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Abstract

Direct-acting antiviral agents (DAAs) for hepatitis C treatment tend to fare better in individu-

als who are also likely to respond well to interferon-alpha (IFN), a surprising correlation

given that DAAs target specific viral proteins whereas IFN triggers a generic antiviral

immune response. Here, we posit a causal relationship between IFN-responsiveness and

DAA treatment outcome. IFN-responsiveness restricts viral replication, which would prevent

the growth of viral variants resistant to DAAs and improve treatment outcome. To test this

hypothesis, we developed a multiscale mathematical model integrating IFN-responsiveness

at the cellular level, viral kinetics and evolution leading to drug resistance at the individual

level, and treatment outcome at the population level. Model predictions quantitatively cap-

tured data from over 50 clinical trials demonstrating poorer response to DAAs in previous

non-responders to IFN than treatment-naïve individuals, presenting strong evidence sup-

porting the hypothesis. Model predictions additionally described several unexplained clinical

observations, viz., the percentages of infected individuals who 1) spontaneously clear HCV,

2) get chronically infected but respond to IFN-based therapy, and 3) fail IFN-based therapy

but respond to DAA-based therapy, resulting in a comprehensive understanding of HCV

infection and treatment. An implication of the causal relationship is that failure of DAA-based

treatments may be averted by adding IFN, a strategy of potential use in settings with limited

access to DAAs. A second, wider implication is that individuals with greater IFN-responsive-

ness would require shorter DAA-based treatment durations, presenting a basis and a prom-

ising population for response-guided therapy.

Author summary

Treatment of hepatitis C virus (HCV) infection is seeing a paradigm shift with powerful

drugs called direct-acting antiviral agents (DAAs) replacing earlier treatments involving

interferon (IFN). DAAs target specific HCV proteins. IFN stimulates our immune res-

ponse against HCV. The two should thus work independently. Surprisingly, DAAs appear

to work better in individuals who also tend to respond well to IFN. We hypothesized here
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that responsiveness to DAAs and IFN are causally linked. IFN can suppress viral replica-

tion, preventing the development of resistance to DAAs and improve DAA treatments.

Using a new multiscale mathematical model and analysis of a vast body of clinical data,

we found strong evidence supporting this hypothesis. Leveraging the causal relationship,

we suggest new ways of optimizing DAA treatments, potentially improving their efficacy,

tolerability, affordability and access.

Introduction

Direct-acting antiviral agents (DAAs) are revolutionizing the treatment of chronic hepatitis C

virus (HCV) infection. Sustained virological response (SVR) rates of over 90% have been

achieved in recent clinical trials with all-oral DAA treatments lasting as short as 12 weeks, in

striking contrast to the combination of pegylated interferon and ribavirin (PR), which elicited

SVR rates of only ~50% with 24–48 weeks of treatment [1, 2]. Indeed, DAAs are rapidly replac-

ing PR as the treatment of choice for chronic HCV infection [2]. An intriguing feature of

DAAs is the differential response they elicit in individuals who respond differently to PR: They

seem to work better in individuals who also tend to be more responsive to PR. For instance,

with the combination of the DAAs ledipasvir and sofosbuvir, SVR rates dropped from nearly

100% in treatment-naive individuals to ~87% in PR-experienced individuals infected with

HCV genotype 1b [1]. This differential response appears more significant with the older gener-

ation of DAAs than the newer ones, but is evident across clinical trials and across DAAs

(Table 1). Treatment guidelines for those who previously failed PR treatment are different

from treatment naïve patients [3]. Interferon (IFN) acts primarily by stimulating the innate

immune response to HCV [4]. Ribavirin is thought to potentiate the activity of IFN [5, 6].

DAAs, on the other hand, target specific HCV proteins, independently of host immune

responses [7]. Why responsiveness to IFN should improve outcomes of DAA-based treatments

is thus puzzling.

Here, we hypothesized that the responsiveness of individuals to IFN and DAAs are causally

linked. DAAs are susceptible to viral mutation-driven development of drug resistance [8, 9].

Resistance-associated amino acid variants (RAVs) have been identified that possess high level

resistance (>1000-fold increase in EC50) to DAAs [9]. Given the rapid turnover of HCV in
vivo [10] and its high mutation rate [11], RAVs are likely to pre-exist in chronically infected

individuals [12] and/or arise during treatment [13], potentially lowering the efficacy of DAAs.

Indeed, in retrospective analyses, RAVs were detected more frequently in individuals who

failed DAA treatment than in those who achieved SVR [1]. With the combination of ledipasvir

and sofosbuvir, for example, 16% of all the patients treated had detectable RAVs at baseline,

whereas of those who suffered virological failure, 43% had detectable RAVs at baseline [14].

Although systematic resistance testing is not recommended, current treatment guidelines sug-

gest resistance testing, where such testing is readily accessible and reliable, in the NS5A region

to decide appropriate treatment regimens [3]. IFN, a cytokine produced in response to viral

infections, triggers the expression of several hundred IFN-stimulated genes (ISGs) in infected

cells, creating an antiviral state that restricts viral replication [4, 15]. Higher responsiveness

to IFN may thus restrict viral replication to a greater extent, exerting better control on RAVs

and leading to improved outcomes of DAA-based treatments. This causal relationship may

underlie the positive correlation between responsiveness to PR and DAAs observed in clinical

trials. We tested this hypothesis using mathematical modelling and analysis of clinical data.

Interferon improves DAA treatment of hepatitis C
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Mathematical models of HCV kinetics have played a crucial role in our understanding of

HCV infection and guided treatments [16]. A model to test the hypothesis above had to

address the following questions. 1) What is the origin of the differential responsiveness of

HCV-infected individuals to IFN? 2) How can the IFN-responsiveness of an individual be

quantified? 3) Given the IFN-responsiveness of an individual, how does the individual respond

to DAAs, assuming the hypothesized causal link above? 4) How is IFN-responsiveness distrib-

uted across individuals in a population? 5) Does this latter distribution, coupled with the pre-

dicted responses of individuals to treatments, explain the differences in SVR rates between

Table 1. Response to DAA-based treatments. SVR rates elicited by various IFN-free and IFN-containing DAA combinations in treatment-naïve and prior null respond-

ers to PR from recent clinical trials. The treated population size is indicated in brackets. The significance of the difference in the SVR rates in the two populations is com-

puted using the χ2 test. The HCV genotype and whether the patients had liver cirrhosis is indicated. The details of the treatment regimens along with the sources of the

data are in S1 Table.

Regimen Genotype Cirrhosis % SVR (N) P-value

Naïve Null

IFN-containing regimen Telaprevir + PR 1 nd$ 75.4 (1272) 32 (147) 5.2×10−28

1 no 68.7 (941) 50.7 (213) 6.7×10−7

1 yes 45.4 (291) 26.6 (79) 2.6×10−3

Boceprevir + PR 1 no 65.4 (1179) 43.5 (85) 5.0×10−5

1 yes 44.3 (140) 0 (10) 6.0×10−3

Simeprevir + PR 1 no 83.3 (684) 49.6 (252) 1.2×10−25

1 yes 60.4 (48) 24.6 (61) 1.5×10−4

1 nd 91.3 (150) 52 (50) 5.5×10−10

4 nd 82.9 (35) 40 (40) 1.6×10−4

IFN-free regimen Sofosbuvir + ribavirin 1 no 84 (25) 10 (10) 4.3×10−5

Simeprevir + sofosbuvir 1 no 94.7 (226) 94.1 (17) 9.2×10−1

1 yes 86.4 (176) 100 (4) 4.3×10−1

Ledipasvir + sofosbuvir 1 yes 92.1 (573) 70 (10) 1.2×10−2

1 nd 99.1 (214) 98.1 (49) 2.2×10−3

Ledipasvir + sofosbuvir + ribavirin 1 nd 97.2 (217) 95.7 (46) 5.7×10−1

Ombitasvir + paritaprevir/ritonavir + dasabuvir 1 no 95.7 (983) 100 (32) 2.3×10−1

Ombitasvir + paritaprevir/ritonavir + dasabuvir + ribavirin 1 no 96.4 (1892) 96.3 (188) 9.3×10−1

