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Abstract

Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and

bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and

spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health

worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant

clinical isolate (strainSM39)andan insect isolate (strainDb11).Ourcomparativeanalyses reveal thecoregenomeofS.marcescensand

define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies

geneticdiversity, bothat the sequence level andwith regardsgenomeflexibility,which may reflect the diversityof niches inhabited by

members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize

the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic

resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid

pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide

a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of

pathogens highly resistant to multiple antimicrobial agents.
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Introduction

Serratia species are ubiquitous in the environment, and are

found in water and soil as well as associated with plants, in-

sects, humans, and other animals. The genus Serratia belongs

to the family Enterobacteriaceae and comprises at least 14

species with two subspecies (Mahlen 2011). Among these

Serratia species, S. marcescens is the one most commonly as-

sociated with human infections. Originally considered as non-

pathogenic, it is now recognized as an important nosocomial

pathogen capable of causing urinary tract infections (Maki

et al. 1973; Okuda et al. 1984; Su et al. 2003), bloodstream

infections including endocarditis (Korner et al. 1994), and

many other types of infections (Yu 1979). Several potential

virulence factors of S. marcescens have been identified, includ-

ing hemolysin (Goluszko and Nowacki 1989; Shimuta et al.

2009), proteases (Lyerly et al. 1981; Lyerly and Kreger 1983),

lipopolysaccharide (LPS) (Makimura et al. 2007), fimbriae

(Parment et al. 1992), and siderophores (Letoffe et al.

1994). The pathogenicity and genomic plasticity of members

of this species are, however, yet to be fully understood.

One other important feature of S. marcescens as a nosoco-

mial pathogen is its intrinsic and acquired resistance to antimi-

crobial agents. Many of the clinical isolates of this organism

carry chromosomal and plasmid-encoded genetic determi-

nants specifying resistance to a wide range of antibiotics

(Mahlen 2011) including extended-spectrum beta-lactamase

(ESBL) or metallo beta-lactamase (MBL). For example, surveys

in Poland (1996–2000) in two hospitals showed 19% (67/354)

of S. marcescens isolates produced ESBL (Naumiuk et al. 2004).

Similarly in Taiwan (2001–2002), 12% (15/123) were ESBL

producers and the 30-day mortality rate of patients with

ESBL-producing S. marcescens was 33% (Cheng et al.

2006). MBL-producing S. marcescens are clinically more prob-

lematic because they show a high level resistance to a wider

range of beta-lactams including carbapenem. A representative

MBL enzyme, IMP-1, was first seen in a S. marcescens clinical

isolate in 1991 in Japan (Osano et al. 1994). Since then various

types of MBL have been identified in many S. marcescens

strains (Wachino et al. 2011), including those causing out-

breaks (Herbert et al. 2007; Nastro et al. 2013).

Here, we report and compare the complete genome se-

quences of two S. marcescens strains; a clinical isolate that

showed a high level multidrug resistance (strain SM39) and a

spontaneous streptomycin-resistant mutant derived from the

strain Db10 originally isolated from a moribund fly (strain

Db11). Our analysis reveals a possible core genome of S. mar-

cescens and accessory genomes specific to each strain, pro-

viding insights into the high virulence potential of the clinical

isolate. We found that the extremely high level of multidrug

resistance of strain SM39 was due to the presence of the

plasmid pSMC1, which encodes MBL and several other drug

resistance determinants. We propose a scenario for the origin

and evolution of pSMC1, based on its genomic features.

Materials and Methods

S. marcescens Strains, Culture Media, and
Growth Conditions

Strain SM39 was isolated from a septicemic patient in Japan in

1999 (Nakamura et al. 2002). Strain Db11, a kind gift from

Dominique Ferrandon, is a spontaneous streptomycin-resis-

tant derivative of strain Db10 which was isolated from a mor-

ibund Drosophila melanogaster in Sweden (Flyg et al. 1980). It

is available, together with Db10, from the Caenorhabditis

Genetics Center (http://www.cbs.umn.edu/CGC, last accessed

August 6, 2014). For routine bacterial cultivation, the strains

were aerobically grown at 37 �C in Luria–Bertani (LB) broth

with shaking or on LB agar plates.

Genome Sequencing, Gene Prediction, and Annotation

Genomic DNA was prepared from overnight cultures of the

two strains using the Genomic-tip 100/G and Genomic DNA

buffer set (Qiagen, Inc.) according to the manufacturer’s in-

structions. The genome of SM39 was shotgun sequenced to

approximately 12-fold coverage from 102,218 end sequences

of two genomic shotgun libraries based on pUC118 and

pCC1BAC with average insert sizes of 3 and 10 kb, respec-

tively. The genome of Db11 was shotgun sequenced to ap-

proximately 10-fold coverage from 90,142 end sequences

from multiple shotgun libraries: pMAQ1Sac_BstXI (with

insert sizes of 5.5–6, 9–10, and 10–12 kb), pUC19 (with

insert sizes of 1.4–2 and 2–2.8 kb), pOTWI2 (with insert

sizes of 3–3.3 and 2–2.8 kb), and M13mp18 (with insert

sizes of 1–1.4, 0.4–0.8, 1–1.4, and 0.5–1 kb). This was sup-

plemented by approximately 0.2-fold coverage from 1,713

end sequences derived from large insert fosmid libraries:

pBACe3.6_BamHI with an insert size 18–23 kb. All sequencing

was performed using big-dye terminator chemistry on

ABI3730 or ABI3700 capillary automated sequencers

(Applied Biosystems). All assemblies were generated using

Phrap. All repeat regions, gaps and low quality regions were

bridged using large insert fosmid libraries, read-pairs, or end-

sequenced polymerase chain reaction (PCR) products. The se-

quences were manipulated to the community standard of

“Finished” (Chain et al. 2009).

Nucleotide sequence position 1 of each chromosome was

assigned according to that of published Escherichia coli ge-

nomes. Gene prediction and annotation were performed

using Microbial Genome Annotation Pipeline (Sugawara

et al. 2009), followed by manual curation on the basis of

the results of BLASTP homology search against the public

nonredundant protein database (http://www.ncbi.nlm.nih.

gov/, last accessed August 6, 2014). The annotated genome

sequences of SM39 and Db11 have been deposited to the

DDBJ/EMBL/GenBank database under the accession numbers

AP013063 for the SM39 chromosome, AP013064 for the
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pSMC1 plasmid of SM39, AP013065 for pSMC2 of SM39,

and HG326223 for the Db11 chromosome.

Genome-Wide Comparative Analysis

Intra- and interstrain clustering analyses of protein coding se-

quences (CDSs) were performed based on the results of all-to-

all BLASTP analysis with a threshold of �90% amino acid se-

quence identity over �90% aligned length of the query se-

quence (supplementary fig. S1, Supplementary Material

online, for details). In Silico Molecular Cloning (InSilico

Biology, Yokohama, Japan) was used for genome sequence

comparison. The average nucleotide identity (ANI) was calcu-

lated using the JSpecies software (Richter and Rossello-Mora

2009). Multiple alignments of sequences were constructed

using the ClustalW program (Thompson et al. 1994) and a

neighbor-joining tree was generated using the Tamura–Nei

model in MEGA5 (Tamura et al. 2007). Pathway analysis was

performed using the KEGG (Kyoto Encyclopedia of Genes and

Genomes) online database (Kanehisa and Goto 2000). Signal

peptide-containing proteins were identified using the SignalP

4.1 server (http://www.cbs.dtu.dk/services/SignalP/, last

accessed August 6, 2014) (Petersen et al. 2011). For the in-

terspecies comparison, following four genomes were used: S.

proteamaculans strain 568 (GenBank accession number

CP000826) and S. plymuthica strains AS9 (CP002773)

(Neupane et al. 2012) and 4Rx13 (CP006250) (Weise et al.

2014), which were all isolated from plants, and S. odorifera

strain DSM4582 (from human sputum) (ADBY00000000).

