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Abstract: Machine Learning (ML) techniques can play a pivotal role in energy efficient IoT networks
by reducing the unnecessary data from transmission. With such an aim, this work combines a
low-power, yet computationally capable processing unit, with an NB-IoT radio into a smart gateway
that can run ML algorithms to smart transmit visual data over the NB-IoT network. The proposed
smart gateway utilizes supervised and unsupervised ML algorithms to optimize the visual data
in terms of their size and quality before being transmitted over the air. This relaxes the channel
occupancy from an individual NB-IoT radio, reduces its energy consumption and also minimizes
the transmission time of data. Our on-field results indicate up to 93% reductions in the number of
NB-IoT radio transmissions, up to 90.5% reductions in the NB-IoT radio energy consumption and up
to 90% reductions in the data transmission time.

Keywords: NB-IoT development platform; NB-IoT network; NB-IoT cloud; NB-IoT-based edge-of-
things; image transmission

1. Introduction

Visual IoT is a paradigm where the environment is meant to be observed by camera-
equipped IoT sensor nodes. The collected visual data from these nodes are transmitted
to the cloud by means of adequate wireless communication technology. Several IoT
communication technologies could be utilized for transmitting the collected visual data
to the cloud and may include NB-IoT, LTE Cat-M1, LoRAWAN, Sigfox, etc. However,
choosing a communication technology depends on the many factors that the particular
technology has to offer in terms of its uplink/downlink data rates, transmission latency,
device power consumption, as well as network availability and network coverage. Since
visual IoT deals with transmitting a large amount of data to the cloud, it faces crucial
challenges in terms of device power consumption, desired and achievable data rates,
desired and achievable latency and the associated device and network cost.

In this work, we explore the suitability of NB-IoT technology for visual data transfer
over the air with a focus on the channel occupancy, power consumption and time needed to
transmit visual data from an individual NB-IoT radio. For illustration purposes, the power
and time needed when using a naive implementation of visual data transfer from an NB-IoT
radio is shown in Figure 1. The figure shows the power graph when transmitting a color
image (1600 × 1200 pixels, 357.17 kB) over a Quectel BG96 radio module (in NB-IoT mode).
Between markers m1 and m2, 239 transmissions are needed (corresponding to 12.60 m of
channel occupancy) with an average power consumption of 0.17 W, which translates to an
energy consumption of 0.0357 Wh.

While the transmit power of the NB-IoT module cannot be reduced, it is desirable to
reduce the time and energy key performance indicators.

This raises several questions that to date have not been explored from a research point
of view, which encompasses the following intertwined aspects:
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• How should the overall NB-IoT architecture be organized for an efficient visual data
transfer over the air? That is, how many hierarchical layers are needed and what
could be their respective roles for collecting, processing, and transmitting data to the
cloud?

• What are the suitable wireless communication technologies for transmitting visual
data between the several layers of this architecture?

• What type of data processing is needed at what particular layer, taking into considera-
tion the strength and limitation of each layer, and what could be the associated benefits
in terms of the bandwidth utilization, channel flexibility and congestion alleviation?

• Lastly, what could be energy-latency trade-offs from the device and network perspec-
tive?

We address these questions by demonstrating a hierarchical smart-gateway-based
visual NB-IoT testbed, as shown in Figure 2, where several heterogeneous IoT devices are
connected to the gateway through short-range wireless communication technologies such
as Bluetooth and Bluetooth low energy (BLE), and ZigBee, etc. The gateway is connected to
the cloud by means of Low Power Wide Area Networking (LPWAN), specifically NB-IoT.
The benefits of having a gateway-based system are many-fold. First, since IoT devices
typically have low power budgets and limited computational and storage capabilities,
the gateway-based setup allows these nodes to transmit their (visual) data to the gateway
without any heavy computations. The compute-intensive gateway node thus performs
all the heavy computations including running ML algorithms on the data that are to be
transmitted over the air. Secondly, since only the gateway node provides access to the cloud
through its LPWAN radio (i.e., NB-IoT in our case), the other nodes are only equipped with
short-range communication radios i.e., BT, BLE. This minimizes the number of radios in
the core (NB-IoT) network. Thirdly, since the gateway node is computationally capable, it
carries out a substantial amount of local data processing, i.e., “Edge computing” for more
control of data over the air. This can compensate for the limited bandwidth and lower data
rates of LPWAN technologies, NB-IoT in particular [1]. We thus illustrate all these aspects
through an edge-of-things computing-based NB-IoT framework for an efficient visual data
transfer over the air and produce the associated on-field empirical results.
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Figure 1. Power graph of the BG96 NB-IoT module when transmitting an image (1600x1200
pixels, 357.17 kB). 239 transmissions are needed (12.60 m) with an average power of 0.17 W, which
translates to an energy consumption of 0.0357 Wh.
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Figure 1. Power graph of the BG96 NB-IoT module when transmitting an image (1600 × 1200 pixels,
357.17 kB). A total of 239 transmissions are needed (12.60 m) with an average power of 0.17 W, which
translates to an energy consumption of 0.0357 Wh.
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Figure 2. Hierarchical architecture of a generic gateway-based IoT testbed.

1.1. State-of-the-Art

C. Pham in 2016 (a year after the introduction of the LoRaWAN framework) used a
LoRa network for the first time for image data transfer in a visual surveillance applica-
tion [2]. He successfully transmitted an image of about 2.4 Kb up to 1.8 km using LoRa.
Jebril et al. [3] proposed an approach for mangrove forest monitoring in Malaysia, wherein
they transferred image sensor data over the LoRa physical layer (PHY) in a node-to-node
network model. In their work, they also proposed a novel scheme for overcoming the
bandwidth limitations of LoRa. Chen et al. [4] suggested a light trustworthy communica-
tion protocol called MPLR for image dispatching in LoRa to facilitate image monitoring
in an agricultural IoT platform. Ji et al. [5] proposed a method for farming application
wherein an image is transmitted into a tiny grid of patches such that any grid patch is only
dispatched when a change in it is noticed. They showed that this approach reserves a lot of
link budget during the surveillance of static agriculture sites and provides better perfor-
mance. Wei et al. [6] proposed a methodology for transmission of JPEG compressed image
data in a multiplexing mode with different spreading factors to reduce the transmission
time of image data by keeping the quality of the images at the receiver side to high PSNR
values. Other similar works that use LoRA for image transmission include [7–9].