1 yes 96.7 (418) 86.7 (75) 2.2×10−4

Grazoprevir + elbasvir 1 yes 96.4 (137) 92.9 (14) 5.2×10−1

1 no 92.9 (85) 89.5 (19) 6.1×10−1

1, 4 and 6 nd 94.4 (517) 91.8 (49) 4.7×10−1

Grazoprevir + elbasvir + ribavirin 1 yes 96.9 (32) 90.9 (11) 4.2×10−1

1 no 97.7 (44) 100 (21) 4.9×10−1

Paritaprevir/ritonavir + dasabuvir + ribavirin 1 no 94.7 (19) 47.1 (17) 1.4×10−3

Ombitasvir + paritaprevir/ritonavir 1b nd 95.2 (42) 89.7 (58) 3.1×10−1

Daclatasvir + simeprevir 1b nd 84.9 (53) 95 (20) 2.4×10−1

Daclatasvir + simeprevir + ribavirin 1b nd 74.5 (51) 69.6 (23) 6.6×10−1

Daclatasvir + asunaprevir 1 no 89.5 (171) 79.6 (142) 1.5×10−2

1 yes 90.6 (32) 87.3 (63) 6.3×10−1

Sofosbuvir + radalbuvir + ribavirin 1 no 92 (25) 100 (10) 3.6×10−1

Daclatasvir + asunaprevir + beclabuvir 1 no 92.0 (312) 88.0 (25) 4.9×10−1

Daclatasvir + asunaprevir + beclabuvir ± ribavirin 1 yes 95.5 (112) 97.1 (35) 6.8×10−1

$nd–not distinguished/determined

https://doi.org/10.1371/journal.pcbi.1006335.t001
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treatment-naive and treatment-experienced populations observed across DAAs and across

clinical trials?

Existing models [5, 10, 12, 17–27] have addressed some but not all of these questions. For

instance, IFN-responsiveness has been shown recently to be an emergent property of the IFN

signaling network in HCV infected cells [17]. Due to the competing interactions between ISGs

and HCV [28–33], the network exhibits bistability, with one steady state responsive and the

other refractory to IFN. The proportion of cells in an individual that preferentially assume the

responsive state determines the IFN-responsiveness of the individual [17]. Although variations

in ISG protein copy numbers and other factors across cells [25, 34] and across individuals [35,

36] and effects such as those attributed to the polymorphisms in the IL28B gene locus [37] that

collectively result in different levels of IFN-responsiveness in different individuals have been

identified, how IFN-responsiveness is distributed across individuals remains unknown.

Inspired by the success of models in describing HIV drug resistance [38], similar models of

HCV kinetics incorporating mutations and their fitness effects have been developed to esti-

mate the pre-existing frequencies of RAVs in chronically HCV infected individuals and to pre-

dict their growth during treatment with DAAs [12, 16, 18–22]. The latter models, however, do

not treat IFN-responsiveness as a factor influencing the pre-existence and growth of RAVs

and hence treatment outcomes. Finally, no models, barring those invoking empirical correla-

tions [20, 39, 40], have described SVR rates elicited by different DAA-based treatment

regimens.

Constructing a mathematical model to test the proposed causal relationship thus faced two

broad challenges. First, phenomena spanning multiple length and time scales–from the cellular

to the population level–had to be integrated into a single mathematical framework. Second,

several missing pieces in the puzzle, not considered by existing models, had to be identified.

We developed a model that overcame both these challenges. Model predictions captured the

vast body of clinical data of the differential response of patients to DAA-based treatments

quantitatively, making a strong case for the proposed causal relationship. The model addition-

ally explained several longstanding but poorly understood clinical observations, presenting a

far more comprehensive understanding of HCV infection and treatment response than earlier.

Finally, using the model, we suggest new strategies, exploiting the causal relationship, to

improve DAA-based treatments.

Results

Correlation between responsiveness to PR and DAAs

To establish the correlation between the responsiveness of chronically HCV infected individu-

als to PR and DAAs, we collated data from all (over 50) clinical trials that reported SVR rates

achieved with DAA-based treatments in treatment-naïve individuals, SVRnaive, and in previous

null responders to PR, SVRnull (Methods). The data are grouped according to treatment regi-

men and summarized in Table 1. Individual datasets are listed in S1 Table. We found that

SVRnaive>SVRnull with P�10−59 overall (using the χ2-test). The difference was starker when the

analysis was restricted to treatments that included PR (P�10−65), but, importantly, was highly

significant when interferon-free regimens alone were considered (P = 0.007). The difference

remained when only individuals with (S2 Table; P�10−5) or without (S3 Table; P�10−29) liver

cirrhosis were considered or when the analysis was restricted to studies that did not factor liver

cirrhosis (S4 Table; P�10−30). The difference was clearer for treatments that elicited <100%

SVR than for more recent, stronger treatments that elicited ~100% SVR regardless of treat-

ment experience. Nonetheless, the clinical evidence of a positive correlation between respon-

siveness to PR and DAAs was overwhelming and suggested a causal relationship between the

Interferon improves DAA treatment of hepatitis C
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two. We proposed a mechanistic hypothesis underlying this relationship, where greater IFN-

responsiveness exerted better control on RAVs and improved DAA treatment outcomes (see

above), and constructed a mathematical model to test it.

Mathematical model

We present an overview of the model here (Fig 1). A detailed description of the various com-

ponents of our model and how we integrated them into a single framework is in Methods.

To describe the response of an individual to PR, we employed the formalism we developed

previously, where cells were divided into distinct IFN-responsive and IFN-refractory pheno-

types based on the properties of the IFN-signaling network in HCV-infected cells [17]. At the

cellular level, interferon triggers the expression of several hundred interferon-stimulated genes

(ISGs) that collectively create an antiviral state in cells [15]. HCV suppresses the interferon

response via multiple mechanisms [4, 41], the prominent one involving a block in ISG transla-

tion it induces via dimerization and autophosphorylation of protein kinase R [30, 42, 43]. We

constructed a comprehensive model of the IFN signaling network in the presence of HCV,

accounting for the competing effects above which amounted to a double negative feedback,

and found that the network exhibited bistability [17]. In one steady state, HCV overcame the

IFN response and established lasting infection. In the other, IFN cleared HCV. Intrinsic varia-

tions of the factors defining the IFN signaling network, which defined the strength of the IFN

response relative to the strength of its subversion by HCV, resulted in individual cells admit-

ting either one or both the states. Cells that admitted the first steady state alone were refractory

to IFN. Cells that admitted the latter alone were responsive to IFN. Cells that admitted both

were bistable and the state they eventually realized depended on whether they were exposed

earlier to HCV or IFN.

Fig 1. Schematic of the model. (A) Hepatocytes in an HCV infected individual display a range of phenotypic responses to

IFN, from refractory (red) to responsive (blue). (B) Different individuals carry different fractions of hepatocytes displaying

these distinct responses, yielding a distribution of IFN-responsiveness in an HCV infected population. Individuals with a small

proportion of IFN-refractory hepatocytes respond to treatment (left inset), whereas those with a large proportion see virologic

breakthrough due to the growth of drug resistant (RAV) and/or wild-type (WT) strains (right inset). (C) The threshold or

admissible proportion of IFN-refractory hepatocytes depends on the drugs and treatment protocol employed and defines the

SVR rate the treatment elicits in a population.

https://doi.org/10.1371/journal.pcbi.1006335.g001
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Based on the description above, we divided cells in an individual into three distinct IFN-

response phenotypes, IFN-refractory, bistable, and IFN-responsive. With this classification, we

constructed a model of viral kinetics that described viral load changes in individuals following the

onset of PR treatment. HCV thrived in the IFN-refractory compartment despite exposure to PR.

The relative proportion of cells that were of the IFN-refractory phenotype thus quantified the

IFN-responsiveness of individuals. By increasing this proportion, which decreased IFN-respon-

siveness, the formalism was shown to quantitatively capture the observed patterns of viral load

decline, from rapid response to null response, in patients undergoing PR treatment [17].

To describe the pre-existence and growth of RAVs under DAA-based treatment, we built

on previous models of viral kinetics and evolution [12, 16, 18–22], which have provided good

fits to patient data of wild-type and RAV population dynamics [12, 16]. The models allowed

mutations, which occurred during viral replication, at specific loci to confer resistance to

DAAs. The mutations, however, came with fitness costs. The models could thus predict the

pre-existing frequencies of RAVs and their growth rates during treatment with DAAs. We

combined the models above by integrating the distinct cellular phenotypes with viral kinetics

and evolution to arrive at a description of the response of an individual to DAA-based treat-

ments and the influence IFN has on the response. The poorer the IFN-responsiveness of an

individual, the greater the level of ongoing replication during treatment, and hence the higher

the likelihood of the development of resistance to DAAs. The combined model thus yielded

threshold levels of IFN-responsiveness required for treatments to succeed.