Semiautomated Screen for Mutants with an Attenuated
Virulence Using Caenorhabditis elegans

A library of individual S. marcescens Db10 mini-Tn5Sm mutant

clones was generated using standard methods. Using a

COPAS Biosort (Union Biometrica, Boston), 30 L4 stage wild

type (N2) worms were sorted into the wells of 96-well plates

as previously described (Garvis et al. 2009). Then, 30ml of an

overnight culture (30 �C in 200ml LB with 100mg/ml strepto-

mycin in 96-well plates) of individual mutant clones was trans-

ferred to the worm-containing wells. Assay plates containing

worms and bacteria were incubated at 25 �C with agitation,

whereas overnight culture plates were kept at 4 �C. A dupli-

cate assay was performed the following day, again with 30 L4

worms per well, using the same bacterial cultures. For this,

bacterial cultures were warmed up from 4 �C to room tem-

perature for at least an hour before use. For each assay and its

duplicate, the number of worms alive in each well was scored

each day for 5 days by examination with a dissecting micro-

scope. Wells were scored as� (<5 worms alive), + (5–9 alive),

++ (10–14 alive), and +++ (at least 15 alive). Mutants were

considered attenuated when they scored either ++ after 3

days, or + after 4 or 5 days, and were subsequently assayed

for worm killing on solid medium as previously described (Kurz

et al. 2003). The mini-Tn5-Sm insertion site in attenuated

mutants was determined by direct genomic DNA sequencing

(MilleGen, Labège, France) with primers JEP131 and JEP132

(50-CGGCCGCACTTGTGTATAA-30 and 50-CTAGGCGGCCAG

ATCTGATCAA-30, respectively).

Construction of KS3, a pSMC1-Cured Derivative of SM39

Because the pSMC1 plasmid of SM39 is highly stable, we

could not obtain SM39-derivatives that have spontaneously

lost pSMC1. To obtain a pSMC1-cured derivative of SM39,

we first deleted the parABC genes (pSMC1_53-55) of pSMC1

using a method described by Masuda et al. (2000). The up-

stream and downstream parABC-flanking regions were am-

plified by PCR using primer pairs parAUF4/parAUR2 (50-GGAA

TTCAGCTAGCTTCTAGATGACCAGAAA-30 and 50-CAGAGAA

CAACAAGATAGATTTTAGCCGCTAAA-30) and parADF2/

parADR3 (50-GCTAAAATCTATCTTGTTGTTCTCTGTTATTCCC-

30 and 50-CTCGAGCTCTGTGCGCATCGAGTT-30), respectively.

The PCR products were concatenated by fusion PCR with

primers parAUF4 and parADR3. The concatenated DNA frag-

ment was inserted into pLOI2223 to yield pPAR001, and then

a NotI fragment of pMT5071, which encodes the Mob cas-

sette, was inserted into pPAR001 to yield pPAR002. pPAR002

was mobilized conjugally from E. coli strain S17-1 to S. mar-

cescens SM39. Transconjugants, in which pPAR002 was in-

serted into pSMC1 (the first recombination), were selected on

BM2 plates containing 150mg/ml of chloramphenicol (Cm)

and sucrose-sensitive clones were further screened using su-

crose (10%)-containing and sucrose-free LB plates. Insertion

of pPAR002 into pSMC1 was confirmed by PCR, and then

pPAR002 excision (with or without the parABC genes) was

selected on sucrose LB plates. Cm-susceptible clones were

screened by PCR for the loss of the parABC genes. SM39-

derivatives cured of pSMC1 were sensitive to HgCl2 (16mg/

ml in LB plates). The loss of pSMC1 was finally confirmed by

plasmid profiling, and one of these derivatives (designated as

KS3) was used for further analysis. See supplementary figure

S2, Supplementary Material online, for the entire process and

the composition of BM2 medium.

Antimicrobial Susceptibility Testing

Minimum inhibitory concentrations (MICs) of strains SM39,

KS3, and Db11 against 36 antimicrobial agents were deter-

mined by the usual 2-fold agar dilution technique with

Mueller-Hinton II agar (Becton Dickinson Microbiology

Systems, Cockeysville, MD) with an inoculum size of 104

cells as described previously (Masuda et al. 2000).

Results and Discussion

Comparative Genomics of Human Clinical and Insect
Pathogenic S. marcescens Strains SM39 and Db11

The chromosomes of SM39 and Db11 are similar in size,

5,225,577 and 5,113,802 bp, respectively, and gene
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number (table 1 and fig. 1A). SM39 carries two plasmids,

pSMC1 (41,517 bp) and pSMC2 (58,929 bp). No extrachro-

mosomal elements were found in Db11. Overall, the chromo-

somes of the two strains are highly conserved and essentially

collinear, except for a large inversion of the oriC region flanked

by rRNA operons (fig. 1B). Surprisingly for members of the

same species, the ANI between the conserved genomic re-

gions of the two strains (4,391 kb) is only 95.1%. This can

be compared with a figure of 97.0% for the ANI between two

distantly related members of E. coli, strains K-12 and E2348/

69. Despite this, the 16S rRNA genes of the two strains show

99.4% sequence identity, consistent with DB11 and SM39

being members of the same species (Kim et al. 2014; see

also supplementary fig. S3, Supplementary Material online).

Further with a criterion of�90% nucleotide sequence identity

and �5 kb length, we identified 44 genomic regions specific

to SM39, totaling 628 kb (12% of the genome), and 39 spe-

cific regions (447 kb or 8.7% of the genome) for Db11

(fig. 1A; see also supplementary tables S1 and S2,

Supplementary Material online). The relatively low ANI value

for the two S. marcescens strains and the considerable

amount of isolate-specific sequences may reflect the diversity

of niches that this species can occupy.

To extend the analysis of unique and shared genes be-

tween the two strains, we performed a clustering analysis of

the SM39 and Db11 CDSs using an all-against-all BLASTP ap-

proach (outlined in supplementary fig. S1, Supplementary

Material online). This showed that 3,970 genes (or gene fam-

ilies) were conserved in both strains with additional 860

SM39-specific and 728 Db11-specific genes (fig. 2A).

Functional classification of these genes based on the Cluster

of Orthologous Groups (COG) categories indicated that genes

belonging to “category L (replication, recombination, and re-

pair)” and “category V (defense mechanisms)” are more

FIG. 1.—The chromosomes of Serratia marcescens strains SM39 and

Db11. (A) Circular maps of the SM39 and Db11 chromosomes. From the

outside in, the first circle shows the nucleotide sequence positions (in Mb),

and the second circle shows the locations of strain-specific regions of

�5 kb (purple: prophages and integrative elements; red: others) with an

indication of their features and/or encoded products/functions (PP, pro-

phages; IE, integrative elements; EPS, exopolysaccharide biosynthesis). The

third and fourth circles show CDSs transcribed clockwise and anticlock-

wise, respectively (yellow: CDSs conserved in both strains, blue: CDSs

specific to one strain), the fifth circle the rRNA operons, the sixth circle

the G+C content, and the seventh circle the GC skew. (B) Dot plot pre-

sentation of DNA sequence homologies between the chromosomes.

Locations of ori and seven rRNA operons (rrn1–rrn7) are indicated.

Table 1

Genomic Features of Serratia marcescens Strains SM39 and Db11

Strains SM39 Db11

Chromosome

Size (bp) 5,225,577 5,113,802

GC content (%) 59.8 59.5

CDSsa 4,866 (19) 4,722 (15)

rRNA operons 7 7

tRNAs 87 87

Prophages 7 2

Integrative elements 2 4

IS elements 17 5

Plasmid s pSMC1 pSMC2 None

Size (bp) 41,517 58,929 —

GC content (%) 61.5 51.9 —

CDSsa 55 (4) 72 (0) —

IS elements 1 0 —

aThe number of pseudogenes is indicated in parentheses.
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highly represented in SM39 than in Db11 (fig. 2B). These dif-

ferences are largely attributable to the presence of more

genes associated with lateral gene transfer in SM39 such as

insertion sequence (IS) transposases and integrases (category

L), and genes for restriction-modification systems and multi-

drug transport systems (category V). For example, SM39 car-

ries a higher variety and number of IS elements: 18 compared

with the 5 carried by Db11 (table 1). These IS elements were

classified into 11 distinct types, nine of which represent novel

IS elements. Eight types were found in SM39 and four in

Db11, with only ISSe5 being shared by both isolates (supple-

mentary table S3, Supplementary Material online). More pro-

phages were also found in SM39 (seven) than in Db11 (only

two), with none of the prophages and other integrative ele-

ments being shared by the two strains (table 1 and supple-

mentary table S4, Supplementary Material online).