From the perspective of utilizing edge computing for increasing the efficiency of IoT,
several works have proposed and evaluated ML techniques for higher energy efficiency,
bandwidth saving, lower latency, and collaborative intelligence of the network [1,10–15].
However, most of these works provide analytical models with simulation-based results that
cannot be entirely relied upon for the real deployed networks because simulation-based
validations do not accurately portray the empirical measurements of real-life systems.
Other works such as [16–19] proposed deep learning for image recognition and classifi-
cations in IoT-based architectures. However, the focus of most of these works is mostly
the obtained accuracy and precision of the models used for sending the final inferences
to the cloud rather than original images. These works also lack the details on the amount
of energy that is being consumed for ML computations with respect to the energy gains
in terms of the device and network perspective. Nevertheless, some works proposed and
utilized ML for increasing the energy efficiency of IoT nodes. For example the work in [20]
uses an ML technique to determine whether to offload the classification of the current
input data to the higher processing gateway layer or to perform it locally on the node
and thereby achieve energy savings. However, they used the CC1350 IoT platform (a
short range radio device) and lack details on larger families of networks such as LPWAN
technologies. The work in [21] presented a hierarchical inference model to cut down the
amount of data that are to be transmitted, and produced interesting energy-related results.
However, they made use of BLE and ZigBee transmission protocols, lacking any correlation
with LPWAN technologies. Though the work in [22] presented a real-time context-aware
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and collaborative intelligence among nodes in a large-area IoT testbed, they showcased
their results using LoRa and BLE only. Other works that consider the use of ML for energy
efficiency in LoRa networks include [23–25].

1.2. Contributions

The main contributions of this work and its positioning with reference to the state of
the art and the aforementioned questions can be summarized as follows:

• We showcase a practical edge-of-things computing-based framework for dispatching
optimized images over an NB-IoT test network wherein computations at the edge
help reduce the number of NB-IoT radio transmissions over the core network.

• We practically show how the reductions in the communication budget of the radio
can in turn contribute to relaxing the channel occupancy, minimizing the network
load and reducing the transmission latency.

• We provide in-depth in-sensor analytics of the communication and computational
cost of the gateway node along with mapping its energy-latency trade-offs.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the hardware architecture of our proposed three-layer hierarchical model and Section 3
presents the algorithmic structure at each layer. Section 4 presents in-field experimen-
tal results and energy evaluation of the proposed system. Finally, Section 5 concludes
the paper.

2. Hardware Architecture of Our Proposed Three Layers Hierarchical Model

Our proposed system as shown in Figure 3 includes the following nodes at three
hierarchical layers.

A—Detection and Vision Node (DVN) at the Perception (Monitor) Layer;
B—Smart Transmit Node (STN) at the Gateway Layer;
C—Server node (SN) at the Cloud Layer.

Sense and  

Transmit

Gateway Layer Cloud LayerPerception Layer

MQTT-Server

Image 

Processing
AI/NN/DNN

Image reception 

in patches

Application

Smart  Transmit MQTT server/ Image reconstruction/Application

Hardware

Algorithm

Hierarchy

Smart Transmit Node
(STN) Server Node (SN)

Use-cases

Patch-up Algorithm

Image 

Reconstruction

Vision Node
(VN)

Figure 3. Proposed three-layer hierarchical model for energy-efficient image transfer via NB-IoT

2.1. Detection and Vision Node (DVN) at Perception Layer

An ESP32-CAM AI-Thinker module [26] is integrated with an HC-SR501 Passive
InfraRed (PIR) sensor [27] into a Detection and Vision Node (DVN) that is mounted over
the automatic gate barrier of Tallinn University of Technology (TalTech)’s main entrance as
shown in Figure 4. The ESP32-CAM module is-based on an ESP32 SoC chipset [28] with
Bluetooth/WIFI connectivity, a 2MP OV2640 image sensor, a built-in hardware JPEG en-
coder [29], and a support for power saving features. The HC-SR501 PIR motion sensor [27]
can detect any motion within an adjustable range between 3 m and 7 m [30]. As any vehicle
enters into the DVN’s sensitivity field, the PIR sensor detects its presence and wakes up
the ESP-32 CAM module from its deep sleep mode. The ESP32-CAM module captures
an image of the entering vehicle and sends it to the STN at the gateway layer through
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Bluetooth connectivity. As the image transmission ends, the DVN enters its deep sleep
mode once again.

(a) Integrating the ESP-32 AI CAM
module with HC-SR501 PIR sensor into
a DVN

(b) The DVN is mounted at the entrance
barrier of the TalTech campus.

Figure 4. Detection and Vision Node at the perception layer.

2.2. Smart Transmit Node (STN) at Gateway Layer

A Raspberry Pi (RPi) 3B module [31] is attached to an IoT cellular HAT [32] into a
Smart Transmit Node (STN) and is deployed at the gateway layer of our proposed 3-layer
hierarchical model as shown in Figure 5. The STN receives images from the DVN through
a Bluetooth connectivity, processes it locally and smart transmits these images to the Server
Node (SN) at the cloud layer through NB-IoT connectivity. The RPi 3B is preferred over its
latest counterparts, i.e., RPi 3B+ and RPi 4B, as it has lower power consumption [33] and
sufficient computational capability to safely run our ML algorithms. The attached Sixfab’s
cellular IoT HAT is an add-on for Raspberry Pi that is based on Quectel’s BG96 chipset
adding Cat NB1 (NB-IoT)/Cat M features to Raspberry Pi modules. More details on the
module can be found in [34].