We next developed independent descriptions of the distribution of IFN-responsiveness in

populations. We showed that the pre-treatment set-point viral load was directly related to the

IFN-responsiveness of an individual, allowing us to quantify the distribution of IFN-respon-

siveness using measurements of viral load in populations. The fraction of individuals with

IFN-responsiveness above the threshold IFN-responsiveness predicted above for any treat-

ment yielded the SVR rates elicited by that treatment. In particular, the threshold for a null

response to PR yielded the percentage of null responders and hence, truncating the distribu-

tion above to the latter threshold, the distribution of IFN-responsiveness in null responders to

PR. Linking the distribution of IFN-responsiveness in populations to the individual-level mod-

els of viral kinetics and treatment response thus allowed estimation of SVR rates across differ-

ent populations, particularly treatment naïve and previous null responders to PR, elicited by

different treatment regimens.

Pre-treatment RAV frequencies

We applied the model first to examine whether greater IFN-responsiveness lowered the pre-

existence of RAVs in infected individuals (Fig 2). We quantified the IFN-responsiveness of an

individual by the fraction of target cells produced in the individual that exhibited the IFN-

refractory phenotype [17], denoted �
p
1
. The smaller the value of �

p
1
, the more IFN-responsive

was the individual. Using our model, we estimated the steady state pre-treatment populations

of wild-type and RAV-carrying virions, V0 and V1, respectively, and the frequency, ρ1 = V1/

(V0+V1), of RAVs, as functions of �
p
1

(Eqs (1)–(4), Methods). A single point mutation was

assumed first to confer resistance to the DAA. Mutation occurred at the rate μ and allowed the

production of V1 from cells infected with V0. The mutations came with a fitness cost to the

virus, determined by lower values of viral infectivity and/or productivity, γ, relative to the

wild-type. We found that ρ1 was independent of �
p
1

(Fig 2A). As �
p
1

increased, fewer cells were

IFN-responsive, which resulted in an increase in V1 (Fig 2C). However, of the virions pro-

duced (Fig 2B and 2C), a constant fraction, determined by the mutation rate, μ, and the relative

fitness of the RAV, γ, carried the RAV, leaving ρ1 unaffected. Further, both V1 and ρ1 but not

Interferon improves DAA treatment of hepatitis C
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V0 increased significantly with μ and γ (Fig 2A–2C). We derived analytical approximations (S1

Text) that quantitatively explained these variations (Fig 2A–2C). The results were readily

extended to multiple loci (S2 and S3 Texts; Fig 2D–2G).

Thus, greater IFN-responsiveness did not significantly alter the pre-treatment frequencies

of RAVs, although it did lead to lower pre-treatment viral loads and populations of RAVs,

indicating greater control over ongoing viral replication. This greater control could influence

the growth of RAVs during treatment with DAAs, which we examined next.

Growth of RAVs during IFN-free treatment

We predicted the viral load decline under DAA treatment for a range of treatment efficacies

against the wild-type, 0 � ε0
DAA � 1, and the RAV, 0 � ε1

DAA � ε
0
DAA, and for different fitness

Fig 2. Pre-treatment frequencies and populations of virions. Model predictions (lines) and analytical

approximations (symbols) (S1–S3 Texts) of the mutant frequencies (left) and viral populations (right) in the pre-

treatment steady state as a function of the level of IFN-responsiveness, �
p
1
, for different combinations of the mutation

rate, μ, and the relative fitness of the RAV, γ: (μ,γ) = (3×10−4,0.9) (blue), (3×10−4,0.8) (red), (3×10−4,0.7) (green) and

(3×10−5,0.8) (black). Here, γ = p1/p0, the ratio of the viral production rates, or equivalently the replicative abilities, of

the mutant and wild-type strains; without loss of generality, the RAV was assumed not to compromise viral infectivity

(see S1–S3 Texts). Single mutant frequencies (A) and the populations of wild-type (B) and single mutant (C) virions

when the genetic barrier is 1. Double mutant frequencies (D) and the populations of wild-type (E), single mutant (F),

and double mutant (G) virions when the genetic barrier is 2. In the latter case, the two single mutants have the same

relative fitness, γ, and the double mutant, γ2. In (B) and (E), the different lines and symbols are indistinguishable.

Parameter values employed are in S5 Table. The parameters to which these predictions are sensitive are as expected

from the analytical approximations (S1 Fig).

https://doi.org/10.1371/journal.pcbi.1006335.g002

Interferon improves DAA treatment of hepatitis C

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006335 July 12, 2018 7 / 26

https://doi.org/10.1371/journal.pcbi.1006335.g002
https://doi.org/10.1371/journal.pcbi.1006335


penalties, γ, associated with the RAV (Eqs (1)–(4), Methods). We defined the effective relative

fitness of the RAV during treatment as gt ¼ gð1 � ε1
DAAÞ=ð1 � ε

0
DAAÞ, combining the intrinsic

fitness disadvantage of the RAV and its advantage in the presence of the drug. We defined �
t
1

as the IFN-responsiveness during treatment. �
t
1

depended on the total IFN exposure, the sum

of endogenous and exogenous levels [17]. For IFN-free treatments, where exogenous IFN is

absent, we let �
t
1
¼ �

p
1

(Methods). We found that the response to treatment was determined

predominantly by ε0
DAA, �

p
1

and γt (Fig 3). With high ε0
DAAð� 0:99Þ, the wild-type could be

cleared by the DAA regardless of �
p
1
. Then, for any γt, the decline of the RAVs was faster for

lower �
p
1
. Below a critical value of �

p
1
, SVR was achieved, whereas above this critical value, viro-

logical breakthrough occurred (Fig 3A and 3C). Similarly, for a fixed �
p
1
, RAVs declined faster

for lower γt (Fig 3A and 3B). A locus of points on a �
p
1
� gt plot delineated the region where

SVR occurred from that where virological failure resulted due to drug resistance (Fig 3A). For

lower �
p
1
, breakthrough occurred at higher γt, indicating that higher degrees of resistance were

necessary for virological breakthrough with higher IFN-responsiveness.

With lower ε0
DAA, the DAA was not potent enough to suppress the wild-type at all �

p
1
. With

�
p
1

large and γt small (<1), the wild-type drove failure (Fig 3D and 3F). The value of �
p
1

above

which failure occurred decreased as ε0
DAA decreased, indicating that failure occurred even with

higher IFN-responsiveness as the DAA efficacy dropped (Fig 3A and 3D). Conversely, poorer

Fig 3. Response to IFN-free DAA treatment. (A) Phase diagram indicating regimes of the level of IFN-

responsiveness, �
p
1
, and the relative fitness of the RAV during treatment, γt, that lead to SVR (dark blue) or treatment

failure due to virological breakthrough by the RAV (light blue). (B,C) Dynamics of wild-type (solid) and RAV

(dashed) viral populations following treatment initiation for different parameter combinations numbered in (A). Here,

the efficacy of treatment against the wild-type is assumed to be high: ε0
DAA ¼ 0:99. Also, γ = 0.2. (D) Phase diagram

with lower efficacy, ε0
DAA ¼ 0:9, showing regions leading to SVR (dark blue) or treatment failure due to the RAV (light

blue), wild-type (green), or both (brown). (E,F) Dynamics of wild-type (solid) and RAV (dashed) viral populations for

the points numbered in (D). Here, γ = 0.4. Other parameter values employed are in S5 Table. Phase diagrams for other

values of ε0
DAA are in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1006335.g003
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IFN-responsiveness placed more stringent demands on the DAA. As γt increased, both the

wild-type and RAV co-existed during treatment failure and when γt rose above ~1, the RAV

outcompeted the wild-type and drove treatment failure (Fig 3D and 3E).

Growth of RAVs during PR+DAA treatment

With exogenous IFN present, �
t
1
< �

p
1
. We therefore let 0 � �

p
1
� 1 and 0 � �

t
1
� �

p
1

(Fig 4).

