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Abstract
A few decades ago, drug discovery and development were limited to a bunch of medicinal chemists working in a lab with 
enormous amount of testing, validations, and synthetic procedures, all contributing to considerable investments in time and 
wealth to get one drug out into the clinics. The advancements in computational techniques combined with a boom in multi-
omics data led to the development of various bioinformatics/pharmacoinformatics/cheminformatics tools that have helped 
speed up the drug development process. But with the advent of artificial intelligence (AI), machine learning (ML) and deep 
learning (DL), the conventional drug discovery process has been further rationalized. Extensive biological data in the form 
of big data present in various databases across the globe acts as the raw materials for the ML/DL-based approaches and helps 
in accurate identifications of patterns and models which can be used to identify therapeutically active molecules with much 
fewer investments on time, workforce and wealth. In this review, we have begun by introducing the general concepts in the 
drug discovery pipeline, followed by an outline of the fields in the drug discovery process where ML/DL can be utilized. 
We have also introduced ML and DL along with their applications, various learning methods, and training models used to 
develop the ML/DL-based algorithms. Furthermore, we have summarized various DL-based tools existing in the public 
domain with their application in the drug discovery paradigm which includes DL tools for identification of drug targets and 
drug–target interaction such as DeepCPI, DeepDTA, WideDTA, PADME DeepAffinity, and DeepPocket. Additionally, we 
have discussed various DL-based models used in protein structure prediction, de novo design of new chemical scaffolds, 
virtual screening of chemical libraries for hit identification, absorption, distribution, metabolism, excretion, and toxicity 
(ADMET) prediction, metabolite prediction, clinical trial design, and oral bioavailability prediction. In the end, we have 
tried to shed light on some of the successful ML/DL-based models used in the drug discovery and development pipeline 
while also discussing the current challenges and prospects of the application of DL tools in drug discovery and development. 
We believe that this review will be useful for medicinal and computational chemists searching for DL tools for use in their 
drug discovery projects.

Keywords Deep learning · Drug discovery · ADMET · Hit identification · Lead optimization · Virtual screening · Drug 
development · Property prediction

Introduction

The term artificial intelligence (AI), commonly referred to 
as the intelligence demonstrated by machines, is used to 
indicate instances in which a system/machine show cog-
nitive abilities like humans, such as learning and problem 

solving, have been considered to be a game-changer across 
all industries, both academic and commercial (Nayak and 
Dutta 2017). The World Economic Forum stated that the 
amalgamation of big data and AI would kick start the fourth 
industrial revolution that can radically alter the practice of 
scientific discovery (Fouad 2019). Like any other sector, 
the pharmaceutical sector is considering the unrealized 
prospects of AI to address key problems influencing drug 
discovery and productivity (Mak and Pichika 2019). In 
the pharmaceutical industry, AI started gaining popularity 
when AI-based models demonstrated biological/chemical 
property predictions with great accuracy in a short time, 
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especially DL architectures (Chen et al. 2018a). Moreover, 
both advancements in hardware and the ease of availability 
of large datasets have contributed to the tremendous growth 
in the application of AI in pharmaceutical research (Dash 
et al. 2019).

The majority of the problems arising during the process 
of drug discovery include unfavorable absorption, distribu-
tion, metabolism, excretion, and toxicity (ADMET) proper-
ties, which have been known to be a major cause of failure 
of the potential molecules in the drug development pipe-
line, contributing to large consumption of time, capital and 
human resources (Lin et al. 2003). This has increased the 
interest in the early-stage prediction of ADMET proper-
ties of drug candidates so that the success rate of a com-
pound reaching the later stages of drug development can 
be enhanced (Pathania et al. 2021). AI has been effectively 
utilized to develop models and prediction tools for ADMET 
properties. Apart from property predictions, AI has also 
contributed to early phases of drug discovery like de novo 
designing of chemical compounds and peptides (Bender and 
Cortes-Ciriano 2021). Moreover, companies involved in 
clinical research have ascertained that revising the research 
strategies by introducing AI-based techniques has resulted 
in greater success rates in both preclinical and clinical trials 
(Harrer et al. 2019; Krittanawong et al. 2019; Woo 2019b). 
Worth mentioning is the contribution of AI to precision 
medicine, which has been helping researchers maximize 
patients’ benefit and lower the side effects caused due to 
the prevalent traditional “one size fits all” approaches. The 
new revolutionizing AI methodologies have been helping in 

characterizing different subgroups of diseases, patient strati-
fication, and studying the underlying factor unique to the 
specific form of the disease (Gardner et al. 2020).