(a) Integrating the RPi 3B with the
Cellular IoT HAT into STN

(b) The STN can be powered by battery as shown in (a)
or a DC power supply as shown in (b).

Figure 5. Smart Transmit Node at the gateway layer.

2.3. Server Node (SN) at Cloud Layer

Our physical server is based on an Intel Core-i7 platform that operates at 2.2 GHz,
and is equipped with 8GB SRAM, 512GB HDD and runs Windows 10 as its Operating
System (OS). Python (version 3.8) with all the required libraries runs on top of Windows 10.
A Python-based HBMQTT broker (an open source MQTT broker and client implementation)
is accessible to all its clients, both physical and virtual, through an internet connection via
a dedicated IP address and a port.
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3. Algorithmic Structure at Each Hierarchical Layer

The algorithms running across the various nodes of our three-layer hierarchical model
include:

• A—A Sense a Transmit algorithm running over DVN
• B—A Smart Transmit algorithm running over STN
• C—An MQTT broker, Image reconstruction and an Application running over the SN

3.1. Sense and Transmit Algorithm over the DVN

The algorithm running over the DVN works in a sense-and-transmit fashion where,
upon any motion detection from the PIR sensor, the node wakes-up to capture an image
of the approaching vehicle and sends it to the STN through a BT connectivity. As the
transmission end, the DVN goes back into its deep sleep until triggered again by the PIR
motion sensor. This is shown in Figure 6. The corresponding algorithm running over the
DVN is given in Algorithm 1.

Algorithm 1: Sense and transmit algorithm: vehicle detection, image capture,
and image transmission algorithm running inside the Detection and Vision
Node (DVN).

System initialization begin
Threshold distance = hardware_set;
Activate deep sleep mode = True;
Motion monitoring = True;

end
Motion detection begin

if (motion_detected): == True then
Activate deep sleep mode = False;
Capture image = True;
Connect with BT server (RPi) = True;
Transfer image via BT = True;
Activate deep sleep mode = True;

else
Motion monitoring = True;

end
end

Z
Z Z

Deep Sleep Wake UpMotion Detected Take Image Send via BT

Figure 6. Sense and transmit procedure.

3.2. Smart Transmit Algorithm Running over the STN

The STN runs a series of algorithms in a sequential order as shown in Figure 7. They
are discussed in their order of execution in the subsections to follow.
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BT Server:
Image received

TinyYOLOv3: 
Car Detected

Modified TinyYOLOv3: 
Car Extracted

K-Means Clustering: 
Size/Quality reduced

Base64: 
Encoding

BG96 Radio: 
Transmission

4

Splitting in 
Patches

Figure 7. Smart transmit procedure.

1—Bluetooth Server:

Bluetooth (BT) is capable of transmitting data wirelessly, in short range, at nearly
1 MB/s. Traditional BT works in a client–server architecture, such that the device that
initiates the connection is called a BT-client (VDN in our case), and the one that accepts
the connection is called a BT-server (STN in our case) [35]. As the BT-client attempts to
initiate an outbound connection with the BT-server on the specified port, the BT-server
establishes a two-way socket-connection if the connecting device is found to be authentic.
Furthermore, the BT-server could connect to a maximum of 8 clients simultaneously at
any particular time [35]. However, for test purposes, our BT-server connects to only one
BT-client, i.e., the VDN that is installed at the entrance barrier of the TalTech campus
and is situated at a distance of approximately 50 m from the BT-server. Upon connection
establishment, the BT-server receives an image of the entering vehicle from the DVN and
passes it to Tiny-YOLOv3 for vehicle detection and extraction as discussed below.

2—Tiny-YOLOv3 for vehicle detection and extraction:

“You Only Look Once” (YOLO) is a state-of-the-art, real-time object detection algo-
rithm proposed by Redmon et al. in their work in [36]. Since, traditional YOLO [37] is not
suitable to run on embedded devices such as Raspberry Pi, due to its large memory size and
high computational demands, a variation of the traditional YOLO called tiny YOLO-v3 [38]
is installed to run on RPi 3B for vehicle detection in the received image. By modifying
the code of tiny YOLO-v3, the detected vehicle in the image is extracted and saved as a
separate JPG image file in the memory. Thus our modified tiny YOLO-v3 discards the
unnecessary information from the received image that could produce significantly high
costs both in terms of the RPi processing and NB-IoT radio transmissions (to be discussed
later in the Results section). The output image from Tiny-YOLOv3 is then fed into K-means
clustering for size reduction as discussed below.

3—K-MEANS Clustering algorithm:

Since an image comprises a large data-set of pixels, such that each pixel is represented
by 3 bytes that contain its RGB (Red–Blue–Green) intensity value in the range 0–255. Thus,
K-means clustering could be exploited to cluster all the pixels of an image into similar RGB
values and could be exploited for image compression [39], image segmentation [40] and
color quantization [41,42].

For our particular use-case, we exploit the existing technique of [39] to use K-means
clustering for image compression, i.e., by reducing the number of colors of an image to
the most commonly occurring colors of an image. The number of k colors could be set as
desired by the programmer or it could also be optimised to a minimum K that would output
an image to a reasonable quality. It should be noted here that this method of compression
gives significant reductions in terms of size of an image and leads to significant reductions
in the number of radio transmissions.
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4—BASE-64 Encoding of the compressed image:

Binary to text encoding schemes [43] become essential for transferring image data to
web-sockets, so that the image data do not interfere with the many internet protocols in its
way to its destination [44]. Moreover, Quectel’s BG96 module requires the use of the special
character ‘CTRL+Z’ (by convention often described as ∧ Z that is equivalent to the number
26 in decimals or 0x1A in hex) at the end of the data to be transmitted over the radio [45].
Thus, without using any encoding scheme, the radio cannot differentiate between the
number 26 that might occur as part of the image data that are to be transmitted and the
end of the image data [46]. Thus, the use of an encoding scheme becomes a necessity,
especially when utilizing the BG96 module. Altogether, this is why we make use of the
Base64 encoding scheme, the most commonly used encoding scheme, to transmit our
image over the internet.