For fixed ε0
DAA, γt and �

p
1
, RAVs declined faster for lower �

t
1

(Fig 4B). Again, a threshold �
t
1

existed below which SVR was achieved and above which RAVs drove virological breakthrough

when ε0
DAA was high (Fig 4A). This threshold was weakly sensitive to �

p
1

because pre-treatment

variations were rapidly subsumed post treatment initiation by the dynamics dictated by �
t
1

(Fig

4B). The threshold, however, was sensitive to γt. As γt increased, the threshold dropped, indicat-

ing that treatment failure occurred even with higher IFN-responsiveness as the RAVs became

more fit (Fig 4C and 4D). Similarly, as ε0
DAA decreased, failure occurred at lower �

t
1
, indicating

again that poorer IFN-responsiveness contributed to the failure of DAAs (Fig 4E and 4F). Fur-

ther, as γt increased from<<1 to>>1, failure occurred first due to the wild-type, then the

combination of wild-type and RAVs, and finally due to the RAVs alone (Fig 4G and 4H).

Thus, with DAA-based treatment, with or without PR, IFN-responsiveness controlled the

growth of RAVs and contributed to treatment success. We examined next the implications of

these findings at the population level. For this, we first estimated the distribution of IFN-

responsiveness across individuals.

Fig 4. Response to PR+DAA treatment. (A) Phase diagram indicating regimes of IFN-responsiveness pre- and during treatment, �
p
1

and �
t
1
, leading to

SVR (dark blue) and treatment failure due to virological breakthrough by the RAV (light blue) for a fixed relative fitness of the RAV during treatment, γt.

(B) Dynamics of wild-type (solid) and RAV (dashed) viral populations following treatment initiation for parameter combinations numbered in (A). (C)

Phase diagram on a �
t
1
� gt plot for fixed �

p
1
. (D) Dynamics for the points numbered in (C). In (A)-(D), the DAA efficacy against the wild-type,

ε0
DAA ¼ 0:99. Also, γ = 0.4. (E)-(H) Corresponding predictions with ε0

DAA ¼ 0:95. In (E) and (G), treatment failure occurred due to the RAV (light blue),

wild-type (green), or both (brown). Here, γ = 0.2. Other parameter values employed are in S5 Table. Phase diagrams for other values of ε0
DAA are in S3

Fig.

https://doi.org/10.1371/journal.pcbi.1006335.g004

Interferon improves DAA treatment of hepatitis C

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006335 July 12, 2018 9 / 26

https://doi.org/10.1371/journal.pcbi.1006335.g004
https://doi.org/10.1371/journal.pcbi.1006335


Distribution of IFN-responsiveness in patient populations

We recognized that �
p
1

was linked directly to the chronic set-point viral load in our model

(Methods; Eq. (S1.10)). The set-point viral load has been found to be log-normally distributed

in chronically-infected individuals [44]. We therefore let �
p
1

also be log-normally distributed

(Eq (5); Fig 5A). Chronic infection was only possible in our model when �
p
1

was larger than a

threshold, �
c
1
. When �

p
1
� �

c
1
, the set-point viral load was zero, marking spontaneous clearance

of infection. Using representative model parameter values, we solved our model (Eqs (1)–(4),

Methods) using different values of �
p
1

and identified �
c
1

as the maximum value of �
p
1

for which

the set-point viral load vanished. We thus obtained �
c
1
¼ 0:029. We next fit a truncated log-

normal distribution for �
p
1
> �

c
1

(Eq (6), Fig 5B) to patient data of the distribution of set-point

viral load and identified parameter values defining the log-normal distribution of �
p
1

in a treat-

ment-naïve population (Fig 5D, inset).

With the resulting distribution, we estimated the percentage of individuals with �
p
1
� �

c
1

(Eq (8)), i.e., the fraction of infected individuals who spontaneously clear the infection, and

found it to be ~21%, close to the mean of ~26% obtained from 31 longitudinal studies [45].

We next considered null responders to PR, defined by �
p
1
> �null. To estimate ϕnull, we

employed clinical data of telaprevir-based treatments. Using parameter values similar to previ-

ous estimates [12, 46], ε0
DAA � 0:99, ε1

DAA � 0:03, and γ = 0.4, we applied our model (Eqs (1)–

Fig 5. Distribution of IFN-responsiveness across patients and SVR rates to DAA-based treatments. (A) The log-normal probability density of the

level of IFN-responsiveness, �
p
1
, across individuals. The values of �

p
1

below which we observe spontaneous clearance, �
c
1
, and below which the DAA

would elicit SVR either alone, �
DAA
SVR , or with PR, �

PRþDAA
SVR , are indicated. �

p
1

above which PR would elicit a null response, ϕnull, is also indicated. The

resulting probability density of �
p
1

in (B) treatment-naïve patients and (C) prior null responders to PR. (D) Comparisons of our model predictions

(lines) of SVR rates in treatment-naive versus prior null responders to PR with corresponding observations from clinical trials involving IFN-free

DAA regimens (open symbols) or PR+DAA combinations (filled symbols). Studies either distinguished individuals with (red) and without (blue)

liver cirrhosis or not (black). The clinical data is collated in Tables 1 and S1. Model predictions (Eqs (1)–(13), Methods) with (orange) and without

(green) PR overlap. The best-fit (black solid) along with 95% CI (black dashed) of Eq (18) to the data where cirrhosis is not distinguished (collated in

S4 Table) is shown. Inset: The log-normal probability density of �
p
1

in treatment-naïve individuals (line) fit to data of baseline viral loads from patients

(symbols). The best-fit parameters were ν = −2.775 and σ = 1.027 (Methods).

https://doi.org/10.1371/journal.pcbi.1006335.g005
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(4)) and estimated �
DAA
SVR ¼ 0:065 as the value of �

p
1

below which telaprevir monotherapy would

elicit SVR (Methods). (Note that telaprevir monotherapy can induce SVR [47].) We next esti-

mated �
PRþDAA
SVR , the value of �

p
1

below which PR+telaprevir triple therapy would yield SVR, by

comparing model predictions of SVR rates in treatment-naïve patients (Eq (9)) with correspond-

ing clinical data [48], SVRPRþDAA
naive ¼ 75:4� 2:4%. Given the distribution of �

p
1
, the value of �

p
1

below which a defined percentage of the population lies can be calculated. Thus, the value of �
p
1

below which SVRPRþDAA
naive ¼ 75:4� 2:4% of the population lies yielded �

PRþDAA
SVR ¼ 0:152� 0:011.

This implied D� ¼ �
PRþDAA
SVR � �

DAA
SVR ¼ 0:087� 0:011 was the increase in IFN-responsiveness due

to exogenous IFN administered as part of PR treatment. With this Δϕ, we could estimate �
t
1

for

any �
p
1
, allowing us to use our model (Eqs (1)–(4)) to predict the response to PR-containing regi-

mens. In particular, we could predict the response to PR. Solving our model, we thus identified

ϕnull as the minimum �
p
1

that yielded a null response to PR, defined as having occurred when<2

log10 decline in viral load resulted from 12 weeks of treatment. We found that ϕnull = 0.12±0.01

(Eqs (1)–(4), Methods). Truncating the distribution of �
p
1

to values of �
p
1

above ϕnull yielded the

distribution of �
p
1

in null responders to PR (Eq (7), Fig 5C).

With these estimates, we predicted the percentage of null responders to PR in a treatment-

naïve population as the fraction of the population with �
p
1

above ϕnull (Eq (11)) and found

NULLPR
naive ¼ 33%, which was in close agreement with corresponding clinical observations

of 32% [49]. Further, we predicted the response of null responders to PR+telaprevir triple

therapy (Eq (13)) as the fraction of null responders with �
p
1

below �
PRþDAA
SVR estimated above,

and found SVRPRþDAA
null ¼ 26%, again in good agreement with the 32% observed experimentally

[48].

This quantitative agreement of our model with independent observations gave us confi-

dence in our model and our estimates of the distribution of IFN-responsiveness. In addition,

that the same Δϕ captured the observed influence of PR with and without telaprevir implied

that the proposed synergy between IFN and DAAs [17, 50, 51] may be small in vivo. We next

predicted the response of different patient subpopulations to DAA-based treatments.

SVR rates elicited by DAA-based treatments

Using the distributions of IFN-responsiveness identified above, we applied our model (Eqs (1)–

(13), Methods) to predict SVR rates elicited by DAA-based treatments. We varied parameters

to mimic the entire spectrum of accessible DAA efficacies and relative fitness values of RAVs.

