
Circulation Reports  Vol.3,  December  2021

716 KAWASAKI T et al.
Circulation Reports
Circ Rep  2021; 3: 716 – 723
doi: 10.1253/circrep.CR-21-0093

recommended that FFRCT values measured 1–2 cm distal 
to the stenosis be used to assess the hemodynamic signifi-
cance of lesions,11 resulting in potentially improved diag-
nostic accuracy.9,12 The aim of the present study was to 
investigate how diagnostic performance for detecting 
functional ischemia changes according to the measurement 
site of FFRCT.

Methods
Study Design and Population
This was a single-center retrospective analysis conducted 
in the Shin-Koga Hospital. Data were collected for 437 
patients with a stable or suspected coronary artery disease 
(CAD) diagnosed by CCTA who were enrolled in the 
Assessing Diagnostic Value of Noninvasive FFRCT in 

C oronary computed tomography angiography 
(CCTA) has become widely used in clinical settings. 
Its diagnostic performance has improved consider-

ably, making it possible to non-invasively evaluate coronary 
artery lesions. In this context, improvements in computa-
tional fluid dynamics technology have allowed for the 
assessment of coronary ischemia using CCTA data.

Fractional flow reserve (FFR) derived from CCTA 
(FFRCT®; HeartFlow, Redwood City, CA, USA) is a 
computed CCTA-derived FFR that has been used in various 
clinical fields.1–8 FFRCT has enabled both morphological 
and functional evaluation using one modality, showing 
higher specificity than conventional CCTA.1,2,5 FFRCT 
values are generally obtained from far-distal sites of the 
diseased vessel, but it is known that overestimation of 
functional ischemia is possible.9–11 Recently, an expert panel 
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Background:  The optimal site for measuring computed tomography (CT)-derived fractional flow reserve (FFRCT) to detect significant 
coronary artery disease (CAD) remains unknown. We investigated how diagnostic performance changes with FFRCT measurement 
site.

Methods and Results:  The diagnostic performance of FFRCT, measured 1–2 cm distal to the stenosis vs. a far-distal site, in detecting 
significant CAD with invasive fractional flow reserve ≤0.8 was evaluated in 254 diseased vessels from 146 patients with stable or 
suspected CAD diagnosed by coronary CT angiography. Receiver operating characteristic curve analysis revealed a significantly 
larger area under the curve for FFRCT measured 1–2 cm distal to the stenosis than at a far-distal site (0.829 vs. 0.791, respectively; 
P=0.0305). The rate of reclassification of positive FFRCT was 19% for measurements made 1–2 cm distal to the stenosis, and 
diagnostic accuracy for FFRCT 0.71–0.80 improved from 36% to 58% (P=0.0052). Vessel-based diagnostic accuracy of FFRCT 1–2 cm 
distal to the stenosis and at a far-distal site was 75% and 65%, respectively (P<0.0001), with corresponding sensitivity of 87% and 
94% (P=0.0039), specificity of 60% and 29% (P<0.0001), a positive predictive value of 73% and 62% (P=0.028), and a negative 
predictive value of 78% and 79% (P=0.958).

Conclusions:  Our data suggest measuring FFRCT 1–2 cm distal to the stenosis has better diagnostic performance for detecting 
physiologically significant CAD.
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>2 mm in diameter, including the side branches. In the 
present study, an independent physician blinded to the 
invasive FFR results performed FFRCT measurements on 
an interactive website. FFRCT values were obtained both 
1–2 cm distal to the lower border of the stenosis, as per the 
recommendations of the expert panel,11 and at a far-distal 
site corresponding to the site where the invasive FFR was 
measured for each diseased vessel. To determine the point 
1–2 cm distal to the lesion, a point 1–2 cm distal to the 
lesion was first identified on the workstation during CCTA 
analysis. Based on this information, a point 1–2 cm distal 
to the lesion was identified on the 3D analysis preview 
image of the FFRCT on the dedicated website, and the 
FFRCT was measured at this point. In the case of diffuse 
lesions and multiple lesions, the FFRCT was measured 
1–2 cm distal to the most severe site and the most proximal 
lesion, respectively.