We further compared the S. marcescens gene sets with

those of four sequenced strains from other Serratia species:

S. proteamaculans strain 568 and S. plymuthica strains AS9

(Neupane et al. 2012) and 4Rx13 (Weise et al. 2014), which

were all isolated from plants, and S. odorifera strain DSM4582

(from human sputum). This showed that only 23% and 38%

of the genes that we denoted as SM39- or Db11-specific had

homologs in these isolates representing other Serratia species

(fig. 2C). In contrast, 71% (2,852 genes) of the 3,970 core

genes shared by the two S. marcescens strains were conserved

in all the four isolates representing other Serratia species. This

suggests that, despite the genetic diversity of this genus (see

supplementary fig. S3, Supplementary Material online, for the

phylogenetic relationship of these species in genus Serratia),

there is a relatively large shared or core genome of 2,852

CDSs. This analysis also identified 358 genes that are con-

served in the two S. marcescens strains but absent in other

Serratia species. This group includes a number of genes related

to pathogenicity in other bacteria (data not shown).

Common and Strain-Specific Metabolic Capabilities in
S. marcescens SM39 and Db11

Central metabolic pathways are well conserved between the

two strains and characteristic of the species as a whole:

Positive fermentation for sucrose and D-sorbitol, and negative

for D- and L-arabinose, L-rhamnose, D-xylose and cellubiose.

Not uncommonly, both isolates lack the genes for prodigiosin

biosynthesis, the characteristic red pigment often associated

with S. marcescens (Harris et al. 2004). The differences be-

tween the two isolates include, for carbohydrate metabolism,

alternative pathways for L-ascorbate utilization; the ula-type

encoded pathway is carried by SM39 (SM39_4088-4095) and

the sgb-type by Db11 (SMDB11_3334-3337). Major differ-

ences in nitrogen metabolism are also observed between

FIG. 2.—Comparison of the gene contents of SM39 and Db11. (A) Venn diagram showing the numbers of conserved and strain-specific CDSs. (B) COG

category-based functional analysis of each group of CDSs, the conserved and strain-specific CDSs. J: translation, ribosomal structure, and biogenesis; K:

transcription; L: replication, recombination, and repair; D: cell cycle control, cell division chromosome partitioning; V: defense mechanisms; O: posttrans-

lational modification, protein turnover, and chaperones; T: signal transduction mechanisms; M: cell wall/membrane/envelope biogenesis; U: intracellular

trafficking, secretion, and vesicular transport; N: Cell motility; C: energy production and conversion; G: carbohydrate transport and metabolism; E: amino acid

transport and metabolism; F: nucleotide transport and metabolism; H: coenzyme transport and metabolism; I: lipid transport and metabolism; P: inorganic

ion transport and metabolism; Q: secondary metabolites biosynthesis, transport, and catabolism; R: general function prediction only; S: function unknown.

(C) Conservation of each group of CDSs in four strains of other Serratia species (S. proteamaculans 568, S. odorifera DSM4582, S. plymuthica 4Rx13, and

S. plymuthica AS9).
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the two isolates: Unlike Db11, SM39 carries the nrtABC

operon (SM39_1878-1880) encoding an ATP-binding cassette

(ABC) transporter for nitrate/nitrite, the nasAC operon

(SM39_1885 and SM39_1886) encoding a nitrate reductase,

and the nasB gene (SM39_1884) encoding a nitrite reductase

(all in the SM39_E18 region; supplementary table S1,

Supplementary Material online). Thus SM39 appears to have

a potential capacity to utilize nitrate, which is present in urine,

as a nitrogen source. Related to this, both SM39 and Db11

carry an operon necessary for the metabolism of allantoin but

lack the allB gene encoding allantoinase (Cusa et al. 1999).

Allantoin is the principal nitrogen source in urine in most

mammals. Humans and nonhuman primates, however,

carry a genetic lesion, thus rather than allantoin, they accu-

mulate urate that can be catabolized despite the loss of allB.

Together, these genes could be associated with the potential

capacity of S. marcescens strains to grow in urine and cause

urinary tract infections in humans (Mahlen 2011).

Diversity and Differential Evolution of the Potential
Virulence of S. marcescens SM39 and Db11

Serratia marcescens is well known for its ability to secrete nu-

merous exoenzymes and other proteins. We identified many

known or predicted secreted or surface-exposed proteins po-

tentially related to virulence, most of which (30/40) are con-

served in both strains (supplementary table S5, Supplementary

Material online).

Surface Structures and Polysaccharides

Here again, the genomic analysis revealed conservation and

specialization of the outer surface of the two sequenced

strains. Serratia marcescens is characteristically motile, and

both strains carry a complete E. coli-like gene set for the bio-

synthesis of flagella and for chemotaxis (supplementary table

S6, Supplementary Material online). These gene sets are highly

conserved between SM39 and Db11, the exception being the

fliC flagellin-encoding gene, which shows a remarkable se-

quence diversity (only 68.3% identity in the amino acid se-

quence). Variation in flagellin structure is linked with antigenic

variation and differences in the helicity of the flagellum that in

turn are associated with niche adaptation.

Both Db11 and SM39 possess multiple operons for the

biosynthesis of chaperone–usher fimbriae associated with

biofilm formation and attachment to biotic and abiotic sur-

faces (Labbate et al. 2007; Shanks et al. 2007). Among these,

six are conserved in the two strains (two are significantly di-

vergent in sequence), but three and four are specific to SM39

and Db11, respectively (fig. 3). In addition, although both

strains contain a complete set of type IV fimbriae-related

genes (Sauvonnet et al. 2000; Kulkarni et al. 2009;

Xicohtencatl-Cortes et al. 2009) (supplementary table S7,

Supplementary Material online), only SM39 contains a ho-

molog (SM39_0944) of yagZ/ecpA/matB, the gene for E. coli

common pili (also known as Mat fimbriae) (Pouttu et al.

2001; Rendon et al. 2007).

Although the SM39 and Db11 LPS core polysaccharide bio-

synthesis gene clusters (the waa genes) are broadly similar,

FIG. 3.—Fimbriae operons identified in SM39 and Db11. The gene

organization of the operons for biosynthesis of chaperone-usher fimbriae

identified in SM39 and Db11 is shown. (A) Operons “conserved” between

the two strains showing a high sequence identity (>95% amino acid se-

quence identity for all gene products) and (B) genes in the “diversified”

operons show low sequence identity (up to 86% amino acid sequence iden-

tity). Note that both strains contain a set of type IV fimbriae-related genes,

orthologs of which have been identified of Escherichia coli, and that a ho-

mologue (SM39_0944) of yagZ/ecpA/matB, the gene for E. coli common pili

(also known as Mat fimbriae) was found in SM39 but not in Db11.
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there is significant sequence divergence (25–71% amino acid

sequence identity for the corresponding predicted proteins)

in four orthologous genes (SM39_4551-4554 and

SMDB11_4052-4055) in this cluster. These four genes

encode two glycosyltransferases, a polymer ligase (WaaL),

and an UDP-galactose-4-epimerase. Those of Db11 showed

high similarity to those of S. marcescens strain N28b serovar

O4 (Coderch et al. 2004). These data suggest that at least two

LPS core types exist in S. marcescens.

The gene cluster for O antigen biosynthesis was identified

between the S-layer biosynthesis gene cluster and the his

operon in both strains (fig. 4). As expected, the gene contents

of the loci significantly differ between the two strains; Db11

was serotyped conventionally as O28:K7, whereas SM39 was

untypeable. There is also good evidence from the genome se-

quences that both strains carry a complete gene cluster for

group 1 capsule polysaccharide (CPS) biosynthesis, equivalent

to the colanic acid biosynthesis genes in E. coli. Differences in

gene content in this region suggest, however, that the two

strains produce different types of group 1 CPS (fig. 4). This

will need to be addressed experimentally in future studies.