5—Transmission of the encoded image over the air through an MQTT protocol:

The encoded image is sent over the air (NB-IoT network) by the BG96 radio utilizing an
MQTT protocol [47]. Owing to its lightweight, low complexity, and easy implementation,
the message queue telemetry transport (MQTT) protocol has become one of the most
popular communication protocols for Machine-to-Machine (M2M) connectivity in the
Internet-of-Things (IoT) paradigm [47]. The MQTT protocol works in a publish-subscribe
fashion and runs on top of the Transmission Control Protocol/Internet Protocol (TCP/IP).
The publish-subscribe mechanism requires a broker, also known as server, to which all the
clients connect and share their information. A client that sends a message, through the
broker, is called a publisher while a client that receives a message, through the broker, is
called a subscriber. The broker filters all the incoming messages from all the publishers
and distributes them accordingly to the subscribers. More details on the MQTT protocol
architecture an its working can be found in [48]. Since the MQTT protocol supports sending
a maximum payload of 1548 bytes [45], images of larger size cannot be transmitted in a
single communication transaction. To overcome this, an algorithm running inside the STN
breaks down each image into a grid of patches, each of 1500 bytes, such that these patches
are dispatched separately with a header indicating its order in the source image. This is
shown on the left side of Figure 8. The number of communication transactions that are
required to send an image that is larger than the minimum transaction of ca. 1500 bytes
size is given as Equation (1). Furthermore, the re-transmissions in NB-IoT (where up to
128 repetitions are possible in the uplink communication) ensures the successful reception
of each segment at the receiver end, even in low coverage areas [49].

#_communication_transactions =
⌈

image_size (kB)
1.5

⌉
(1)

3 2 1

6 5 4

9 8
7

4
1

7

N patches

(transmitted)

7
4

1

N patches

(received)
Input Image

(splitted in patches)

Ouput Image

(recombined)

Client (publisher) end Server (subscriber) end

Figure 8. Splitting of an image into patches (at the publisher end) and its reconstruction (at the server
end) procedure.
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3.3. MQTT Broker, Image Reconstruction and an Application Running over the SN

A python-based HBMQTT broker [50] supporting a full set of MQTT 3.1.1 protocol
specifications, runs over the SN and is accessible to any physical/virtual client through an
IP address and a port. Since the image from STN is received in patches, a -Python-based
image-reconstruction algorithm combines all these received patches in proper order to
re-construct the encoded image as sent from STN.

The application, used as an example, monitors a parking lot in terms of the authorized
vehicles. The collected images contain detailed information of the entering vehicles such
as their type, color and more specifically their license plate numbers. These images are
compared against a database of authorized vehicles. When an unknown vehicle is detected,
the security services are notified with the visual description of the front of the vehicle.
The image processing performed at the edge node (more specifically, the smart gateway)
reduces the size of the images by (i) extracting the region of interest (front of the vehicle)
and (ii) decreasing the number of colors. While (i) is bound by the contours of the front of
the vehicles, (ii) is more flexible and we have explored various numbers of colors (K value in
the K-Means algorithm) and identified that K = 12 is a good trade-off between reducing the
image size while keeping sufficient quality regarding the license plate number and visual
description of the front of the vehicle. In general, there could be a number of use-cases
where image transmission would be required by applications such as [16,51,52], etc.

4. On-Field Experimental Trials with Energy/Time Consumption Evaluations

The field-deployed DVN is installed at the entrance barrier of Tallinn University of
Technology (TalTech) campus and is configured to generate images of an approaching
vehicle with different resolutions, i.e., (i) 1600 × 1200 full-resolution image, (ii) 800 × 600
medium-resolution image, (iii) 640 × 480, and (iv) 320 × 240 low-resolution images.
Examples of these on-field images are shown in Figure 9 with their details given in Table 1.

(a) Resolution type (4:3 aspect ratio):
UXGA (1600× 1200), size: 360 kB approx.

(b) Resolution type (4:3 aspect ratio):
SVGA (800 × 600), size: 120 kB approx.

(c) Resolution type (4:3 aspect ratio):
VGA (640 × 480), size: 88 kB approx.

(d) Resolution type (4:3 aspect ratio):
QVGA (320 × 240), size: 45 kB approx.

Figure 9. Images of different resolutions and sizes as generated by the field-deployed DVN at the
entrance barrier of the TalTech Campus.
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Table 1. Image details with their resolution, aspect ratio, total number of pixels and their sizes in (kB) when stored in
JPG format.

Resolution Type Resolution (W × H) Aspect Ratio Max. No of Pixels (Max. 2MP) Total Size (kB)

UXGA 1600 × 1200 4:3 1920,000 357.17
SVGA 800 × 600 4:3 480,000 118.89
VGA 640 × 480 4:3 307,200 87.18

QVGA 320 × 240 4:3 76,800 44.79

The DVN after capturing an image of the vehicle transmits it to the GN through
its Bluetooth connectivity. The received image at the GN is fed as an input image to
the modified Tiny-YOLOv3 that extracts the detected vehicle and discards the rest of
the unwanted information, i.e., bytes that could cause significant costs in terms of the
communication and energy cost of the radio. Although this cropped-out image has a
lower resolution as compared to its source image, its quality in terms of the number of
associated colors remains the same. For example, for an input UXGA image (i.e., Figure 9a),
the corresponding detected and extracted images are shown in Figure 10a,b, respectively.
Since the output images from Tiny-YOLOv3 for the rest of images as shown in Figure 9b–d
look the same, they are omitted from the display. However, their details are summarized in
Table ??. For example, the first row in Table ?? indicates that an input image of 1600 × 1200
resolution and 357.17 kB size is reduced to an image of 513 × 355 resolution and 66.97 kB
size, i.e., 81% reduction in the size of the source image thanks to TINY-YOLOv3 extraction.