ICA and Invasive FFR
ICA was performed by a physician using a standard tech-
nique. Invasive FFR was measured using a pressure wire 
(Pressure WireTM; Abbott Vascular, Santa Clara, CA, 
USA). Maximal hyperemia was induced by intravenous 
adenosine infusion (150–180 µg/kg/min) via the forearm or 
by intracoronary injection of papaverine (8–12 mg) or 
nicorandil (2 mg). FFR was measured at the far-distal site 
for all vessels with significant stenosis on CCTA, with values 
≤0.80 representing physiologically significant CAD.

Statistical Analysis
The diagnostic performance of FFRCT measured 1–2 cm 
distal to the stenosis and at the far-distal site was compared 
using the area under the curve (AUC) from receiver oper-
ating characteristic (ROC) curve analysis; Comparisons of 
AUCs were made using the DeLong method. The McNemar 

Coronary Care (ADVANCE) Registry13 from July 2015 to 
October 2018. Of these 437 patients, 146 who underwent 
invasive FFR testing during invasive coronary angiog-
raphy (ICA) within 1 month of registry enrollment were 
included in the present study (Figure 1). Physicians in charge 
of the invasive FFR testing were blinded to the results of 
FFRCT.

This study was approved by the Institutional Review 
Board of Shin-Koga Hospital, and written informed 
consent was obtained from all participants.

CCTA
CCTA was performed using a 320-detector row computed 
tomography (CT) scanner (Aquilion ONE ViSION; Canon 
Medical Systems, Tochigi, Japan). All patients received 
sublingual nitroglycerin and, if necessary, oral metoprolol 
20 mg and/or intravenous landiolol 0.125 mg/kg to achieve 
a target heart rate of ≤60 beats/min. CT images were 
acquired at tube voltages of 100, 120, and 135 kV, following 
the standard protocol. The coronary artery calcium score 
was calculated using a non-enhanced scan protocol with 
the following parameters: 120 kV, 150 mA, and thickness 
3 mm. The location of the lesions was determined using a 
17-segment model by a CT radiologist. Significant stenosis 
was defined as coronary stenosis ≥50% of a major epicardial 
artery with a diameter ≥2.0 mm on CCTA, with the severity 
of the stenosis defined as moderate (stenosis 50–69%) or 
severe (stenosis 70–99%).14

Measurement and Analysis of FFRCT

CCTA raw data were transferred to core laboratory 
(HeartFlow) for analysis. The scientific rationale under-
pinning the computation of FFRCT has been described in 
detail elsewhere.4 The FFRCT indicates the approximate 
FFR value for each point on major coronary arteries 

Figure 1.    Selection of the study population. In all, 146 patients who enrolled in the ADVANCE registry and underwent invasive 
fractional flow reserve (FFR) testing during invasive coronary angiography with within 1 month were examined. ADVANCE, 
Assessing Diagnostic Value of Noninvasive FFRCT in Coronary Care; CCTA, coronary computed tomography angiography; FFRCT, 
CCTA-derived FFR.
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frequencies (%).
All analyses were performed using SPSS version 24.0 for 

Windows (SPSS Inc., Chicago, IL, USA) and R version 
3.6.1 (R Foundation for Statistical Computing, Vienna, 
Australia). Statistical significance was set at 2-tailed P<0.05.

Results
The characteristics of the 146 patients examined in this 
study are presented in Table 1. Approximately 98 (67%) 
patients were male, with a mean age of 70±10 years. 
According to the CCTA findings, 53 (36%) patients were 
diagnosed with single-vessel disease, whereas 93 (64%) 
patients were found to have multivessel disease (MVD), 
including left main trunk disease (LMTD). In addition, the 
CAD – Reporting and Data System (RADS) classification 
system was used: 84 (57%) patients were diagnosed as 
CAD-RADS 3, 46 (32%) were diagnosed as CAD-RADS 
4A, and 16 (11%) were diagnosed as CAD-RADS 4B. The 
median Agatston score was 353 Hounsfield units (IQR 
143–846 Hounsfield units).