Secretion Systems and Secreted Proteins

One unexpected difference between Db11 and SM39 is the

presence of a type II secretion system (T2SS) in SM39 but not

in Db11 (supplementary fig. S4, Supplementary Material

online). The T2SS is a multiprotein secretion complex, present

in a wide variety of organisms and frequently implicated in

virulence (Korotkov et al. 2012). Although the substrates of

the SM39 T2SS are unknown, it could well contribute to the

virulence of SM39.

Multiple type V secretion systems (T5SSs) are present in

SM39 and Db11. T5SSs include both autotransporters and

two-partner systems (Grijpstra et al. 2013; Jacob-Dubuisson

et al. 2013). An archetypal example of a two-partner T5SS is

ShlBA; the hemolysin ShlA is one of the known major viru-

lence factors in S. marcescens (Goluszko and Nowacki 1989).

The shlBA operon is conserved in both strains. In contrast,

three additional gene clusters, encoding two-partner systems

with partial similarity to ShlA and other haemagglutinin-like

proteins, were identified only in SM39 (fig. 5). Two of these,

SM39_2080-2077 and SM39_3145-3141, appear to encode

contact-dependent inhibition (Cdi) systems. In such systems,

CdiB is a translocator protein that assembles the large, hemag-

glutinin domain-containing CdiA passenger protein on the cell

surface (Aoki et al. 2010). Variable toxin domains are found at

the C-terminus of CdiA (CdiACt), which mediate contact-de-

pendent growth inhibition of competitor bacteria.

Additionally, immunity proteins (CdiI) cognate to the CdiACt

are encoded downstream of CdiA. Both loci contain a typical

cdiBAI arrangement. The SM39_3144 locus also includes an

“orphan” CdiACt–CdiI paizr (SM39_3142-3141). Orphan

CdiACt–CdiI pairs contain truncated CdiA C-termini thought

to represent remnants or reservoirs of alternative toxin do-

mains, which can be exchanged to provide new antibacterial

capability (Poole et al. 2011).

Both SM39 and Db11 contain Lip (lipase) and Has (hemo-

phore) type I secretion systems (Kanonenberg et al. 2013), and

both possess a single type VI secretion system (T6SS) con-

served between the two strains (supplementary fig. S5,

Supplementary Material online). T6SS can be used by bacteria

either to target eukaryotic cells as a direct virulence

FIG. 4.—Comparison of the SM39 and Db11 genomic loci bearing exopolysaccharide biosynthesis gene clusters. The gene organization of the gene

clusters for O antigen biosynthesis and for group 1 CPS biosynthesis is compared between SM39 (untypeable) and Db11 (O28:K7). The O antigen

biosynthesis genes of SM39 and Db11 show high level of similarities to those of Klebsiella pneumoniae O8 and those of K. pneumoniae O5, respectively.

The Db11 operon also has a high level of similarity to that of Escherichia coli O8 (Iguchi A, Iyoda S, Kikuchi T, Ogura Y, Katsura K, Ohnishi M, Hayashi T and

Thomson NR, unpublished data), consistent with the cross-reactivity between Serratia marcescens O28, K. pneumoniae O5, and E. coli O8 antigens previously

reported by Aucken and Pitt (1991).
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mechanism or to kill rival bacterial cells as a competitive fitness

mechanism (Coulthurst 2013). The S. marcescens T6SS has

been shown to have potent bacterial killing activity

(Murdoch et al. 2011). Furthermore, six effectors (antibacterial

toxins) secreted by this system have recently been identified in

Db11, together with cognate immunity proteins that protect

against self-toxicity (English et al. 2012; Fritsch et al. 2013). Of

these, the Ssp1 and Ssp2 effectors, Tae4-family peptidoglycan

amidases which attack the target cell wall, and associated Rap

(Tai4) immunity proteins are encoded within the T6SS gene

cluster (supplementary fig. S5, Supplementary Material

online). Overall, the T6SS gene clusters of Db11 and SM39

are very similar with some significant differences: Although

the Ssp1–Rap1a effector–immunity pair is conserved, the “or-

phan” Rap1b immunity protein is missing from SM39 and

Ssp2 has been replaced by a new effector–immunity pair,

belonging to the same Tae4–Tai4 family but clearly distinct.

This strongly suggests that the T6SS antibacterial activity of S.

marcescens is highly specific and strain-dependent, as has

been observed experimentally (Murdoch et al. 2011).

Iron Uptake

Iron uptake is essential for bacterial growth within host organ-

isms because iron is sequestered by the host (Andrews et al.

2003). SM39 and Db11 possess multiple common sets of iron

acquisition systems with only a few differences. Although

some of the common systems are also found in other se-

quenced Serratia species (supplementary table S8,

Supplementary Material online), others, including a second

gene cluster for siderophore synthesis, fecIRA and fepBGDC

for transport of ferric compounds, and the has operon, are

restricted to S. marcescens. These species-specific iron uptake

systems might be associated with the higher virulence of

S. marcescens compared with other species of the genus.

Quorum-Sensing System

Quorum-sensing systems sense bacterial cell density and play

important roles in regulating the behavior of bacterial popu-

lation by controlling various biological processes, including

pathogenicity. None of the three N-acyl homoserine lactone

(AHL) quorum-sensing systems so far described in strains of S.

marcescens (SwrI/SwrR [Eberl, Christiansen et al. 1996; Eberl,

Winson et al. 1996], SpnI/SpnR [Horng et al. 2002], and SmaI/

SmaR [Coulthurst et al. 2006]) was found in SM39 or Db11.

Instead, we identified a candidate SM39-specific AHL system

comprising LuxI/LuxR family proteins (SM39_4838 and

SM39_4837), which show a high similarity (about 80%

amino acid sequence identity) to ExpR/ExpI of Erwinia tasma-

niensis (Muller et al. 2011). In contrast, no AHL quorum-

sensing system was found in Db11. These data indicate a

remarkable variation in the AHL quorum-sensing system

among S. marcescens strains.

FIG. 5.—Gene clusters for hemolysin/hemagglutin-like two-partner

Type V secretion systems identified in SM39 and Db11. (A) The gene

organization of the gene clusters for hemolysin/hemagglutin-like two-part-

ner systems in SM39 and Db11 is shown. TpsA components are the pas-

senger proteins (including the ShlA hemolysin and CdiA proteins) and TpsB

components are the cognate translocator proteins (including ShlB and

CdiB proteins). Although the shlBA operon (image 1) is conserved in the

two strains, three additional gene clusters were found only in SM39. Two

of these, SM39_2080-2077 (image 3) and SM39_3145-3141 (image 4),

based on homology, encode Cdi systems. In addition to CdiA and CdiB

proteins, a third component conferring resistance to the C-terminal toxin

domain of CdiA is encoded downstream of CdiA, the CdiI immunity pro-

tein (SM39_2078 and SM39_3143, respectively). A putative “orphan”

CdiA C-terminus (including a distinct potential toxin domain) and cognate

CdiI pair is encoded by SM39_3142-3141. The function of the third SM39-

specific cluster, SM39_0386-0387 (image 2), is unknown. (B) Similarities

between the TpsA hemolysin/hemagglutin-related proteins (amino acid

sequence identity) are shown, with those newly identified in SM39 show-

ing partial similarity to ShlA.
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Variation of Nonribosomal Peptide Synthetase-Dependent
Secondary Metabolites and Weapons for
Interbacterial Competition

Diffusible inhibitory molecules include antibiotics and bacteri-

ocins (protein or peptide toxins targeting related organisms).

SM39 and Db11 have one and two bacteriocins, respectively,

not shared by the other, as well as two in common (including

bacteriocin 28b).

An operon of six genes specific to Db11 (SMDB11_2293-

2288, named alb1–alb6) encodes a hybrid nonribosomal pep-

tide synthetase (NRPS)-polyketide synthase (PKS) enzyme, plus

tailoring enzymes and a resistance-conferring efflux pump.

This cluster was recently identified as required for the ability

of Db10 to produce a diffusible antimicrobial compound and

shown to direct the synthesis of a broad-spectrum antibiotic

called althiomycin (Gerc et al. 2012). Two predicted NRPS

enzymes are found only in SM39 and may also be involved

in biosynthesis of antimicrobial molecules. These variations,

along with those in T6SS and Cdi systems, suggest that in-

terbacterial competition in microbial communities is one of the

important drivers of genomic diversity in S. marcescens.