(a) Detected Vehicle: original Image
Resolution (1600× 1200), size: 360 kB approx.

(b) Cropped out vehicle: cropped image
resolution (513× 355), size: 66.97 kB approx.

Figure 10. Output images from TINY-YOLOv3 algorithm: (a) detected vehicle and (b) cropped-
out vehicle.

Table 2. Images with their input/output properties (resolution, size in kB) and percent reduction in size when processed in JPG format
before and after the application of TINY-YOLOv3.

Input Image (JPG)
Resolution

Detected Vehicle (JPG)
Resolution

Input Image
Size (kB)

Extracted Image
Size (kB)

Percent Reduction in Size
Thanks to Cropping

1600 × 1200 513 × 355 357.17 66.97 81%
800 × 600 260 × 175 118.89 20.51 82%
640 × 480 206 × 138 87.18 14.35 83%
320 × 240 105 × 67 44.79 4.60 89%

The cropped-out image from Tiny YOLO-v3 is fed as an input to the K-means cluster-
ing algorithm for compression based on the reduction in its number of colors into K number
of colors (i.e., K clusters). The output images from the K-means clustering algorithm for
K = 5, 10, 12, and 20 with an input image of 513x355 resolution are shown in Figure 11a–d,
respectively. For input images of other resolutions, the details in terms of their total number
of colors, sizes and the corresponding output images from K-means clustering algorithm in
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terms of K number of colors and their resulting size(s) are summarized in Table 3. For ex-
ample, the second column in Table 3 details the output images from the K-means clustering
algorithm for an input image of 513 × 355 resolution for different K values. So, when it is
in all of its 25,512 colors (output from Tiny YOLO-v3), it occupies 66.97 kB (as indicated
by the third row and third column). However, when it is reproduced in only 12 colors (as
indicated by the fifth row and third column), its size is reduced to 32.0 kB, almost half the
original size. Thus, as the number of colors in the source image decreased (down the rows
in first column), the corresponding size of the output images from K-means clustering
algorithm decreases (in the corresponding size column).

(a) Output image from the K_Means algorithm
for K (colors) = 5, Size: 27.1 kB approx.

(b) Output image from the K_Means algorithm
for K (colors) = 10: Size: 31.6 kB approx.

(c) Output image from the K_Means algorithm
for K (colors) = 12: Size: 32 approx.

(d) Output image from the K_Means algorithm
for K (colors) = 20: Size: 34 kB approx.

Figure 11. Output of the K_Means algorithm for an input image with a resolution of 513 × 355 pixels,
total number of pixels = 182,115, total number of unique colors = 25,512 and an input size = 66.97 kB.
(a) K = 5, (b) K = 10, (c) K = 12, and (d) K = 20. Note: the number plate in each output image from
K_Means algorithm is mosaicked for display in this work for security reasons. However, the real
application demands a visible number plate of the entering vehicle for identification.

The output image from the K-means clustering algorithm is then encoded into Base64
format for the reasons discussed in the previous section. After encoding, the image is split
up into chunks, each of 1500 bytes, for possible transmission over the NB-IoT radio as
a single transmission. The number of these chunks and their corresponding number of
transmissions depend upon the total size of the image that is to be transmitted and can be
derived from Equation (1).
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Table 3. K-means clustering on images of various resolutions, colors and sizes and the resulting
images with K number of colors (clusters) and their output sizes in kB.

Images
from T-YOLOv3

Resolution 1
(513 × 355)

Resolution 2
(260 × 175)

Resolution3
(206 × 138)

Resolution 4
(105 × 67)

K Clusters Color Size Color Size Color Size Color Size

K = all colors 25,512 66.97 14,503 20.51 11,340 14.35 4830 4.60
K = 20 20 34.1 20 11.1 20 8.0 20 3.1
K = 12 12 32.0 12 10.2 12 7.2 12 2.5
K = 10 10 31.6 10 10.1 10 7.0 10 2.3
K = 5 5 27.1 5 8.2 5 5.8 5 2.1

color: No. of colors in the image, Size: given in kB. K = 12 (in bold font) corresponds to the best trade-off between
the number of colors and achieved size reductions.

4.1. Computation Cost

To assess the energy consumption of the proposed computations, i.e., execution of
TINY-YOLOv3 followed by the execution of the K-means clustering algorithm, the power
consumption of RPi 3B and its corresponding execution times for these algorithms were
measured. It was found that the mean %CPU utilization of RPi was <10.0% in idle state,
i.e., when no code was being executed while the mean %CPU utilization remained almost
constant during the stress condition, i.e., above 90% during the execution of each individual
implementation, i.e., TinyYOLOv3 and the K-Means clustering algorithmsIt was found that
the mean %CPU utilization of RPi was <10.0% in idle state, i.e., when no code was being
executed while its %CPU utilization reaches to a maximum of 93% in stress condition, i.e,
when the code was being executed. It was also observed that the RPi’s CPU was never
starved out even while processing the highest resolution image on a single core (note: for
experimental purposes we disabled all but one of the cores to assess if it can handle the
code with only one core). As for the current and power consumption, the Raspberry Pi
3B consumed, on average, a mean current of 260 mA at 5.0 V (which is about 1.3 W) in its
idle state and it consumed, on average, a mean current of 350 mA at 5.0 V (which is about
1.75 W) under stress conditions. Table 4 summarizes the energy consumed by Raspberry Pi
3B for processing original images to create their optimized versions.