This review mainly focusses on the DL-based tools which 
are used in different stages of the drug discovery pipeline. 
We have given a general introduction to drug discovery pro-
cess, Machine learning and DL techniques, followed by spe-
cific examples and discussion on various DL and AI-based 
tools for drug development. We also pointed out some nota-
ble success stories in the use of AI and DL in drug develop-
ment and medicine.

Introduction to drug discovery and development

Drug discovery and development is a complex process that 
aims to identify and develop novel therapeutics against 
validated biological target intrinsically associated with a 
particular disease of interest (Mohs and Greig 2017). An 
overview of drug discovery and development is shown in 
Fig. 1. It encompasses the whole process of bringing a drug 
molecule into the market, initially starting with hit identi-
fication and ending with clinical trials phases after being 
approved by regulating bodies such as the Food and Drug 
Administration FDA (Deore et al. 2019). Traditionally, the 
drug discovery process starts with identification of bimo-
lecular targets in the body which have been validated to 
play a vital role in the disease pathology. This is followed 
by high-throughput screening experiments in which large 
chemical libraries are screened against the selected target 
using appropriate assay (Kerns and Di 2003). The main 

Fig. 1  Overview of the drug discovery and development process. 
The process includes various stages such as (1) target identification, 
in which biologically relevant targets for a particular disease condi-
tion is selected for drug development, (2) high-throughput screening 
of compound library to identify hit compounds, (3) lead identification 
and lead optimization, in which the identified hit molecules are opti-
mizing for their potency, selectivity and ADMET properties, (4) pre-
clinical studies, in which the optimized molecules are tested in ani-

mal models to study their pharmacokinetic properties and therapeutic 
potential, and finally, (5) clinical trials, where the drug candidates are 
tested on human subjects in four phases to establish their safety and 
efficacy followed by regulatory approval, molecules which showed 
good pharmacokinetic properties, potency, therapeutic efficacy and 
least side effects are approved by regulatory agency for marketing and 
a drug become available in the clinic
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objective of this high-throughput screening is to find prom-
ising compounds which have the potential to be developed 
into a drug candidate to treat the disease under consideration 
(Wildey et al. 2017). After high-throughput screening, the 
chosen compounds, often referred to as hit compounds, are 
analyzed for their biological activity via in vitro studies. 
The most potent compounds obtained from in vitro activ-
ity data are developed into lead compounds through lead 
optimization process. During the lead optimization phase, 
the compounds are modified to improve its bioavailability, 
solubility, partition coefficient, and stability as these factors 
can have direct impact of the drug therapeutic efficacy and 
potency. The molecules with optimized ADMET properties 
are then further evaluated for their effectiveness using suit-
able animal models (Hooijmans et al. 2018). The optimized 
compounds are tested in human subjects in order to validate 
and confirm the potency, therapeutic efficacy, ADMET and 
possible adverse drug reactions through a four step process 
called clinical trials, in which each step is carried out in 
varying number of human subjects in a randomized control 
manner (Hefti 2008). If the drug candidate yields desired 
results in the clinical trial phase, then it is approved by the 
regulating bodies like FDA, after which the drug is released 
into the market (Fletcher et al. 2022).

Introduction to machine learning and deep learning

ML is a method of data analysis involving development of 
new algorithms and models capable of interpreting multi-
tude of data (Elbadawi et al. 2021; Dara et al. 2022). While 
considering ML, one must not confuse it with AI, as accord-
ing to the FDA “all ML techniques are AI techniques, but not 
all AI techniques are ML techniques”. Furthermore, FDA 
also defines AI as “the science and engineering of making 
intelligent machines”, and ML as “an AI technique that can 
be used to design and train software algorithms to learn from 
and act on data” (Toh et al. 2019).