We found that SVRnull was consistently lower than SVRnaive (Fig 5D). Further, our predictions

were in good agreement with clinical data (Fig 5D; Table 1). The predictions employed some

parameters estimated above from telaprevir-based therapy. We derived an analytical expression

linking SVRnaive and SVRnull that was independent of the DAA and of whether PR was part of

the treatment (Eq (18), Methods): SVRnaive ¼ 1 � NULLPR
naive þ NULLPR

naiveSVRnull. The expression

too fit the clinical data well and the fit was close to our predictions above (Fig 5D). The best-fit

estimate of NULLPR
naive ¼ 40� 14% was in agreement with the corresponding clinical estimate

[49] of 32%. Further, the latter expression explained more vividly the diminishing difference

between SVRnaive and SVRnull as treatment became more potent. It showed that when SVRnaive

approached 100%, so did SVRnull, in agreement with observations from recent trials where

nearly all patients were cured regardless of their treatment experience (Table 1).

This agreement between our predictions, in two ways, and clinical data demonstrating

SVRnull� SVRnaive presents strong evidence supporting our hypothesis of the causal relation-

ship between IFN-responsiveness and the success of DAA-based treatments. We examined

ways of exploiting this relationship to improve treatments.
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Potential strategies to improve DAA-based treatments

IFN-responsiveness could be exploited to improve DAA-based treatments in two ways: 1) to

prevent failure and 2) to shorten the treatment duration (Fig 6). IFN-free treatment would fail

in an individual if �
p
1

in the individual were larger than a threshold. Adding PR would lower �
p
1

Fig 6. Strategies to overcome DAA failure. The best-fit (solid line) and 95% CIs (dashed lines) of Eq (18) (Methods) to data (symbols) of SVR rates in treatment-

naïve versus treatment-experienced patients (A) without liver cirrhosis and (B) with liver cirrhosis, treated with DAAs with (filled) or without (open) PR. The list of

clinical trials from which data has been collated is presented in S2 and S3 Tables, respectively. The fits yielded NULLPR
naive ¼ 58� 10% and 33±14% in the two

subpopulations, respectively, and using which, we estimated the corresponding ϕnull = 0.07 and 0.12. (C) Regions in the phase diagram (see Fig 2A) where addition of

PR to the DAA would elicit cure in otherwise failing patients with (orange) or without (orange and red) liver cirrhosis. SVR would be elicited in the dark blue region

of the phase diagram. (D) The yellow box in (C) zoomed to demonstrate the influence of adding PR to an individual with a cirrhotic (small white arrow) or a non-

cirrhotic (large white arrow) liver, adding a new DAA or increasing DAA dosage (yellow arrow), or adding PR and a new DAA (green arrow). (E-H) Dynamics of

wild-type (solid) and RAV (dashed) viral populations following treatment initiation for the different conditions marked in (D). (I) The duration of treatment in

weeks required to achieve SVR for a range of values of IFN-responsiveness, �
p
1
, and the relative fitness of the RAV, γt. (J) Dynamics of wild-type (solid) and RAV

(dashed) viral populations following treatment initiation for the different conditions marked in (I), corresponding to daclatasvir treatment (Methods). Inset: The

percentage of patients predicted to achieve SVR as a function of the duration of treatment with daclatasvir. The percentages corresponding to the conditions marked

in (I) are indicated. Thus, 19.2%, 46% and 60.6% SVR rates are expected in 8, 10, and 12 weeks of treatment, respectively.

https://doi.org/10.1371/journal.pcbi.1006335.g006
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by Δϕ. Δϕ is expected to be different for individuals with (denoted Δϕc) and without (denoted

Δϕnc) liver cirrhosis. We fit the analytical expression above (Eq (18)) to SVR data on popula-

tions with and without liver cirrhosis separately (Fig 6A and 6B) and estimated Δϕc = 0.046

and Δϕnc = 0.091 (Methods). PR thus appeared only half as effective in improving IFN-respon-

siveness in cirrhotic individuals as non-cirrhotic individuals. Adding PR would thus induce

SVR if the individual had a cirrhotic (non-cirrhotic) liver and the �
p
1

were within Δϕc(Δϕnc) of

the threshold (Fig 6C, 6D, 6E and 6G). If �
p
1

were farther away from the threshold, adding PR

alone would prove inadequate (Fig 6D, 6F and 6H). Increasing the DAA dosage or including

additional DAAs to lower the effective fitness of the RAV may then be a way to induce SVR

(Fig 6C–6G). Of course, adding PR may require a smaller increase in the DAA dosage, render-

ing the DAA more tolerable.

Even where DAA-based treatment is likely to succeed, greater IFN-responsiveness would

induce faster viral load decline and allow shorter treatment durations (Fig 6I and 6J). Using

parameters representative of daclatasvir (Methods), we found that as �
p
1

decreased from ~0.1

to ~0.04, the treatment duration required for SVR dropped from ~12 weeks to ~8 weeks (Fig

6I and 6J). Although daclatasvir is not recommended for use as monotherapy, we use it here

for illustration and because the NS5A region, the target of daclatasvir, is the one region where

resistance testing may decide the choice of regimen [3]. Thus, individuals highly responsive to

IFN present promising candidates for reducing DAA treatment durations. Indeed, we esti-

mated that ~50% of the individuals treated with daclatasvir would achieve SVR in ~10 weeks

and ~20% in ~8 weeks, durations expected to decrease further with DAA combinations, pre-

senting a basis and a novel avenue for response-guided treatment.

Discussion

DAAs, with >90% SVR rates in clinical trials, are bringing hope to the millions of chronically

HCV infected individuals worldwide. In the present study, we elucidated a hypothesis underly-

ing the unexpected positive correlation between the response elicited by DAAs and PR, which

explains several confounding clinical observations and presents new potential avenues to

improve DAA-based treatments. The hypothesis is that greater IFN-responsiveness restricts

the replication space available for the virus, inhibiting the development of resistance to DAAs

and improving treatment response. We developed a novel multiscale mathematical model to

test this hypothesis. Analysis of a large body of clinical data using the model presented evi-

dence in strong support of the hypothesis. The resulting causal relationship between respon-

siveness to PR and DAAs implied that increased responsiveness to PR could be exploited to

prevent DAA failure and/or shorten the treatment duration, potentially positively impacting

treatment response, tolerability, affordability and access.

Despite the high SVR rates they elicit, access to DAA-based treatments has seen limited so

far;<1.3% of the ~150 million chronically HCV infected individuals are estimated to have

received DAA-based treatment, with the proportion far smaller in resource-limited settings

[52, 53]. To improve affordability and access, DAA-based treatments that would exert the

most potent antiviral activity and/or patient subpopulations that would require the shortest

durations are keenly being sought [54–59]. Our study informs these efforts by presenting new

avenues to optimize DAA-based treatments. The standard strategy to avert DAA failure is to

increase the genetic barrier to resistance by including more DAAs in the drug cocktail [12, 54].

In a recent set of studies, for instance, numerous DAA combinations were evaluated preclini-

cally to identify the “best” candidates for clinical development and 3 DAA combinations were

found to be more potent than 2 DAA combinations [54–56]. We suggest that an alternative

strategy may often be feasible: improving IFN-responsiveness by adding IFN (or PR). Where
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additional DAAs remain inaccessible, especially in resource-limited settings, such a strategy

may be useful. A previous modeling study also found that the efficacy of combining PR with a

DAA significantly improved the treatment efficacy against DAA-resistant strains compared to

the DAA alone [12]. Furthermore, our study quantified the gain in IFN-responsiveness due to

standard PR dosage in patients with and without liver cirrhosis, representing a key potential

step in personalizing the strategy. Response-guided treatment (RGT) is being considered now

to define reduced treatment durations for select populations [27, 57, 58, 60, 61]. For instance,

in a recent study, patients who achieved an ultra-rapid early viral load decline (plasma HCV

RNA <500 copies/mL by day 2) were found to be cured with just 3 weeks of treatment [57].

Our prediction that individuals with high IFN-responsiveness are amenable to shorter treat-

ment durations presents a much sought-after basis and a promising candidate population for

reducing treatment durations, informing ongoing efforts to develop RGT protocols.

Personalizing treatment based on the avenues above requires estimation of the level of IFN-

responsiveness of individuals. For a treatment-experienced individual, this may be achieved

through analysis of viral load changes recorded during the previous PR treatment [17]. For a

treatment-naive individual, short-term PR exposure and subsequent measurements of viral

load may be necessary. Viral load changes as early as 24 h following the start of PR treatment

have been argued to be good indicators of eventual response [62, 63]. Previous modeling stud-

ies have suggested a lead-in period of PR to assess the level of ongoing viral replication and the

responsiveness to PR in order to decide optimal treatments [12, 64]. Developing such indica-

tors to quantify the level of IFN-responsiveness, a promising future research direction based

on our present study, would allow personalizing the course of DAA treatments also for treat-

ment-naive individuals. Further, a correlation between IFN-responsiveness and the duration

of DAA-based treatment required to achieve SVR would present a direct clinical test of our

hypothesis.