NRPS-dependent molecules also have other roles. In Db11,

SMDB11_3680, or SwrA, produces the biosurfactant

Serrawettin W2 (Pradel et al. 2007). In SM39, SM39_3884

shares only 56% identity with SwrA but, given that it is

encoded in the same genomic locus and has a very similar

domain organization, it probably synthesizes a related biosur-

factant molecule. Three other NRPSs are shared by both

strains, including two involved in synthesis of the two side-

rophores mentioned earlier.

In Vivo Screening Shows That Many Core S. marcescens
or Serratia sp. Genes Are Involved in Virulence in an
Invertebrate Model Host

Db10 was isolated from D. melanogaster (Flyg et al. 1980), but

it is pathogenic in several other infection models, including C.

elegans and mice. Previous work has shown that there is a

substantial overlap between the genes required for full viru-

lence of S. marcescens during infection of flies and C. elegans

(Kurz et al. 2003). Thus, as the nematode is well-suited to

automated screens (Kurz and Ewbank 2007; Garvis et al.

2009), we used it to look for new S. marcescens virulence

factors and to determine whether genes associated with vir-

ulence were within the shared or accessory gene sets. We

constructed a mini-Tn5-Sm transposon mutant library in

Db10 and assayed clones in a high-throughput screen to iden-

tify mutants with a reduced ability to kill C. elegans. From the

12,480 individual Db10-derived clones that were tested, 12

mutants (0.1% of all the mutants screened) were selected as

showing the most robust reduction in virulence.

The mini-Tn5-Sm insertion site in each mutant was identi-

fied by sequencing and mapping to the genomic sequence of

S. marcescens Db11 (for a complete list, see supplementary

table S9, Supplementary Material online). Of the 12 mutants,

four loci had also been identified in a previous solid medium-

based screen (Kurz et al. 2003). These include those involved

in O antigen biosynthesis and siderophore production. The

availability of the complete sequence combined with recent

findings (Murdoch et al. 2011; English et al. 2012; Fritsch et al.

2013) revealed a hitherto unsuspected contribution of a T6SS

to the pathogenic capability of S. marcescens, either directly or

by providing a competitive fitness advantage against other

bacteria in vivo. The previously isolated mutants 22D9 and

7D1 (Kurz et al. 2003) were found to correspond to

SMDB11_2265 and SMDB11_2266, respectively, which are

both T6SS immunity proteins, 8C7 to SMDB11_1112, a

T6SS effector protein of unknown function, whereas the pre-

viously uncloned 23C11 corresponded to SMDB11_3455, a

T6SS-related, minor Hcp homolog (English et al. 2012; Fritsch

et al. 2013). As previously reported, this screen also led to the

isolation of a mutant in the swrA gene responsible for the

biosynthesis of the surfactant Serrawettin W2 (Pradel et al.

2007). Additional mutants of interest include one containing

an insert in a wza homolog, potentially involved in capsule

biosynthesis, and three deficient in respiration (JESM266,

JESM268, JESM271; supplementary table S9, Supplementary

Material online). None of these latter mutants showed a

defect in growth under standard conditions. This raises the

possibility that the nematode intestine represents a restrictive

respiratory environment.

The combined results of this and the previously published

screens (Kurz et al. 2003) identified 30 loci important for the in

vivo virulence of Db10 and/or Db11. Among the 30 genes, 22

are conserved in SM39. Of these, 11 are conserved in all of the

four other Serratia strains analyzed (supplementary table S9,

Supplementary Material online). The proportions of virulence

genes conserved between Db11 and SM39 (73%) and be-

tween this common set and the other Serratia strains (50%)

are markedly lower than the equivalent proportions of the

entire gene sets (84.5% and 71%, respectively). This presum-

ably reflects the different tropisms of the different species and

the host-specific nature of many virulence factors.

Origins of Antimicrobial Resistance in SM39 and Db11

Intrinsic Resistance

A large number of genes related to antimicrobial resistance

are encoded on the chromosomes of both Db11 and the clin-

ical S. marcescens isolate SM39. As listed in table 2, we iden-

tified many efflux pumps belonging to five families: The ABC

superfamily, the major facilitator superfamily (MFS), the multi-

drug and toxic-compound extrusion (MATE) family, the small

multidrug resistance (SMR) family, and the resistance nodula-

tion division (RND) family. Among these, only smdAB (Matsuo

et al. 2008), sdeAB (Kumar and Worobec 2005), sdeXY (Chen

et al. 2003), smfY (Shahcheraghi et al. 2007), and ssmE

(Minato et al. 2008) had been characterized in previous
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studies. Most of the efflux pumps are shared by the two

strains although a few are strain-specific. In addition, a class

C beta-lactamase AmpC, two aminoglycoside acetyltrans-

ferases each having distinct substrate specificities, and a fos-

fomycin-inactivating enzyme (FosA) are encoded on the

chromosomes of the two strains (table 3). Thus, the overall

repertoire of the chromosomally encoded resistance genes is

largely similar in both strains despite their different origins, and

is highly conserved accounting for the high and broad intrinsic

resistance of S. marcescens (table 3). One notable difference

between the two strains is a mutation in the gyrA gene of the

clinically isolated SM39, generating a S83R substitution and

conferring resistance to quinolone (Weigel et al. 1998).

Acquired Antimicrobial Resistance Genes

Unlike Db11, SM39 carries two plasmids. The overall GC con-

tents of the two plasmids differ significantly from the

Table 2

Drug Efflux Pumps Found in the Genomes of SM39 and Db11

SM39

(SM39_)

Db11

(SMDB11_)

Gene IMP

(SM39_/SMDB11_)

MFP

(SM39_/SMDB11_)

OMP

ABC type

0414-0415 0354-0355 smdAB smdA, smdB — —

1134-1135 0964-0965 macAB macB macA —

1329-1331 1118-1120 etsABC etsB etsA etsC

4783-4785 4552-4554 — 4784/4553 4783/4552 —

4785/4554 — —

RND type

0448-0449 0369-0370 sdeXY sdeY sdeX —

1281-1282 1059-1060 — 1281/1059 1282/1060 —

1400-1401 1196-1197 sdeAB sdeB sdeA —

Not found 1254A-1255A — SMDB11_1254A SMDB11_1255A SMDB11_1256

1913-1915 Not found — SM39_1914 SM39_1913 SM39_1915a

1920-1922 1741-1743 — 1921/1742 1922/1743 SMDB11_1741a

Not found 1698-1699 — SMDB11_1699 SMDB11_1698 —

1958 Not found — SM39_1958 — —

3100 2891 acrD acrD — —

3162-3164 2945-2947 sdeCDE sdeD, sdeE sdeC —

MFS type

467 390 fsr fsr — —

1351 1140 mdtG mdtG — —

1810 1629 — 1810/1629 — —

Not found 1759 tetA tetA — —

2164 1961 smfY smfY — —

2273 2069 mdtH mdtH — —

2819 2580 bcr bcr — —

3165 2948 mdtD mdtD — —

3343-3344 3133-3134 emrAB emrB emrA SMDB11_3132a

4622 4024 emrD emrD — —

4391 4201 mdfA mdfA — —

4497 4107 — 4497/4107 — —

MATE type

1653 1463 mdtK mdtK — —

2598 2377 — 2598/2377 — —

3912 3713 dinF dinF — —

SMR type

2035 1855 ssmE 2035/1855 — —

2237-2238 2032-2033 mdtJI 2237/2032 — —

2238/2033 — —

4693 4462 sugE 4693/4462 — —

pSMC1_35 Not found qacE1 qacE1 — —

pSMC1_46 Not found qacE2 qacE2 — —

aSimilar to the NodT family protein but contains no membrane-spanning domain.
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chromosome (~59%): 61.5% for pSMC1 and 51.9% for

pSMC2. The plasmid pSMC2 carries a set of genes for conju-

gation (the tra and trb genes), and although lacking traJ and

traT, it can be transferred by conjugation from SM39 to E. coli

K-12 strain x1037 Rifr (data not shown). Although pSMC2

contains no gene related to virulence or drug resistance,

pSMC1 carries an integron that contains the aadA gene

encoding an aminoglycoside-30-adenylyltransferase, the

Table 3

Drug Resistance Profiles and Genetic Determinants Responsible for Each Resistance in Strains SM39, KS3, and Db11