Table 4. Energy consumed by Raspberry Pi 3B for processing an original image to create an opti-
mized version.

Per Image Energy Consumption of Raspberry Pi 3B

Resolution Computing Power (W) Execution Time (s) Energy Consumed (Wh)

1600× 1200 1.75 22 0.0107
800 × 600 1.75 18 0.0072
640 × 480 1.75 13 0.0063
320 × 240 1.75 6 0.0029

W:Watt, s: seconds, Wh: Watthour.

For processing an image, the RPi took, on average, 22 s to process a 2 MP full-
resolution image (1600 × 1200) while it took, on average, 5 s to process the low-resolution
(320 × 240) image. The RPi thus consumed, on average, 0.010 Wh of energy to process the
high-resolution image while it consumed, on average, 0.0024 Wh of energy to process the
low-resolution image. The per image energy consumption of RPi (i.e., computation energy)
for processing of these images of various resolutions is summarized in Table 4.

4.2. Reducing the Communication Budget of an NB-IoT (BG96) Radio

Thanks to local computations (application of ML algorithms on images), the sizes of
the (source) images are significantly reduced, as summarized in Table 3. These reductions
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in size contribute greatly towards minimizing the communication budget of an NB-IoT
radio, both in terms of its number of transmissions and its energy consumption. Table 5
summarizes the total number of NB-IoT radio transmissions that are required to send
images in their full resolution and colors (with no local computations) in comparison to
sending their optimized versions with reduced resolutions and a reduced number of colors.
For example, an input image of 1600 × 1200 resolution requires a total of 239 transmis-
sions (3rd column) to be transmitted over the radio, while its optimized version image of
513× 355 resolution 12 colors requires only 22 transmissions (6th column) to be transmitted
over the radio, i.e., 90% reductions in the total number of NB-IoT radio transmissions.

Table 5. Reduced numbers of transmissions for transmitting an optimized image with K = 12 colors
in contrast to transmitting an original with K = all colors given in kB.

Original Image
(Full Resolution, and All Colors)

Optimized Image
(Cropped and K = 12 Colors)

Red_Tr
(%)

Resolution Size ReqT Resolution Size ReqT

1600 × 1200 357.17 239 513 × 355 32.0 22 −90
800 × 600 118.90 80 260 × 175 10.2 7 −91
640 × 480 87.18 58 206 × 138 7.2 5 −91.3
320 × 240 44.7 30 105 × 67 2.5 2 −93.3

ReqT: required number of transmissions, RedTr: reduced number of transmissions, ReqT: is obtained by dividing
the size of an image in kB by 1.5 as given in Equation (1).

To calculate the energy consumption of the BG96 radio (in NB-IoT mode) for the
involved transmissions, the baseline energy consumption model for an NB-IoT radio as
detailed in [53] is used, as represented by Equation (2). According to this equation, the total
energy consumption of an NB-IoT radio is the sum of all of its energy states, i.e., Attach,
Tx, Rx, TAU, eDRX and PSM where the energy consumption of each state is obtained by
multiplying its power consumption parameter PSTATE by its timing parameter (TSTATE)
such that:

ETOTAL =
{

PATTACH(avg) × TATTACH
}
+{

(PTx(avg) × TTx) + (PRx(avg) × TRx)
}
+{

PC−DRX(avg) × (TInactivityTimer)
}
+{

PTAU(avg)TTAU
}


+

( {
(PeDRX(avg) × T3324)

}
+{

PPSM(avg) × (T3412 − T3324)
})

(2)

The sensitivity analysis (SA) of this model [53] is briefly discussed in what follows.
First, Table 6 summarizes the power consumption parameters of this model in descend-
ing order and Table 7 summarizes the minimum and maximum values for the timing
parameters of this model as standardized by 3GPP.

Table 6. Power consumption parameters of the BG96 radio.

BG96 Power Consumption Parameters

PTAU PATTACH PTX PRX PCDRX PeDRX PPSM
0.18 W 0.18 W 0.17 W 0.16 W 0.083 W 0.070 W 0.0002 W
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Table 7. Timings parameters of the BG96 radio.

Minimum and Maximum Values for the Timing Parameters

TTAU/TATTACH TTX/TRX TCDRX TeDRX TPSM
18.6 s (on avg.) 0 s–# of transmissions 10 s–60 s 0 s–186 m 0 s–413 d

Then, since the power consumption parameters (Table 6) remain fixed for each state
of the BG96 chipset, the timing parameters (durations) of these states (Table 7) affect
the overall energy consumption of the radio to a greater extent. Considering the short
periods of the Attach, and TAU states of the NB-IoT radio, their impact on the total energy
consumption of the radio is not very significant. However, the transmission time (TTX) and
the reception time (TRX) of the radio affect the overall energy consumption of the NB-IoT
radio to a much greater extent as their duration prolongs. Thus, from the perspective of
the sensitivity analysis of the NB-IoT radio, shortening the duration of its Transmission
state (TTX) reduces its energy consumption to a greater extent and this is what we achieve
through utilizing the ML algorithms at the STN node at the gateway layer, i.e., reducing
the number of transmissions.