Recent studies present further evidence in support of our hypothesis. In a study involving

240 chronic HCV patients treated with sofosbuvir and either daclatasvir or simeprevir for 12

weeks, slow responders, defined as those with detectable viremia at week 12, had a much

higher representation of treatment (PR)-experienced patients than the overall population, viz.,

82% versus 68%, indicating that IFN-free DAA treatments elicited slower viral load declines in

individuals with poorer IFN-responsiveness [65]. Another study involving 216 patients treated

with sofosbuvir and either daclatasvir or ledipasvir for 12 weeks found that baseline RAVs and

treatment experience did not influence SVR in patients without cirrhosis but had a significant

influence in patients with cirrhosis [66]. In yet another study [13], 6 of the 8 patients treated

with daclatasvir and PR achieved SVR, of which 4 had RAVs detected pre-treatment, but had

favourable IL28B genotypes (TT/GT) [37] and were treatment-naive or partial responders to

prior IFN therapy. The 2 who failed treatment had unfavorable/partially favorable IL28B geno-

types (GG/GT) and were null responders to prior IFN therapy. They experienced virological

breakthrough due to the growth of RAVs although the RAVs were not detected pre-treatment.

Earlier studies with the first generation DAAs provide further evidence. In a pooled study

involving a large number of patients treated with boceprevir and PR, SVR rates were 78% and

76% in IFN-responders with and without baseline RAVs, respectively, whereas in poor IFN-

responders, the corresponding SVR rates were 22% and 37% [67]. Similarly, with telaprevir,

on-treatment virological failure rates were 1% in previous relapsers to PR, 19% in previous

partial responders to PR, and 52% in previous null responders to PR [68]. Thus, in all the

above cases, treatment failure was due to drug resistance, which did not depend on the pre-

existence of RAVs but was facilitated by poor IFN-responsiveness. Conversely, strong IFN

responses appeared to prevent the growth of RAVs and avert treatment failure. These findings

are consistent with our model predictions.
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Our study makes key advances in our understanding of HCV infection and treatment. To

test the hypothesized causal relationship between responsiveness to IFN and DAAs, we had to

construct a model that integrated phenomena across multiple length and time scales, starting

from the cellular to the population level. Responsiveness to IFN manifests at the cellular level,

defining the fraction of cells that can be rid of HCV by IFN. The consequence at the level of an

infected individual is in restricting viral replication and evolution and hence improving

responsiveness to DAAs. At the population level, this effect, given the distribution of IFN-

responsiveness, determines SVR rates. Integration of phenomena across these scales into a sin-

gle mathematical framework had not been accomplished thus far. Our model, by doing so, was

able to capture the implications of variations at the cellular level, due to drugs, for instance, for

the population-level treatment response. This allowed us to describe many clinical observa-

tions of which several had long remained unexplained, viz., 1) the percentage of infected indi-

viduals who spontaneously clear HCV, 2) the percentage of chronically infected individuals

who exhibit a null response to PR, 3) the percentage of null responders to PR who respond to

triple therapy with PR and a DAA such as telaprevir, and 4) the relationship between SVR

rates in treatment-naive and treatment-experienced patients elicited by different treatments. A

far more comprehensive view of HCV infection and treatment than earlier thus emerges.

The model we developed is complex. Yet, we only considered phenomena essential to estab-

lishing the causal relationship between IFN-responsiveness and DAA-based treatment out-

comes. We thus ignored alternative mechanisms of DAA action [23, 69], specific intracellular

viral replication events [11, 24], modes of synergy between IFN and DAAs [17, 51], and factors

such as race, gender, viral genotype, and IL28B polymorphisms [1]. Furthermore, we did not

estimate the IFN-responsiveness of an individual a priori. The key components of the IFN sig-

naling network in cells have been identified [28], but variations in their levels and interactions

across cells in an individual, which would determine the fraction of cells responsive to IFN,

remain to be established. Finally, we assumed SVR to have been achieved when the viral load

dropped below the “cure boundary” of 1 virion in the ~15 liters of fluid volume in an individ-

ual [5, 16]. With the new DAA combinations, some individuals with detectable viremia at the

end of treatment have been found recently to achieve SVR [70]. The origins of this intriguing

phenomenon, which may lead to the definition of a new cure boundary, remain poorly eluci-

dated [71–73]. By employing the “stricter” cure boundary, our model yields conservative esti-

mates of SVR rates.

Methods

Mathematical model

IFN-responsiveness and viral kinetics in an individual undergoing DAA-based treat-

ment. We considered an individual chronically infected with HCV, subjected to a DAA-

based treatment regimen. We constructed the following equations to describe the viral kinetics

in the individual following the start of treatment when a single point mutation was adequate to

confer resistance to the DAA:

dTi

dt
¼ �isþ rTTi 1 �

X3

i¼1

Ti þ
X1

j¼0
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i
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6
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3

7
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7
7
5
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Here, we classified uninfected target cells into 3 categories, denoted Ti with i�{1,2,3}, based

on the properties of the IFN signalling network in cells we identified earlier [17] (see Results).

Broadly, IFN induces the expression of ISGs that suppress HCV, whereas HCV subverts the

IFN response by blocking ISG translation. The resulting network, with the double negative

feedback, exhibits bistability, i.e., two stable steady states, with HCV thriving in one and

cleared by IFN in the other. The steady states define the 3 cell categories based on their IFN

response phenotypes. Cells T1 admitted the first steady state alone and were refractory to IFN.

IFN would prevent neither the infection of T1 nor viral production from them following their

infection. Cells T2 admitted both the steady states and were bistable. Such cells are driven to

the IFN-refractory state following their infection if the HCV RNA level crosses a threshold

before exposure to IFN [17, 30]. Else, they are driven to the IFN-responsive state. Thus, as an

approximation, we assumed that IFN would prevent infection of T2 if they were exposed to

IFN before the virus, but fail to prevent viral production from such cells once infected. Cells T3

admitted the second steady state alone and were sensitive to IFN. IFN would thus prevent

infection of T3 and if infected block viral production from such cells.

s was the production rate of target cells, and ϕi was the fraction of the cells produced that

was of type Ti. In the absence of infection and when cell proliferation is small, ϕi equals the

fraction of the target cells that is of type Ti. ϕ1 was thus the fraction of cells refractory to IFN

and quantified the level of IFN-responsiveness of an individual. Lower values of ϕ1 represented

greater IFN-responsiveness. We set �1 ¼ �
p
1

pre-treatment and during IFN-free treatment and

�1 ¼ �
t
1

during IFN-containing treatment. The cells died with the rate constant dT. The cells

were also lost due to infection by free virions.

V0 and V1 were the wild-type and RAV viral populations, respectively. When a cell Ti was

infected by a virion Vj, it gave rise to an infected cell of the type Ij
i . The infectivity of the virions

Vj was denoted βj. Further, successful infection of the cell Ti was blocked by IFN with efficacy

ηi. From the description above, it followed that η1 = 0 and η2 = η3 = 1. Target cells and infected

cells proliferated with rate constants rT and rI, respectively, constrained by a logistic term with

carrying capacity Tmax. N represented the population of target cells not susceptible to infection,

due, for instance, to the lack of adequate entry receptors [74]. Infected cells were lost with the

rate constant δ.

pj represented the per cell production rate of virions from cells Ij
i . IFN constrained this pro-

duction with effectiveness εi, dependent on the cell phenotype. Again, from the description

above, ε1 = ε2 = 0 and ε3 = 1.
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DAAs limited viral production from all cells with effectiveness εj
DAA, dependent on the viral

variant. Mutations arose randomly and compromised DAA activity. The mutations came with

a fitness cost to the virus, determined here by lower values of βj and/or pj. Specifically, muta-

tion at the rate μ allowed the production of V1 from cells I0
i , infected with V0. We ignored back

mutation of V1 to V0 (e.g., see [12, 22, 75]). Free virions were cleared with the rate constant c.

A generalization of the formalism to multiple resistance loci is presented in S2 Text.