Antimicrobial Agents

(Subclasses)

MIC (mg/ml) Putative Resistance Determinant

SM39 KS3a Db11 On Choromosome On pSMC1

Gene SM39/KS3 (SM39_) Db11 (SMDB11_) Gene

b-Lactams

Piperacillin (PEN) 8 2 2 ampC 1721 1530 blaCMY, blaIMP

Faropenem (PEM) >256 4 4 ampC 1721 1530 blaCMY, blaIMP

Cephalothin (1st CEP) >256 >256 >256 ampC 1721 1530 blaCMY, blaIMP

Cefuroxime (2nd CEP) >256 >256 >256 ampC 1721 1530 blaCMY, blaIMP

Cefmetazol (2nd CEP) >256 32 16 ampC 1721 1530 blaCMY, blaIMP

Cefotaxime (3rd CEP) >256 0.5 1 — — — blaCMY, blaIMP

Ceftazidime (3rd CEP) 256 0.25 1 — — — blaCMY, blaIMP

Ceftriaxone (3rd CEP) >256 0.5 0.25 — — — blaCMY, blaIMP

Latamoxef (3rd CEP) >256 0.25 0.125 — — — blaCMY, blaIMP

Cefbuperazone (3rd CEP) >256 0.5 0.5 — — — blaCMY, blaIMP

Cefotetan (3rd CEP) >256 0.5 0.5 — — — blaCMY, blaIMP

Cefpirome (4th CEP) 32 0.25 0.25 — — — blaCMY, blaIMP

Cefepime (4th CEP) 32 0.25 0.25 — — — blaCMY, blaIMP

Aztreonam (MONO) 8 0.13 0.25 — — — blaCMY, blaIMP

Imipenem (CARB) 16 0.5 0.5 — — — blaIMP

Meropenem (CARB) 32 �0.03 �0.03 — — — blaIMP

Aminoglycosides

Streptomycin >128 4 >128 b acc(6)-Id 1693 1504 aadA

Tobramycin 128 32 32 aac(60)-Ic 3758 3638 aadA

Amikacin 64 16 16 aac(60)-Ic 3758 3638 aadA

Arbekacin 64 16 16 aac(60)-Ic 3758 3638 aadA

Kanamycin 128 32 32 aac(60)-Ic 3758 3638 aadA

Spectinomycin >512 32 16 aac(60)-Ic 3758 3638 aadA

Gentamycin 16 4 4 — — — aadA

Quinolones

Levofloxacin 4 4 0.25 gyrAc [+] in 2886 [�] in 2665 —

Sparfloxacin 4 4 0.5 gyrAc [+] in 2886 [�] in 2665 —

Ciprofloxacin 4 4 0.25 gyrAc [+] in 2886 [�] in 2665 —

Tosufloxacin 2 2 0.125 gyrAc [+] in 2886 [�] in 2665 —

Macrolides

Erythromycin 128 128 128 macAB 1134_1135 0964_0965 —

Josamycin >512 >512 >512 macAB 1134_1135 0964_0965 —

Others

Tetracycline 16 16 64 tetA Not found 1759 —

Rifampicin 16 16 16 — — — —

Fosfomycin >512 >512 >512 fosA 2306 2100 —

Sulfamethoxazole >128 >128 >128 Unknown Unknown sulI1/2

Ethidium bromide >512 >512 >512 ssmE 2035 1855 qacE1/2

Benzalkonium chloride 128 128 128 — — — —

HgCl2 32 8 8 — — — mer operon

NOTE.—PEN, penicillin; PEM, penem; 1st CEP, 1st generation cephalospoin; 2nd CEP, 2nd generation cephalospoin; 3rd CEP, 3rd generation cephalospoin; 4th CEP, 4th
generation cephalospoin; MONO, monobactam; CARB, carbapenem.

aKS3 is a pSMC1-cured SM39 derivative.
bThe rpsL gene of Db11 contains a point mutation which confers streptomycin resistance on this strain.
cMutation in gyrA. The S83R mutation in the quinolone resistance-determining region.
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blaCMY-8 gene encoding a class C beta-lactamase which in-

activates a much broader range of beta-lactams than the chro-

mosomally encoded class C beta-lactamase (AmpC), and the

blaIMP-1 gene encoding a metal beta-lactamase (MBL). In

addition, pSMC1 contains two copies of the qacE gene, asso-

ciated with resistance to a range of disinfectants (Kucken et al.

2000), and two copies of the sulfonamide resistance gene

(sulI) as well as a transposon encoding the mer operon for

mercury resistance (fig. 6A).

Comparison of a pSMC1-cured SM39 derivative (KS3) with

the wild type showed that the high level of resistance dis-

played by SM39 to beta-lactams, aminoglycosides and mer-

cury is accounted for by the presence of pSMC1. Compared

with SM39, KS3 was great or equal to four more sensitive to

FIG. 6.—Genomic features and a possible evolutionary process of the pSMC1 multidrug-resistant plasmid of SM39. (A) Genomic comparison of pSMC1

and p07-406, an IncP plasmid of Pseudomonas aeruginosa. Although significant differences were observed in the region corresponding to a Tn501-like

transposon and the region corresponding to an integron-carrying transposon, the backbones of the two plasmid genomes are nearly identical and their GC

content is significantly higher than that of the Serratia marcescens chromosomes and rather similar to that of Pseudomonas species, suggesting that pSMC1

originated from Pseudomonas species. (B) Structural comparison of the integron of pSMC1 with that on pK29 of Klebsiella pneumoniae. The difference in

genetic structure between the two integrons could be generated by two inversion events and by insertion of IS elements and acquisition/duplication of

several genes.
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22 of the 36 antimicrobial agents tested; 14 of the 16 beta-

lactams, all of the seven aminoglycosides, and to mercury.

The 14 beta-lactams included carbapenems, the resistance

to which is attributable to MBL. The exception is resistance

to fluoroquinolones, which, as mentioned above, is attribut-

able to the chromosomal mutation in gyrA (table 3).

Plasmid pSMC1 exhibits a remarkable similarity to an IncP

plasmid of Pseudomonas aeruginosa, p07-406 (Li et al. 2008)

(fig. 6A). The backbones of the two plasmids encoding the tra

region and replication functions are nearly identical in gene

compliment and with a GC content (64.1–66.1%) character-

istic of pseudomonads. The main differences concern their

genetic cargo encoding multiple drug resistance. This is con-

sistent with the notion that Pseudomonas species are the

original hosts for IncP plasmids with high GC backbones

(Thorsted et al. 1998). However, as the integron-containing

region of pSMC1 is also high similarity to that on plasmid

pK29 of Klebsiella pneumoniae (Chen et al. 2007) although

complex rearrangements including inversion and gene dupli-

cation have occurred, it suggests that these closely related

plasmids have become widely disseminated in the

Enterobacteriaceae (fig. 6B).

Concluding Remarks

We selected two S. marcescens strains from contrasting

sources in an attempt to maximize our ability to capture the

genomic diversity of this ubiquitous enteric species. Through

our comparative analysis, we have defined a core genome of

S. marcescens as well as that of the genus, although it should

be noted that the latter gene set was generated from free-

living Serratia species only. The former gene set defines the

intrinsic metabolic capacities, virulence, and multidrug resis-

tance of this opportunistic pathogen. Analysis of strain-specific

genes or genomic regions has further revealed a high level of

genomic diversity and plasticity of S. marcescens, which re-

flects the diversity of niches that this species can occupy. In

fact, among the SM39-specific genes, many genes that are

implicated in the high virulence potential of this clinical isolate

have been identified, this includes many virulence-related

genes found within the core genome of S. marcescens.

Furthermore, analysis of the pSMC1 plasmid of SM39 has

revealed that it encodes MBL and many other drug resistance

determinants and is responsible for the extremely high level of

multidrug resistance of the strain. We were able to propose a

possible origin and evolution of pSMC1 on the basis of its

genomic features. These data, combined with available tools

for functional genomic analysis such as that described by

Petty et al. (2006: 1701–1708), will accelerate research

on S. marcescens in numerous domains and provide new in-

sights into the genetic mechanisms responsible for the emer-

gence of pathogens highly resistant to multiple antimicrobial

agents.