Among the entire population, 254 vessels were confirmed 
as having significant stenosis. Of these, 134 (53%) involved 
the left anterior descending artery, 61 (24%) involved the 
left circumflex artery, and 59 (23%) involved the right 
coronary artery. Regarding lesion severity, 130 (51%) and 
124 (49%) vessels were considered to have intermediate 
and severe stenosis, respectively. The median interval from 
CCTA to ICA was 21 days (IQR 18–24 days), and the 
median invasive FFR value was 0.79 (IQR 0.70–0.87). The 
distribution of invasive FFR values in the examined 
diseased vessels is shown in the Supplementary Figure. In 
all, 56% of examined vessels had physiologically significant 
CAD with an FFR ≤0.8, indicating that many patients 
with relatively severe stenosis were included in the present 
study.

Diagnostic Performance of FFRCT Measured 1–2 cm Distal 
to the Stenosis in Detecting Physiologically Significant 
CAD
FFRCT measurements 1–2 cm distal to the stenosis and at 
the far-distal site were obtained for a total of 246 diseased 
vessels. Based on ROC analysis, the AUC of the FFRCT 
values was significantly greater for measurements made 
1–2 cm distal to the stenosis than at the far-distal site (0.829 
[95% CI 0.779–0.879] vs. 0.791 [95% CI 0.736–0.847], 
respectively; P=0.0305; Figure 2).

The FFRCT was positive in 83% and 66% of vessels for 
measurements taken at the far-distal site and 1–2 cm distal 
to the stenosis, respectively (P<0.0001). The reclassification 
rate of positive FFRCT was 19% for measurements made 
1–2 cm distal to the stenosis (Figure 3); therefore, particu-
larly in the FFRCT range 0.71–0.80, which was considered 
a gray zone, diagnostic accuracy improved from 36% to 
58% (P=0.0052; improvement rate 61%; Figure 4).

In vessel-based diagnostic performance for detecting 
physiologically significant CAD, FFRCT measured 1–2 cm 
distal to the stenosis compared with FFRCT measured at 
the far-distal site had a sensitivity of 87% vs. 94% 
(P=0.0039), a specificity of 60% vs. 29% (P<0.0001), a PPV 
of 73% vs. 62% (P=0.028), a NPV of 78% vs. 79% 
(P=0.958), and an accuracy of 75% vs. 65% (P<0.0001), 
respectively; the false-negative rates for FFRCT measured 
1–2 cm distal to the stenosis and at the far-distal site were 
13% and 7% (P<0.0001), respectively, with corresponding 

test was used to compare the reclassification rates of 
FFRCT positivity based on FFRCT values measured 1–2 cm 
distal to the stenosis and at the far-distal site. In addition, 
the McNemar test was used to compare the sensitivity, 
specificity, and accuracy of FFRCT measured 1–2 cm distal 
to the stenosis and at the far-distal site. Fisher’s exact test 
and Chi-squared tests were used to compare the positive 
predictive value (PPV), negative predictive value (NPV), 
and other optimal proportions. Continuous data are 
expressed as the mean ± SD or as the median with inter-
quartile range (IQR). Categorical data are expressed as 

Table 1.  Baseline Characteristics

Patient characteristics (n=146)

    Age (years) 70±10

    Male sex 98 (67)

    Body mass index (kg/m2) 24±3　　
    Hypertension 107 (73)　　
    Hyperlipidemia 93 (64)

    Diabetes 63 (43)

    Smoker 89 (61)

    Creatinine (mg/dL) 0.96±0.88

    HbA1c (%) 6.4±0.9

    LDL-C (mg/dL) 122±30　　
    HDL-C (mg/dL) 51±14

    Triglyceride (mg/dL) 164±123

    Symptoms

        Typical angina 57 (39)

        Atypical angina 52 (36)

        No symptom 37 (25)

Patient-based CCTA findings (n=146)

    Vessel severity

        SVD 53 (36)

        MVD including LMTD 93 (64)

    CAD-RADS

        3 84 (57)

        4A 46 (32)

        4B 16 (11)

    Agatston score (Hounsfield units) 353 [143–846]　
    Interval between CCTA and ICA (days) 21 [18–24]　　　
Vessel-based CCTA findings (n=254)

    Distribution of diseased vessels

        LAD 134 (53)　　
        LCx 61 (24)

        RCA 59 (23)

    Lesion severity

        Intermediate stenosis (50–69%) 130 (51)　　
        Severe stenosis (70–99%) 124 (49)　　
Invasive FFR findings (n=254)

    Invasive FFR 0.79 [0.70–0.87]