Communication Cost

To measure the energy consumption of the BG96 radio (in NB-IoT mode) for transmit-
ting these images (original and optimized) over the publicly available NB-IoT test network,
their associated power graphs were measured using a Keysight Technologies N6705C DC
Power Analyzer (PA) [54]. These power graphs are shown in Figures 12–15 and display
the average power consumption measurements of an NB-IoT (BG96) radio along with
the associated transmission periods for the images, i.e., (a) when transmitted as original
and (b) when transmitted as optimized. For example, Figure 12 shows that the BG96
radio consumed 0.0357 Wh of energy in transmitting the original image of 1600 × 1200
resolution while it consumed only 0.0034 Wh for transmitting its optimized version (with
K = 12 colors). Figure 13 shows that the BG96 radio consumed 0.0102 Wh energy for
transmitting an image of resolution 800 × 600 while it consumed only 0.0014 Wh of energy
in transmitting its optimized version. Similarly, for Figure 14 the consumption of BG96
radio for transmitting an original image of resolution 640 × 480 is 0.0085 Wh where it
consumes only 0.0015 Wh in transmitting its optimized version. Lastly, for Figure 15,
the difference in the energy consumption of the BG96 radio for transmitting an original
image of resolution 320 × 240 and transmitting its optimized version is 0.0008 Wh. Table 8
shows the transmission times of original images in contrast to the transmission times of
optimized images. For example an original image of 1600 × 1200 resolution takes 12.6 min
to be transmitted over the radio while its optimized version image of 513 × 355 resolution
in 12 colors only take 1.20 min to be transmitted over the radio, a 90% in its transmission
time as indicted by the third row of Table 8. Table 9 summarizes the energy consumption
measurements for BG96 radio for transmitting original images in comparison to transmit-
ting their optimized versions with K = 12 colors. The energy measurement calculation for
each image is obtained by multiplying its average total transmission time (Figures 11–14)
with the transmission power of the radio, i.e., 0.17 W.
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(a) Power graph of the BG96 NB-IoT
module when transmitting an image
(1600 × 1200 pixels, 357.17 kB). A total
of 239 transmissions are needed (12.60 m)
with an average power of 0.17 W, which
translates to an energy consumption of
0.0357 Wh

(b) Power graph of the BG96 NB-IoT
module when transmitting an image
(513 × 355 pixels, 32 kB). A total of
22 transmissions are needed (12.60 m)
with an average power of 0.17 W, which
translates to an energy consumption of
0.0034 Wh

Figure 12. The energy consumed for transmitting an original image is (a) 0.0357 Wh and for trans-
mitting its optimized version it is (b) 0.0034 Wh, i.e., 90.5% energy savings.

(a) Power graph of the BG96 NB-IoT
module when transmitting an image
(800 × 600 pixels, 118.9 kB). A total of
80 transmissions are needed (4.05 m)
with an average power of 0.17 W, which
translates to an energy consumption of
0.0102 Wh

(b) Power graph of the BG96 NB-IoT
module when transmitting an image
(260 × 175 pixels, 10.2 kB). A total of
7 transmissions are needed (34.20 s) with
an average power of 0.17 W, which
translates to an energy consumption of
0.0.0016 Wh

Figure 13. The energy consumed for transmitting an original image is (a) 0.012 Wh and for transmit-
ting its optimized image it is (b) 0.0016 Wh, i.e., 84.3% energy savings.
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(a) Power graph of the BG96 NB-IoT
module when transmitting an image
(640 × 480 pixels, 87.18 kB). A total of
58 transmissions are needed (3.00 m)
with an average power of 0.17 W, which
translates to an energy consumption of
0.0085 Wh

(b) Power graph of the BG96 NB-IoT
module when transmitting an image
(206 × 138 pixels, 7.2 kB). A total of
5 transmissions are needed (32.40 s) with
an average power of 0.17 W, which
translates to an energy consumption of
0.0015 Wh

Figure 14. The energy consumed for transmitting an original image is (a) 0.0085 Wh and for trans-
mitting its optimized version it is (b) 0.0015 Wh, i.e., 82.3% energy savings.

(a) Power graph of the BG96 NB-IoT
module when transmitting an image
(320 × 240 pixels, 44.79 kB). A total
of 30 transmissions are needed (1.6 m)
with an average power of 0.17 W, which
translates to an energy consumption of
0.0034 Wh

(b) Power graph of the BG96 NB-IoT
module when transmitting an image
(105 × 67 pixels, 2.5 kB). A total of
2 transmissions are needed (18.00 s) with
an average power of 0.17 W, which
translates to an energy consumption of
0.0008 Wh

Figure 15. The energy consumed for transmitting an Original image is (a) 0.0034 Wh and for
transmitting its Optimized image it is (b) 0.0008 Wh; 76.5% energy savings.

Table 8. The reduced transmission period for transmitting an optimized image with K = 12 colors in
contrast to transmitting an original image with K = all colors.

Reduction in the Transmission Period of NB-IoT Radio

Original Image
(All Colors)

Optimized Image
(K= 12 Colors) Red_TrTime

(%)Resolution Size TrTime Resolution Size TrTime

1600 × 1200 357.17 12.60 m 513 × 355 32.0 1.20 m −90
800 × 600 118.90 4.05 m 260 × 175 10.2 34.20 s −82
640 × 480 87.18 3.0 m 206 × 138 7.2 32.4 s −82
320 × 240 44.7 1.6 m 105 × 67 2.5 18.0 s −81

TrTime: transmission time (m: minutes, s: seconds), Red_TrTime: percent reductions in transmission time.
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Table 9. The reduced energy consumption for transmitting an optimized image with K = 12 colors in
contrast to transmitting an original image with K = all colors.

Reduction in the Energy Consumption of the NB-IoT Radio

Original Image
(in All Colors)

Optimized Image
(in K = 12 Colors) ERed (Wh) ERed

(%)Resolution Econ (Wh) * Resolution Econ (Wh)

1600 × 1200 0.0357 513 × 355 0.0034 −0.0323 −90.5
800 × 600 0.0102 260 × 175 0.0016 −0.0086 −84.3
640 × 480 0.0085 206 × 138 0.0015 −0.0070 −82.3
320 × 240 0.0034 105 × 67 0.0008 −0.0026 −76.5

Econ: energy consumed, ERed: energy reduction, ERed (%): energy reduction in percentage, *: Econ is obtained by
multiplying PTx with TTx (For reference see Tables 6 and 7).

