables is not realistic with the type of data that we deal with. As such, the only

sensible resort is to regress the total yield loss due to all diseases against the summation of indi-

vidual active ingredients using the mixed effect version of simple linear regression.

Analyses conducted at the state level showed significant and negative relationship between

soybean production loss (1,000 MT) and seed-applied fungicide use (MT) for Illinois, Indiana,

and North Carolina, which are some of the major soybean growing states in the U.S. When the

relationship was considered with per hectare basis data, yield loss (kg) was significantly and

negatively related with seed-applied fungicide use (kg) for Indiana and Ohio. As such, seed-

applied fungicide use appeared to be a useful tool to mitigate seedling diseases associated soy-

bean yield loses in said states. The absence of significant and negative relationships between

fungicide use and soybean production/yield loss for vast majority of the states can be partly

due to the nature of data that was used for this study. For example, the yield loss data used in

this study were all estimates, made by soybean disease experts including Extension pathologists

based on their field observations. Although expert’s estimations were strengthened by using

Padwick’s calculation in computing the overall loss with a standardized method enabling esti-

mates of impact due to seedling diseases and among types of soybean diseases, the possibility

that computed yield losses are different from actual yield losses cannot be understated. Fur-

thermore, although the fungicide use data available in the Pesticide National Synthesis Project

webpage is not based on sales data but actual use data, they are still estimated values. The
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methods used in estimating the fungicide use are robust but still may differ from the actual use

values. Although the majority of soybean hectares in the U.S. are planted with seed having

received a pesticide/fungicide, reliable data on the actual use of seed-applied pesticides/fungi-

cides are generally sparse [48].

The total soybean production/yield (1,000 MT, kg/ha) did not appear to increase with the

total seed-applied fungicide use (MT, g/ha) for the majority of the soybean producing states

except Illinois and South Dakota. Our findings are in agreement with previous reports; how-

ever, such reports only address the effectiveness of seed-applied fungicides on a much smaller

geographic scale, generally at a specific location. For example, the research from across the U.

S. has generally failed to show consistent benefits from seed-applied fungicides. Bradley et al.

[31] reported that metalaxyl-applied seed treatment resulted in increased soybean stands in

one year of a two-year study, but not yield while Cox et al. [32] reported no differences in both

stand establishment and yield between non-treated soybean seed and seed-applied fungicide

treatments. Schulz and Thelen [28] reported that seed treated with metalaxyl and fludioxonil

increased soybean yield in only three of 16 site-years yet decreased yield in two of 16 site-years.

In the specific situations where yield was observed to provide a positive return, the soil condi-

tions were wet and cool early-season, which coincides with the expectations for seed-applied

fungicides. With multi-environmental investigations, Gasper et al. [44, 49] reported that the

effect of seed-applied fungicides on plant stand and yield were environment specific.

Results of the ANOVA revealed that mean seed-applied fungicide usage (g/ha) was not sig-

nificantly different among the four distinct zones within each yield/harvest/production zone

category. The current results as they relate to zone indicated that despite the apparent soybean

yield/production differences between different zones (i.e., zone 4 = greatest yield/production,

zone 1 = lowest yield/production), similar amounts of seed-applied fungicides are being used

across all zones. Therefore, factors other than seed-applied fungicides likely were contributing

to the greater yield/production associated with zone 4. On the other hand, it is possible that a

greater number of farmers in low yield/harvest/production zones use soybean seeds treated

with fungicides compared to non-fungicide-treated seeds with the expectation of a yield

increase or reducing the potential costs associated with a replant situation.

The aim of the current investigation was to examine the patterns of seed-applied fungicide

use estimates and its relationship with estimated soybean yield losses due to seedling diseases

at broader spatial (national/regional/state) scales within the U.S. It is important to note that

the trends that we observed at broader geographic scales may or may not essentially correlate

with farm-scale trends, especially since the chemical concentrations assessed were based on

estimates of use of each active ingredient within a given geographic boundary (i.e., state). For

example, the absence of a significant and negative relationship between fungicide use and yield

losses at the state level does not necessarily mean that seed-applied fungicides failed to reduce

yield losses as a result of seedling diseases across the planted area within that state. Therefore,

the current paper does not intend to guide fungicide use decision making on a farm-scale. An

individual farmer may decide on seed treatment use based on several field-level factors such as

planting date, which greatly determines the vulnerability of seed/seedlings to certain soilborne

pathogens, cultivar susceptibility, and long-term disease history in a specific field location.

Farmers should also pay enough attention on manipulating plant populations and row spac-

ing, appropriate tillage and crop rotation practices, suitable abiotic stress management mea-

sures such as proper fertility and irrigation regimes to reduce the risk of seedling disease

incidence and severity as well as maximize the attainable yield.

While in our previous article [33], we elucidated the relationship between foliar fungicide

use and soybean yield losses due to foliar diseases, the current paper examined the relationship

between seed-applied fungicide use and soybean yield losses due to seedling diseases. In both
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papers, we applied a similar analytical/methodological approach given the similarity in the

type of questions that were under study, with the recognition that the primary topics of interest

are contrastingly different between two parts (foliar vs seed-applies fungicides). The use of

mixed model approach in both articles allowed incorporation random effects into the

national/regional/state/temporal scale models. This in turn helped determining the statistically

prudent relationships between foliar/seed-applied fungicide use and soybean yield losses due

to foliar/seedling diseases, otherwise would have been modified by the random factors. Results

from both articles revealed general lack of fit between fungicide use and yield loss/production

at national and regional scales as well as at state scale for vast majority of the soybean growing

states. Furthermore, the variation of yield loss as well as production were predominantly

explained by the state and year rather than the fungicide use.

Previously published landscape level fungicide studies do not always emphasize the useful-

ness of foliar/seed-applied fungicide use to mitigate disease-associate yield losses. In that sense,

the general lack of strong negative relationships that were evident through our work between

fungicide use and soybean yield losses was not that surprising. However, we do not undermine

the possible contribution of the nature of the data towards our observations. We should note

that, although scientifically robust approaches were deployed, both fungicide use and yield loss

data were estimated values and can therefore be different from actual data, which does not cur-

rently exist at the scale of our current work. This article, along with our previously published

companion article, are the first to investigate relationships between estimated foliar and seed-

applied fungicide use estimated soybean yield losses due to foliar and seedling diseases in the

U.S. at national, regional, and state levels and provide useful insights to policy makers and

researchers conducting field-scale fungicide efficacy trials in soybean and other agriculturally

important crops.
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