    Positive FFR (≤0.8) 141 (56)　　

Values are expressed as n (%) or the mean ± SD or median 
[interquartile range]. CAD-RADS, Coronary Artery Disease – 
Reporting and Data System; CCTA, coronary computed tomog-
raphy angiography; FFR, fractional flow reserve; HDL-C, high-
density lipoprotein cholesterol; ICA, invasive coronary 
angiography; LAD, left ascending artery; LCx, left circumflex 
artery; LDL-C, low-density lipoprotein cholesterol; LMTD, left main 
trunk disease; MVD, multivessel disease; RCA, right coronary 
artery; SVD, single-vessel disease.
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measured 1–2 cm distal to the stenosis, the FFRCT positivity 
rate was reduced from 83% to 66% (reclassification rate 
19%) compared with FFRCT measured at the conventional 
distal site, and, in particular, the diagnostic accuracy in the 
FFRCT range 0.71–0.80 was improved by 61%. In addition, 
the overall diagnostic performance of FFRCT for detecting 
physiologically significant CAD was significantly 
improved.

false-positive rates of 40% and 71% (P=0.004), respectively 
(Table 2; Figure 5). Two representative cases are shown in 
Figure 6.

Discussion
In the present study we investigated the optimal measure-
ment site of FFRCT in the evaluation of physiologically 
significant CAD with an FFR ≤0.8. Using FFRCT values 

Figure 2.    Receiver operating charac-
teristic (ROC) curve with fractional flow 
reserve (FFR) cutoff of ≤0.8. The area 
under the curve (AUC) was significantly 
greater for coronary computed tomog-
raphy angiography-derived FFR (FFRCT) 
measured 1–2 cm distal to the stenosis 
compared with that measured a far-distal 
site. CI, confidence interval.

Figure 3.    Proportion of positive com-
puted tomography angiography-derived 
fractional flow reserve (FFRCT) case 
according to different measurement 
sites. The reclassification rate of positive 
FFRCT at the far-distal site to negative 
FFRCT distal to the stenosis was 19% 
(P<0.0001).
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al reported that FFRCT values measured 10.5 cm distal to 
the lesion were most indicative of the extent of ischemia in 
the lesion,10 with an expert panel subsequently recom-
mending that FFRCT measurements 1–2 cm distal to the 
stenosis are more appropriate than measurements at 
conventional distal sites.11 Kueh et al reported that by 
using FFRCT values measured 1–2 cm distal to the stenoses, 
44% of patients positive for the lowest FFRCT value were 
reclassified as negative.9 Moreover, in patients who 
underwent ICA, revascularization efficiency was better in 
those with a positive FFRCT measured 1–2 cm distal to the 
stenosis than in those considered positive based on the 
lowest FFRCT value.9 Omori et al have also demonstrated 
better diagnostic performance of FFRCT values measured 
1–2 cm distal to the stenosis than those measured in a 
distant segment, with a significant benefit particularly in 
the diagnosis of LAD lesions.12 Thus, it seems that using 

Adequacy of FFRCT Measured 1–2 cm Distal to the Stenosis
In the present study, we used FFRCT values measured 
1–2 cm distal to the anatomical stenosis rather than using 
the lowest FFR value measured at the far-distal site, the 
currently accepted site for evaluating diseased vessels. 
FFRCT values (usually the lowest FFR value measured at 
the far-distal site of the diseased vessel) have been shown 
to be reliably correlated with invasive FFR values.1,5 
However, it has been reported that, in addition to assessing 
decreases in FFR along the length of coronary arteries 
with diffuse atherosclerosis, FFRCT assesses the decrease in 
FFR along the length of the vessels even in the absence of 
focal stenoses.15 Therefore, the lowest FFRCT values 
measured at a far-distal site may sometimes lead to false-
positive results, and therefore may not be relevant for 
clinical decisions regarding ICA.

With regard to the measurement site of FFRCT, Cami et 

Figure 4.    Diagnostic accuracy of computed tomography angiography-derived fractional flow reserve (FFRCT) across FFRCT 
ranges. In the FFRCT range 0.71–0.80, diagnostic accuracy improved from 36% to 58% by using values measured 1–2 cm distal 
to the stenosis (P=0.0052).