Supplementary Material

Supplementary figures S1–S5 and tables S1–S9 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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Séquençage à Grande Echelle programme, and that of SM39

was by the Research for the Future Program of the Japan

Society for the Promotion of Science (JSPS-RFTF 00L01411).

Work in the Ewbank lab was supported by institutional fund-

ing from INSERM and the CNRS, and program grants from the

French Ministry of Research. This work was also supported by

Wellcome Trust grant (098051).

Literature Cited
Andrews SC, Robinson AK, Rodriguez-Quinones F. 2003. Bacterial iron

homeostasis. FEMS Microbiol Rev. 27:215–237.

Aoki SK, et al. 2010. A widespread family of polymorphic contact-depen-

dent toxin delivery systems in bacteria. Nature 468:439–442.

Aucken HM, Pitt TL. 1991. Serological relationships of the O antigens of

Klebsiella pneumoniae O5, Escherichia coli O8 and a new O serotype

of Serratia marcescens. FEMS Microbiol Lett. 64:93–97.

Chain PS, et al. 2009. Genomics. Genome project standards in a new era

of sequencing. Science 326:236–237.

Chen J, Kuroda T, Huda MN, Mizushima T, Tsuchiya T. 2003. An RND-type

multidrug efflux pump SdeXY from Serratia marcescens. J Antimicrob

Chemother. 52:176–179.

Chen YT, et al. 2007. Sequencing and comparative genomic analysis of

pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-

M-3 beta-lactamases in Klebsiella pneumoniae. Antimicrob Agents

Chemother. 51:3004–3007.

Cheng KC, Chuang YC, Wu LT, Huang GC, Yu WL. 2006. Clinical expe-

riences of the infections caused by extended-spectrum beta-lacta-

mase-producing Serratia marcescens at a medical center in Taiwan.

Jpn J Infect Dis. 59:147–152.

Coderch N, et al. 2004. Genetic and structural characterization of the core

region of the lipopolysaccharide from Serratia marcescens N28b (ser-

ovar O4). J Bacteriol. 186:978–988.

Coulthurst SJ. 2013. The Type VI secretion system—a widespread and

versatile cell targeting system. Res Microbiol. 164:640–654.

Coulthurst SJ, Williamson NR, Harris AK, Spring DR, Salmond GP. 2006.

Metabolic and regulatory engineering of Serratia marcescens: mimick-

ing phage-mediated horizontal acquisition of antibiotic biosynthesis

and quorum-sensing capacities. Microbiology 152:1899–1911.

Cusa E, Obradors N, Baldoma L, Badia J, Aguilar J. 1999. Genetic analysis

of a chromosomal region containing genes required for assimilation of

Iguchi et al. GBE

2108 Genome Biol. Evol. 6(8):2096–2110. doi:10.1093/gbe/evu160 Advance Access publication July 28, 2014

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu160/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu160/-/DC1
http://www.gbe.oxfordjournals.org/
http://www.gbe.oxfordjournals.org/
http://www.miyazaki-u.ac.jp/ir/english/index.html
http://www.miyazaki-u.ac.jp/ir/english/index.html


allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli.

J Bacteriol. 181:7479–7484.

Eberl L, Christiansen G, Molin S, Givskov M. 1996. Differentiation of

Serratia liquefaciens into swarm cells is controlled by the expression

of the flhD master operon. J Bacteriol. 178:554–559.

Eberl L, Winson MK, et al. 1996. Involvement of N-acyl-L-hormoserine

lactone autoinducers in controlling the multicellular behaviour of

Serratia liquefaciens. Mol Microbiol. 20:127–136.

English G, et al. 2012. New secreted toxins and immunity proteins

encoded within the Type VI secretion system gene cluster of Serratia

marcescens. Mol Microbiol. 86:921–936.

Flyg C, Kenne K, Boman HG. 1980. Insect pathogenic properties of

Serratia marcescens: phage-resistant mutants with a decreased resis-

tance to Cecropia immunity and a decreased virulence to Drosophila.

J Gen Microbiol. 120:173–181.

Fritsch MJ, et al. 2013. Proteomic identification of novel secreted antibac-

terial toxins of the Serratia marcescens type VI secretion system. Mol

Cell Proteomics. 12:2735–2749.

Garvis S, et al. 2009. Caenorhabditis elegans semi-automated liquid screen

reveals a specialized role for the chemotaxis gene cheB2 in

Pseudomonas aeruginosa virulence. PLoS Pathog. 5:e1000540.

Gerc AJ, Song L, Challis GL, Stanley-Wall NR, Coulthurst SJ. 2012. The

insect pathogen Serratia marcescens Db10 uses a hybrid non-

ribosomal peptide synthetase-polyketide synthase to produce the

antibiotic althiomycin. PLoS One 7:e44673.

Goluszko P, Nowacki MR. 1989. Extracellular haemolytic activity of Serratia

marcescens. FEMS Microbiol Lett. 52:207–211.

Grijpstra J, Arenas J, Rutten L, Tommassen J. 2013. Autotransporter se-

cretion: varying on a theme. Res Microbiol. 164:562–582.

Harris AK, et al. 2004. The Serratia gene cluster encoding biosynthesis of

the red antibiotic, prodigiosin, shows species- and strain-dependent

genome context variation. Microbiology 150:3547–3560.

Herbert S, et al. 2007. Large outbreak of infection and colonization with

gram-negative pathogens carrying the metallo- beta -lactamase gene

blaIMP-4 at a 320-bed tertiary hospital in Australia. Infect Control

Hosp Epidemiol. 28:98–101.

Horng YT, et al. 2002. The LuxR family protein SpnR functions as a neg-

ative regulator of N-acylhomoserine lactone-dependent quorum sens-

ing in Serratia marcescens. Mol Microbiol. 45:1655–1671.

Jacob-Dubuisson F, Guerin J, Baelen S, Clantin B. 2013. Two-partner se-

cretion: as simple as it sounds? Res Microbiol. 164:583–595.

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and ge-

nomes. Nucleic Acids Res. 28:27–30.

Kanonenberg K, Schwarz CK, Schmitt L. 2013. Type I secretion systems—a

story of appendices. Res Microbiol. 164:596–604.

Kim M, Oh H-S, Park S-C, Chun J. 2014. Towards a taxonomic coherence

between average nucleotide identity and 16S rRNA gene sequence

similarity for species demarcation of prokaryotes. Int J Syst Evol

Microbiol. 64:346–351.

Korner RJ, Nicol A, Reeves DS, MacGowan AP, Hows J. 1994.

Ciprofloxacin resistant Serratia marcescens endocarditis as a complica-

tion of non-Hodgkin’s lymphoma. J Infect. 29:73–76.

Korotkov KV, Sandkvist M, Hol WG. 2012. The type II secretion system:

biogenesis, molecular architecture and mechanism. Nat Rev Microbiol.

10:336–351.

Kucken D, Feucht H, Kaulfers P. 2000. Association of qacE and qacEDelta1

with multiple resistance to antibiotics and antiseptics in clinical isolates

of Gram-negative bacteria. FEMS Microbiol Lett. 183:95–98.

Kulkarni R, et al. 2009. Roles of putative type II secretion and type IV pilus

systems in the virulence of uropathogenic Escherichia coli. PLoS One 4:

e4752.

Kumar A, Worobec EA. 2005. Cloning, sequencing, and characterization

of the SdeAB multidrug efflux pump of Serratia marcescens.

Antimicrob Agents Chemother. 49:1495–1501.

Kurz CL, et al. 2003. Virulence factors of the human opportunistic path-

ogen Serratia marcescens identified by in vivo screening. EMBO J. 22:

1451–1460.

Kurz CL, Ewbank JJ. 2007. Infection in a dish: high-throughput analyses of

bacterial pathogenesis. Curr Opin Microbiol. 10:10–16.

Labbate M, et al. 2007. Quorum-sensing regulation of adhesion in

Serratia marcescens MG1 is surface dependent. J Bacteriol. 189:

2702–2711.