Distribution of IFN-responsiveness across treatment-naive and -experienced individu-

als. We assumed that �
p
1

was log-normally distributed with parameters ν and σ across indi-

viduals in a treatment-naive HCV-infected population. The density function for �
p
1

was thus

f ð�p
1
Þ ¼

A
ffiffiffiffiffiffi
2p
p

s�
p
1

exp �
ðln�p

1
� nÞ

2

2s2

� �

; 0 � �
p
1
� 1; ð5Þ

where A ¼ 1=

Z1

0

1
ffiffiffiffiffiffi
2p
p

s�
exp �

ðln� � nÞ
2

2s2

� �

d� ensured that

Z1

0

f ð�Þd� ¼ 1.

When �
p
1
< �

c
1
� dTcd=bsp0 (Eq. (S1.10)), the model above (Eqs (1)–(4)) resulted in vanish-

ing set-point viral load pre-treatment, potentially representing individuals who spontaneously

clear HCV [17, 45]. The distribution of �
p
1

in chronically infected, treatment-naive individuals

thus became the truncated log-normal,

fnaiveð�
p
1
Þ ¼

f ð�p
1
Þ

Z1

�c
1

f ð�Þd�

; �
c
1
< �

p
1
� 1: ð6Þ

We denoted by ϕnull the value of �
p
1

above which PR treatment elicited a null response. Null

response, or non-response, was defined as having occurred when <2 log10 decline in viral load

resulted from 12 weeks of treatment. Given ϕnull, the density function of �
p
1

in null responders,

fnullð�
p
1
Þ ¼

fnaiveð�
p
1
Þ

Z1

�null

fnaiveð�Þd�

; �null � �
p
1
� 1: ð7Þ

Rates of spontaneous clearance, null response, and SVR in populations. The fraction,

CL, of HCV infected individuals who spontaneously clear the infection would include all those

with �
p
1
< �

c
1
; i.e.,

CL ¼
Z�

c
1

0

f ð�p
1
Þd�p

1
: ð8Þ

We defined �
DAA
SVR as the highest value of �

p
1

for which a treatment-naive individual would

achieve SVR when subjected to a particular IFN-free DAA regimen. SVR was defined as

achieved when the viral load reached a value <1 virion in the 15 liters of fluid volume in an

individual by the end of treatment [5, 16]. The fraction of the population treated with the
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regimen that would achieve SVR, which we called SVRDAA
naive, would therefore be

SVRDAA
naive ¼

Z�
DAA
SVR

�c
1

fnaiveð�
p
1
Þd�p

1
: ð9Þ

Similarly, if �
PRþDAA
SVR was the highest value of �

p
1

for which SVR was achieved with the above

DAA regimen combined with PR, the fraction of a treatment-naive population that would

achieve SVR with this combination would be

SVRPRþDAA
naive ¼

Z�
PRþDAA
SVR

�c
1

fnaiveð�
p
1
Þd�p

1
: ð10Þ

The fraction of a treatment-naive population that would exhibit a null response to PR, denoted

NULLPR
naive, would be

NULLPR
naive ¼

Z1

�null

fnaiveð�
p
1
Þd�p

1
: ð11Þ

Of the prior null responders to PR, the fraction that would respond to the above DAA would

be

SVRDAA
null ¼

Z�
DAA
SVR

�null

fnullð�
p
1
Þd�p

1
ð12Þ

and, finally, to the PR+DAA combination would be

SVRPRþDAA
null ¼

Z�
PRþDAA
SVR

�null

fnullð�
p
1
Þd�p

1
: ð13Þ

The distributions and threshold values of �
p
1

and the linkage between individual- and

population-level models. We identified the various threshold values of �
p
1

mentioned above

as follows. We first solved our viral dynamics model (Eqs (1)–(4)) using parameter values

listed in S5 Table and identified �
c
1
. Next, we recognized that the baseline viral load when �

p
1
>

�
c
1

is V � �
p
1
sp0

cd
�

dT
b0
�

�
p
1
sp0

cd
(see Eq. (S1.10) in S1 Text and the parameter estimates in S5 Table),

which has the maximum, Vmax �
sp0

cd
when �

p
1
¼ 1. It followed that �

p
1
� V=Vmax. We therefore

fit Eq (6) to the reported distribution of V/Vmax values [44] and obtained ν and σ.

For any DAA, �
DAA
SVR can be estimated by solving Eqs (1)–(4) for different values of �

p
1
¼ �

t
1

and with εj
DAA corresponding to the effectiveness of the DAA against wild-type and RAV

strains, and identifying the maximum value of �
p
1

for which SVR is achieved. For IFN-contain-

ing regimens, Eqs (1)–(4) cannot be solved to obtain �
PRþDAA
SVR because the relationship between

�
t
1

when �
p
1

is not known a priori. We therefore employed population-level observations of

SVRPRþDAA
naive for telaprevir [48] and solved Eq (8) for �

PRþDAA
SVR . This yielded an estimate of D� ¼

�
PRþDAA
SVR � �

DAA
SVR for telaprevir. Because the dynamics during treatment is dictated essentially by

�
t
1

(see Results), it followed that �
t
1
� �

DAA
SVR when �

p
1
¼ �

PRþDAA
SVR , defining the threshold for
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SVR. Δϕ is therefore a measure of the increase in IFN-responsiveness due to the addition of

IFN as part of PR treatment. Further, because synergy between telaprevir and PR appears

small (see Results), Δϕ represents the increase in IFN-responsiveness brought about indepen-

dently by PR.

We validated the resulting estimate of Δϕ as follows. Δϕ would depend on the extent of

increase in the IFN concentration above the endogenous level because of treatment. For

standard PR dosage, Δϕ may thus be assumed to apply across individuals. (We recognized

that this assumption would fail when �
p
1

is small and where the influence of IFN is expected to

saturate. A small �
p
1
, however, would amount to an already IFN-sensitive individual and to

whom addition of PR is likely to be unnecessary.) Δϕ may differ between individuals with

cirrhotic and non-cirrhotic livers, which we address below. Using the above estimate of Δϕ,

we solved Eqs (1)–(4) for different values of �
p
1

and �
t
1
¼ �

p
1
� D� and identified ϕnull as the

lowest �
p
1

that yielded a null response. With the resulting value of ϕnull, we estimated NULLPR
naive

using Eq (11) and SVRPRþDAA
null using Eq (13) and compared the estimates with observations

[48, 49].

With the distributions and all the threshold values of �
p
1

thus identified, Eqs (1)–(13) pre-

sented a model that could predict the outcomes of DAA-based treatments at the individual

and the population level.

Solution of model equations

Viral kinetics. In our model, DAAs are distinguished by their efficacies, εj
DAA, against sen-

sitive and resistant strains as well as the relative fitness of the respective RAVs, defined by γ. To

describe the scenario pre-treatment in different individuals, we set εj
DAA ¼ 0 and solved Eqs

(1)–(4) for steady state to obtain the set point viral load and the frequencies and populations of

RAVs as functions of �
p
1
. We also derived analytical approximations of these steady state quan-

tities (S1 Text). Using the above steady state as the initial condition, we solved Eqs (1)–(4) with

εj
DAA > 0 and �

t
1
¼ �

p
1

to describe viral load changes following the onset of IFN-free DAA-

based treatment. For IFN-containing regimens, we followed the same procedure but with

�
t
1
< �

p
1
.

Parameter estimates and sensitivity. Model equations were solved using parameter val-

ues representative of HCV infection in vivo, listed in S5 Table. Sensitivity of model predictions

to parameter values was tested by computing the partial rank correlation coefficients (PRCC)

[76].

SVR rates. For given values of εj
DAA and γ, representing a particular DAA or DAA combi-

nation, Eqs (1)–(13) were solved to obtain estimates of SVR rates in treatment-naïve and treat-

ment-experienced patients. The values of εj
DAA and γ have not been characterized for most

DAAs. γ and the ratio ε1
DAA=ε

0
DAA, however, must lie between 0 and 1 for all DAAs. We there-

fore varied each of these quantities over the entire range of values from 0 to 1 and computed

SVR rates, where each combination of these parameter values would represent a different

DAA-based treatment. For each combination, we first estimated �
DAA
SVR by solving Eqs (1)–(4).

Next, using Δϕ obtained above, we estimated �
PRþDAA
SVR ¼ D�þ �

DAA
SVR . All the other model

parameters and quantities remained independent of the DAAs. Using Eqs (5)–(13), we esti-

mated SVRs in treatment-naïve and treatment-experienced individuals. Repeating this with

other parameter combinations yielded a relationship between SVR rates in the two patient

populations, which we compared with clinical data. We also derived an analytical expression

for the latter relationship below.