Table 2.  Vessel-Based Diagnostic Performance of Computed Tomography Angiography-Derived Fractional 
Flow Reserve According to Measurement Site (Far-Distal vs. 1–2 cm Distal to Stenosis)

Overall (n=146)
Measurement point

P value
Far-distal 1–2 cm distal to stenosis

Sensitivity (%) 94 (90–96) 87 (82–91) 0.004

Specificity (%) 29 (24–33) 60 (54–65) <0.0001

PPV (%) 62 (60–64) 73 (69–76) 0.028

NPV (%) 79 (65–88) 78 (70–85) 0.958

Accuracy (%) 65 (61–68) 75 (69–79) <0.0001

False-positive rate (%) 71 40 <0.0001

False-negative rate (%)   7 13 0.004

Unless indicated otherwise, data are given as the median (interquartile range). NPV, negative predictive value; PPV, 
positive predictive value.
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Impact of Diagnostic Performance Using FFRCT Measured 
1–2 cm Distal to the Anatomical Stenosis for Detecting 
Physiologically Significant CAD
In a meta-analysis of FFRCT, the overall diagnostic accu-
racy of FFRCT was 82%, and this threshold was met when 

FFRCT values measured 1–2 cm distal to the stenoses may 
be more practical than relying on the lowest FFRCT values 
in FFRCT analysis. For this reason, FFRCT values measured 
1–2 cm distal to an anatomical stenoses were used in the 
present study instead of those measured at far-distal sites.

Figure 6.    Two representative cases of lesions 
in the left anterior descending artery (LAD; 
Upper panels) and right coronary artery (RCA; 
Lower panels). Arrowheads indicate the 
stenotic lesions. (Left) Coronary computed 
tomography angiography (CCTA) images show 
CCTA-derived fractional flow reserve (FFRCT) 
values, the proximal (red) value being FFRCT 
measured 1–2 cm distal to the stenosis and 
the distal (white) value being FFRCT measured 
at the far-distal site, corresponding to the site 
at which invasive fractional flow reserve (FFR) 
was measured. (Right) Invasive coronary 
angiography images show invasive FFR values 
where measurements were made using 
pressure-wire sensors.

Figure 5.    Vessel-based diagnostic performance of computed tomography angiography-derived fractional flow reserve (FFRCT) 
according to measurement site. Invasive FFR ≤0.8 was used as the reference standard. NPV, negative predictive value; PPV, 
positive predictive value.



Circulation Reports  Vol.3,  December  2021

722 KAWASAKI T et al.

was a retrospective single-center study with a relatively 
small number of patients. Second, the present study is a 
subanalysis of the ADVANCE Registry, which included 
patients who underwent invasive CAG based on the results 
of FFRCT; therefore, a large number of patients with 
significant stenosis were enrolled in the registry, whereas 
patients with non-significant stenosis were excluded, leading 
to a significant bias in terms of patient selection. In fact, in 
previous similar reports, only 20–30% of enrolled patients 
had severe stenosis >70%, with most remaining patients 
having intermediate stenosis. However, in the present 
study, approximately half the patients had severe stenosis, 
and this proportion is thought to be considerably higher 
than in previous reports. Basically, intermediate stenosis, 
for which ischemia is difficult to determine, is considered 
the indication for FFRCT analysis, it may be necessary to 
investigate more patients with intermediate stenoses in 
future studies.

Third, coronary artery calcification is an important factor 
related to the overestimation of CAD in CCTA. The 
patients enrolled in this study had higher Agatston scores 
than those reported previously, and we may have included 
more patients with severe coronary calcification unsuitable 
for FFRCT analysis in the present study. Finally, although 
this study examined the diagnostic accuracy of FFRCT 
values measured 1–2 cm distal to the anatomical stenosis, 
there are few reports on similar examinations. Therefore, 
the generalization of our findings to clinical practice should 
be made with caution.

Because of these limitations, further large-scale studies 
with a large number of patients are needed to confirm our 
results.

Conclusions
The use of FFRCT values measured 1–2 cm distal to the 
anatomical stenosis allowed for a significant reclassification 
of patients with positive FFRCT measured at far-distal sites 
and significantly increased accuracy in the “gray zone” of 
FFRCT (0.71–0.80), resulting in a significant improvement 
in the diagnostic performance of FFRCT.
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