Letoffe S, Ghigo JM, Wandersman C. 1994. Iron acquisition from heme

and hemoglobin by a Serratia marcescens extracellular protein. Proc

Natl Acad Sci U S A. 91:9876–9880.

Li H, Toleman MA, Bennett PM, Jones RN, Walsh TR. 2008. Complete

sequence of p07-406, a 24,179-base-pair plasmid harboring the

blaVIM-7 metallo-beta-lactamase gene in a Pseudomonas aeruginosa

isolate from the United States. Antimicrob Agents Chemother. 52:

3099–3105.

Lyerly D, Gray L, Kreger A. 1981. Characterization of rabbit corneal

damage produced by Serratia keratitis and by a serratia protease.

Infect Immun. 33:927–932.

Lyerly DM, Kreger AS. 1983. Importance of serratia protease in the path-

ogenesis of experimental Serratia marcescens pneumonia. Infect

Immun. 40:113–119.

Mahlen SD. 2011. Serratia infections: from military experiments to current

practice. Clin Microbiol Rev. 24:755–791.

Maki DG, Hennekens CG, Phillips CW, Shaw WV, Bennett JV. 1973.

Nosocomial urinary tract infection with Serratia marcescens: an epide-

miologic study. J Infect Dis. 128:579–587.

Makimura Y, Asai Y, Sugiyama A, Ogawa T. 2007. Chemical structure and

immunobiological activity of lipid A from Serratia marcescens LPS.

J Med Microbiol. 56:1440–1446.

Masuda N, et al. 2000. Contribution of the MexX-MexY-OprM efflux

system to intrinsic resistance in Pseudomonas aeruginosa.

Antimicrob Agents Chemother. 44:2242–2246.

Matsuo T, et al. 2008. SmdAB, a heterodimeric ABC-Type

multidrug efflux pump, in Serratia marcescens. J Bacteriol. 190:

648–654.

Minato Y, Shahcheraghi F, Ogawa W, Kuroda T, Tsuchiya T. 2008.

Functional gene cloning and characterization of the SsmE

multidrug efflux pump from Serratia marcescens. Biol Pharm Bull.

31:516–519.

Muller I, Kube M, Reinhardt R, Jelkmann W, Geider K. 2011. Complete

genome sequences of three Erwinia amylovora phages isolated in

North America and a bacteriophage induced from an Erwinia tasma-

niensis strain. J Bacteriol. 193:795–796.

Murdoch SL, et al. 2011. The opportunistic pathogen Serratia marcescens

utilizes type VI secretion to target bacterial competitors. J Bacteriol.

193:6057–6069.

Nakamura T, et al. 2002. IMP-1 type metalo-beta-lactamase producing

Serratia marcescens strains isolated from blood culture between 1991

to 2000. Kansenshogaku Zasshi 76:246–253.

Nastro M, et al. 2013. First nosocomial outbreak of VIM-16-

producing Serratia marcescens in Argentina. Clin Microbiol Infect.

19:617–619.

Naumiuk L, et al. 2004. Molecular epidemiology of Serratia marcescens in

two hospitals in Gdansk, Poland, over a 5-year period. J Clin Microbiol.

42:3108–3116.

Neupane S, et al. 2012. Complete genome sequence of the rapeseed

plant-growth promoting Serratia plymuthica strain AS9. Stand

Genomic Sci. 6:54–62.

Okuda T, Endo N, Osada Y, Zen-Yoji H. 1984. Outbreak of nosocomial

urinary tract infections caused by Serratia marcescens. J Clin Microbiol.

20:691–695.

Osano E, et al. 1994. Molecular characterization of an enterobacterial

metallo beta-lactamase found in a clinical isolate of Serratia

Genome Evolution and Plasticity of S. marcescens GBE

Genome Biol. Evol. 6(8):2096–2110. doi:10.1093/gbe/evu160 Advance Access publication July 28, 2014 2109



marcescens that shows imipenem resistance. Antimicrob Agents

Chemother. 38:71–78.

Parment PA, et al. 1992. Hemagglutination (fimbriae) and hydrophobicity

in adherence of Serratia marcescens to urinary tract epithelium and

contact lenses. Curr Microbiol. 25:113–118.

Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: dis-

criminating signal peptides from transmembrane regions. Nat

Methods. 8:785–786.

Petty NK, Foulds IJ, Pradel E, Ewbank JJ, Salmond GP. 2006. A

generalized transducing phage (phiIF3) for the genomically

sequenced Serratia marcescens strain Db11: a tool for functional

genomics of an opportunistic human pathogen. Microbiology 152:

1899–1911.

Poole SJ, et al. 2011. Identification of functional toxin/

immunity genes linked to contact-dependent growth inhibition

(CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet. 7:

e1002217.

Pouttu R, et al. 2001. matB, a common fimbrillin gene of Escherichia coli,

expressed in a genetically conserved, virulent clonal group. J Bacteriol.

183:4727–4736.

Pradel E, et al. 2007. Detection and avoidance of a natural product from

the pathogenic bacterium Serratia marcescens by Caenorhabditis ele-

gans. Proc Natl Acad Sci U S A. 104:2295–2300.

Rendon MA, et al. 2007. Commensal and pathogenic Escherichia coli use a

common pilus adherence factor for epithelial cell colonization. Proc

Natl Acad Sci U S A. 104:10637–10642.

Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for

the prokaryotic species definition. Proc Natl Acad Sci U S A. 106:

19126–19131.

Sauvonnet N, Gounon P, Pugsley AP. 2000. PpdD type IV pilin of

Escherichia coli K-12 can Be assembled into pili in Pseudomonas aer-

uginosa. J Bacteriol. 182:848–854.

Shahcheraghi F, et al. 2007. Molecular cloning and characterization of a

multidrug efflux pump, SmfY, from Serratia marcescens. Biol Pharm

Bull. 30:798–800.

Shanks RM, et al. 2007. A Serratia marcescens OxyR homolog mediates

surface attachment and biofilm formation. J Bacteriol. 189:

7262–7272.

Shimuta K, et al. 2009. The hemolytic and cytolytic activities of Serratia

marcescens phospholipase A (PhlA) depend on lysophospholipid pro-

duction by PhlA. BMC Microbiol. 9:261.

Su LH, et al. 2003. Extended epidemic of nosocomial urinary tract infec-

tions caused by Serratia marcescens. J Clin Microbiol. 41:4726–4732.

Sugawara H, Ohyama A, Mori H., Kurokawa K. 2009. Microbial Genome

Annotation Pipeline (MiGAP) for diverse users, software demonstra-

tion S001-1–2. In: The 20th International Conference on Genome

Informatics (Yokohama). Tokyo (Japan): Japanese Society for

Bioinformatics.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular

Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol

Biol Evol. 24:1596–1599.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through se-

quence weighting, position-specific gap penalties and weight matrix

choice. Nucleic Acids Res. 22:4673–4680.

Thorsted PB, et al. 1998. Complete sequence of the IncPbeta plasmid

R751: implications for evolution and organisation of the IncP back-

bone. J Mol Biol. 282:969–990.

Wachino J, et al. 2011. SMB-1, a novel subclass B3 metallo-beta-

lactamase, associated with ISCR1 and a class 1 integron, from a car-

bapenem-resistant Serratia marcescens clinical isolate. Antimicrob

Agents Chemother. 55:5143–5149.

Weigel LM, Steward CD, Tenover FC. 1998. gyrA mutations associated

with fluoroquinolone resistance in eight species of Enterobacteriaceae.

42:2661–2667.

Weise T, et al. 2014. VOC emission of various Serratia species and isolates

and genome analysis of Serratia plymuthica 4Rx13. FEMS Microbiol

Lett. 352:45–53.

Xicohtencatl-Cortes J, et al. 2009. The type 4 pili of enterohemorrhagic

Escherichia coli O157:H7 are multipurpose structures with pathogenic

attributes. J Bacteriol. 191:411–421.

Yu VL. 1979. Serratia marcescens: historical perspective and clinical review.

N Engl J Med. 300:887–893.

Associate editor: John McCutcheon

Iguchi et al. GBE

2110 Genome Biol. Evol. 6(8):2096–2110. doi:10.1093/gbe/evu160 Advance Access publication July 28, 2014