The numerical solutions were implemented in MATLAB.
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Relationship between SVR rates in treatment-naïve and treatment-

experienced patients

We let SVRnaive and SVRnull be the response to any given DAA-based treatment in a treatment-

naïve and a previous null responder population, respectively. We derived an analytical expres-

sion linking SVRnaive and SVRnull as follows. From our model above, it followed that

SVRnaive ¼

Z�SVR

�c
1

fnaiveð�
p
1
Þd�p

1
ð14Þ

and

SVRnull ¼

Z�SVR

�null

fnullð�
p
1
Þd�p

1
: ð15Þ

Using the relationship between fnaiveð�
p
1
Þ and fnullð�

p
1
Þ (Eq (7)) in Eq (15) yielded

SVRnull ¼

Z�SVR

�null

fnaiveð�
p
1
Þd�p

1

Z1

�null

fnaiveð�
p
1
Þd�p

1

¼
1

NULLPR
naive

Z�SVR

�null

fnaiveð�
p
1
Þd�p

1
ð16Þ

where NULLPR
naive is defined in Eq (11). We next rearranged the integral in Eq (16) as

Z�SVR

�null

fnaiveð�
p
1
Þd�p

1
¼

Z�
c
1

�null

fnaiveð�
p
1
Þd�p

1
þ

Z�SVR

�c
1

fnaiveð�
p
1
Þd�p

1
¼ � ð1 � NULLPR

naiveÞ þ SVRnaive ð17Þ

and obtained upon combining with Eq (16) and rearranging,

SVRnaive ¼ 1 � NULLPR
naive þ NULLPR

naiveSVRnull: ð18Þ

We fit the expression above to clinical data using the NLINFIT algorithm in MATLAB.

Data from clinical trials

We examined reports of all clinical trials with DAA-based treatments and considered those

treatments for which SVR data on both treatment-naïve and treatment-experienced individu-

als was available. The resulting data is summarized in Table 1 and S1 Table. We also classified

the patient populations into categories with and without liver cirrhosis. We performed statisti-

cal tests to ascertain the difference in the SVR rates between treatment-naïve and treatment-

experienced individuals for specific treatments as well as when data for all the treatments con-

sidered were combined. We compared the predictions above of SVR rates with the data from

clinical trials.

IFN-responsiveness of cirrhotic and non-cirrhotic patients

Next, we considered SVR data on patients with and without liver cirrhosis separately. Predict-

ing this data using our model was not possible because Δϕ and ϕnull in these populations were
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not known. We therefore fit Eq (18) to the two data sets separately using NULLPR
naive as an

adjustable parameter. The distribution of baseline viral loads is not hugely different between

the two populations, although mean viral loads were somewhat smaller in patients with liver

cirrhosis [44]. Using Eq (11) and the best-fit estimates of NULLPR
naive, we obtained estimates of

ϕnull in the two populations. Finally, we solved our model of viral dynamics (Eqs (1)–(4)) with

�
p
1
¼ �null for different values of �

t
1
¼ �

p
1
� D� and identified the highest value of �

t
1

that

yielded a null response. The resulting values of D� ¼ �
p
1
� �

t
1

provided estimates of the extent

of increase in IFN-responsiveness due to standard PR treatment in cirrhotic and non-cirrhotic

patients, respectively, which allowed recommendation of strategies to improve treatments in

these subpopulations.

Estimation of required treatment duration

Finally, we calculated the required duration of treatment to achieve SVR for different �
p
1

and

γt. We chose parameters representative of daclatasvir as follows. The EC50 of daclatasvir

against the wild-type [77] and the RAV [78] were 17.28 pM and 32346.26 pM, respectively.

(The molecular weight of daclatasvir is 738.89 g/mol.) Using the pharmacokinetic parameters

of daclatasvir [79], the peak and trough plasma concentrations, Cmax = 1726.4 ng/ml and

Cmin = 254.6 ng/ml, the dosing interval of 1 d, and the time to reach peak plasma concentration

of 1 h, we calculated the average efficacy of daclatasvir against the wild-type and the RAV, fol-

lowing the procedure outlined earlier [77], to be 0.99998 and 0.709, respectively. With these

values, we solved our model of viral dynamics (Eqs (1)–(4)) for different values of �
p
1

and the

intrinsic fitness of the RAV, γ, and estimated the duration of treatment required to achieve

SVR. For the common RAV Y93H, γ = 0.5751 [77]. Using this value of γ and the distribution

of �
p
1

in treatment naïve individuals (Eq (6)), we estimated the fraction of individuals treated

who would achieve SVR within a defined treatment duration.

Supporting information

S1 Fig. Sensitivity analysis of the viral kinetic model. Partial rank correlation coefficients

(PRCCs) indicating the sensitivity of our model predictions (Eqs (1)–(4) and (S2.1)-(S2.4)) of

(A) single mutant population pre-treatment, (B) single mutant population during DAA treat-

ment, (C) double mutant population pre-treatment, and (D) double mutant population during

DAA treatment to variations in model parameter values. The model is considered sensitive to

parameters with PRCCs significantly different from the dummy. Thus, the model is sensitive

to m; g; �
p
1
; s; p0; c; and δ pre-treatment, in agreement with the parameters defining the mutant

population in the analytical approximation in Eq. (S1.11), and additionally to the drug effica-

cies, ε0
DAA and ε1

DAA, during treatment. For these calculations, we adapted the MATLAB codes

available on Dr. Denise Kirschner’s website (http://malthus.micro.med.umich.edu/lab/

usadata).

(TIF)

S2 Fig. Phase diagrams indicating response to IFN-free DAA treatments. The level of IFN-

refractoriness, �
p
1
, and the relative fitness of the RAV during treatment, γt, that lead to SVR

(dark blue) or treatment failure due to virological breakthrough by the RAV (light blue), wild-

type (green), or both (brown) when (A) εDAA
0
¼ 0:70, (B) εDAA

0
¼ 0:80, (C) εDAA

0
¼ 0:90, (D)

εDAA
0
¼ 0:99. Here, γ = 0.5. The other parameters are the same as in Fig 3.

(TIF)

S3 Fig. Phase diagrams indicating response to PR+DAA treatments. IFN-refractoriness

pre- and during treatment, �
p
1

and �
t
1
, leading to SVR (dark blue), or virological breakthrough
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by RAV (light blue), wild-type (green), or both (brown) when (A) εDAA
0
¼ 0:99; εDAA

1
¼ 0:1;

(B) εDAA
0
¼ 0:99; εDAA

1
¼ 0:2; (C) εDAA

0
¼ 0:99; εDAA

1
¼ 0:3; (D) εDAA

0
¼ 0:95; εDAA

1
¼ 0:1; (E)

εDAA
0
¼ 0:95; εDAA

1
¼ 0:2 and (F) εDAA

0
¼ 0:95; εDAA

1
¼ 0:3. Here, γ = 0.1. The other parameters

are the same as in Fig 4.

(TIF)

S1 Table. Response to DAA-based treatments. SVR rates elicited by various IFN-free and

IFN-containing DAA combinations in treatment-naïve and prior null responders to PR from

recent clinical trials. The treated population size is indicated in brackets. The significance of

the difference in the SVR rates in the two populations is computed using the χ2 and the Fish-

er’s exact tests. The HCV genotype and whether the patients had liver cirrhosis is indicated.

Data from all trials involving a particular treatment regimen are combined for the statistical

analysis.

(DOCX)

S2 Table. Response to DAA-based treatments in patients with liver cirrhosis. The datasets

in S1 Table that consider patients with liver cirrhosis alone are summarized.

(DOCX)

S3 Table. Response to DAA-based treatments in patients without liver cirrhosis. The data-

sets in S1 Table that consider patients without liver cirrhosis alone are summarized.

(DOCX)

S4 Table. Response to DAA-based treatments from studies that do not distinguish between

patients with and without cirrhosis. The datasets in S1 Table that consider patients without

distinction in cirrhosis are summarized.

(DOCX)

S5 Table. Model parameters. Definitions of model parameters and their typical values

employed. Variations are mentioned in the text.

(DOCX)

S1 Text. Analytical approximation of the pre-treatment steady state with a single resis-

tance locus.

(DOCX)

S2 Text. Model formulation with multiple resistance loci.

(DOCX)

S3 Text. Analytical approximation of the pre-treatment steady state with two or more

resistance loci.

(DOCX)
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