4.3. Trade-Offs in the Computation vs. Communication Costs

Table 10 summarizes the overall energy savings per image considering both their
computation and communication cost. For example, when an original image of 1600× 1200
resolution is transmitted from an NB-IoT radio (without any local computation) it con-
sumes 0.0357 Wh (as indicated by the third row of Table 10). On the other hand, when
it is processed locally by the RPi, it consumes 0.0107 Wh in computations (Table 4) and
0.0034 Wh in transmissions (Table 9), i.e., a total of 0.0141 Wh; this is a 0.0216 Wh energy
difference, i.e., a total of 60% energy savings for a single image. Since Table 10 shows
the energy savings per image; these individual energy savings scale-up as a multiple of
the number of images that are processed by the RPi. For example, the RPi processed, on
average, six images of 1600 × 1200 resolution in an hour, i.e., a total of 144 cars entered
the campus in 24 h, and it thus saved on an average 0.20 Wh of energy in 24 h. With this
rate, it can save on average 1.41 Wh of energy in a week and so on. It should also be noted
that these energy savings are the outcome from a single STN at the gateway layer and
these savings could further scale-up as a function of the increasing number of smart nodes
in the network. As a side-note, since a single 100 W PVC solar panel generates around
400 Wh/24 h, a 15/20 W solar panel could also be utilized to power such a system [16].

Table 10. Overall energy savings in transmitting an optimized image (considering both its computing and communication
energy) as compared to transmitting an original image (communication energy only since no computation needed).

Energy Consumption per Original Image vs. Energy Consumption per Optimized Image

Original Image Optimized Image
E_Savings (Wh) (a–b) ES (%)

Resolution ECOMM (Wh) (a) Resolution ECOMP + ECOMM (Wh) (b)

1600 × 1200 0.0357 513 × 355 0.0107 + 0.0034 0.0216 −60.50
800 × 600 0.0102 260 × 175 0.0072 + 0.0016 0.0014 −13.72
640 × 480 0.0085 206 × 138 0.0063 + 0.0015 0.007 −8.23
320 × 240 0.0034 105 × 67 0.0029 + 0.0008 0.002 −5.88

ECOMM: communication energy, ECOMP: computation energy, E_Savings: total energy savings per image, ES (%): percent reduction in
energy consumption.

Finally, Table 11 summarizes the reductions in the transmission times for original
images vs. the transmission times for optimized images. For example, an original image of
1600 × 1200 resolution takes 12.6 min to be transmitted over the air by a BG96 (in NB-IoT
mode) radio while its optimized version (513 × 355 resolution in 12 colors) needs 22 s in
computations and 1.20 min in transmission. This reduces the transmission time of this
single image by 11.3 m, an 89% decrease in transmission time (i.e., 89% faster delivery) of
the image. Figure 16 summarizes the energy and time savings in transmitting optimized
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images of 513 × 355, 206 × 175 and 105 × 67 resolutions as compared to transmitting their
original counterparts of resolution 1600 × 1200, 800 × 600 and 640 × 480, respectively.

Table 11. Overall time savings in transmitting an optimized image (considering both its computing and transmitting time)
as compared to transmitting an original image (transmitting time only since no computation needed)).

Transmission Time per Original Image vs. Transmission Time per Optimized Image

Original Image Optimized Image
T_Savings (a–b) TS (%)

Resolution TCOMM (a) Resolution TCOMP + TCOMM (b)

1600 × 1200 12.6 min 513 × 355 22 s + 1.20 min 11.3 min −89.68
800 × 600 4.05 min 260 × 175 18 s + 34.2 s 3.18 min −78.51
640 × 480 3.0 min 206 × 138 13 s + 32.4 s 2.28 min −76.00
320 × 240 1.6 min 105 × 67 6 s + 18 s 1.20 min −75.00

TCOMM: transmission time, TCOMP: computation Time(min: minutes, s: seconds), ES (%): percent reduction in transmission time.
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(a) Energy saved in transmitting an optimized image
(considering both its computing and communication energy
(orange block)) as compared to transmitting an original image
(considering its communication energy only since no computation
is needed (blue block)). The red dots represents the total energy
saved in Wh during transmission.
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(b) Time saved in transmitting an
optimized image (orange block) as
compared to transmitting an original
image (blue block). The red dots show
the total time saved in minutes during
transmission.

Figure 16. The energy and time saved in transmitting an optimized image of resolution 513 × 355 is 0.0216 Wh and 11.3 min.
Similarly, energy and time saved in transmitting an image of resolution 206 × 175 is 0.0014 Wh and 3.18 min, and energy
and time saved in transmitting an image of resolution 105 × 67 is 0.002 Wh and 1.2 min, respectively.

5. Conclusions

Our application verifies our proposed scheme for image transmission via NB-IoT,
and this supports the industrial and academic trend which promotes NB-IoT as the future
solution for IoT infrastructure.

Our on-field investigation showed promising results in terms of green Internet of
Things, particularly ML for green and smart communications. Our results showed that
potentially significant energy gains can be achieved by eliminating the unwanted data from
transmitting over the IoT networks. We showcased this with our present setup operating
on a publicly available NB-IoT network. We also showed that smart transmissions pays in
terms of the increased responsiveness of the system.

Consequently, machine learning techniques running over the edge of any IoT in-
frastructure can potentially revolutionize the future IoT technologies that may include
LoRAWAN, Sigfox, NB-IoT, CatM etc. The inference being done on the edge would save
sending a huge amount of data over the IoT networks and would save significantly in
terms of power, energy and timings of the over all IoT infrastructure.
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In the future, we plan to optimize the operation of an NB-IoT radio in terms of its
various operating states to improve its energy consumption, depending on the required
latency and battery lifetime of a given application.
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