The algorithms used in recent years have successively 
improved their performance with the increase in both the 
quantitative and qualitative aspects of data available for 
learning (Stephenson et al. 2019; Lavecchia 2015). ML is 
considered as one of the best options available when applied 
to solve problems for which a big amount of data and vari-
ous variables are available to the individual but a model or 
formula relating these various variables amongst themselves 
along with the expected result is not known (Musella et al. 
2021; Dara et al. 2022; Vamathevan et al. 2019). However, 
when drug discovery moved into an era of a large amount 
of data, ML approaches evolved into DL approaches, which 
are a more powerful and efficient to deal with the massive 
amounts of data generated from modern drug discovery 
approaches (Zhang et al. 2017; Jing et al. 2018a; Chen 
et al. 2018a). ML allows a computer system to make some 

predictions or decisions, based on its past experience, with-
out being explicitly programmed. In contrast to the tradi-
tional physical models that rely on particular physical equa-
tions, the ML technique uses several algorithms to create a 
pattern, leading to the prediction of chemical, biological, and 
physical properties of the novel compounds. This is mainly 
done using two learning techniques, supervised learning 
and unsupervised learning techniques. Supervised ML is 
the construction of an algorithm capable of generating pat-
terns and hypotheses to predict the fate of future instances, 
depending on the data provided (Osisanwo et al. 2017). In 
brief, supervised learning technique uses the input data to 
train the algorithm and create a decision boundary to clas-
sify or predict the outcomes in any similar circumstances. 
The supervised ML algorithms can be further classified into 
classification algorithm and regression algorithm (Zhang 
2014).

The classification algorithm aims at categorizing the data 
based on the training dataset. One of the common appli-
cations of classification algorithm in bioinformatics is the 
identification of gene coding regions in a Genome. These 
tools are considered to be significantly flawless as several 
classification algorithms are used to train from a given set 
of datasets and are further used to classify the gene coding 
regions in a genome (Larranaga et al. 2006). The regres-
sion algorithm aims at predicting the fate of future instances 
depending on the data in the training dataset. It uses vari-
ous techniques such as rule-based techniques, logic-based 
techniques, instance-based techniques, stochastic techniques, 
etc. to make accurate predictions. Recently, the regression 
algorithms are being widely used to predict the novel targets 
or structures such as the protein–protein interaction sites. A 
detailed study about regression algorithms have witnessed 
some promising results with an accuracy of above 80% to 
identify the structures in proteomics (Aumentado-Armstrong 
et al. 2015).

One of the biggest advantages of the supervised learning 
algorithms is that it can be trained specifically by setting 
an ideal decision boundary, the user gets the authority to 
determine the number of classes, and the input data are well-
labeled which makes the output of the test algorithm to be 
more accurate and reliable. While on the other hand, some of 
the disadvantages of supervised learning techniques include 
the classification of huge datasets, which can be sometimes 
be challenging and time consuming, overtraining of decision 
boundaries due to the unavailability of appropriate exam-
ples, which can make the output of the test algorithm to be 
inaccurate. Moreover, data preparation and pre-processing 
of the input data can also be a challenging task (Kotsiantis 
et al. 2007).

The unsupervised ML aims at interpretation and learning 
an abstract representation of the given data in the absence of 
any predefined labels, or phenotypes. Unsupervised learning 
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works by clustering data points into patterns to obtain mean-
ingful biological information. Unsupervised learning can 
be broadly classified into clustering, which relies on the 
principle of the grouping of unlabeled data based on their 
similarities and association, which involves discovering 
some relationships between the attributes of unlabeled data 
points. Some of the commonly used clustering algorithms 
include hierarchical or k-means clustering (Parasa et al. 
2021). The clustering technique splits the unlabeled dataset 
into groups based on their similarities. For a huge amount 
of data, k-means clustering is commonly used to form clus-
ters of small molecule profiles, on the basis of their profile 
similarity (Tavallali et al. 2021). The k-means clustering and 
the corresponding heat maps are comparatively simple and 
require little computational resources. The hierarchical clus-
tering is often used in gene expression profiling or genetic 
interaction studies which provides a broad visualization of 
the data, hence helping in better analysis (Shetty and Singh 
2021).

One of the major advantages of unsupervised learn-
ing techniques over supervised learning algorithms is that 
it is less complex as compared to supervised learning as 
training of the dataset is not required and sorting of raw 
data and understanding the different models of learning 
makes it useful in real time. Also, it is much easier to get 
unlabeled data from a computer automatically rather than 
labeled data which needs human involvement (Brydges 
et al. 2010). Some of the major disadvantages of unsu-
pervised learning techniques includes data sorting which 
may not be precise as the data used is not labeled which 
may lead to less accurate and unpredictable results. Due 
to the absence of any prior knowledge or training set of 
data, the spectral classes do not always correspond to the 
informational classes, hence spectral properties of classes 
may change with time which makes the class information 
to vary while moving from one image to another (Dridi 
2021). All these learning techniques mentioned above have 

contributed a lot in making the slow, tedious and expen-
sive process of drug discovery to be efficient, fast and cost 
effective.

DL is a subset of ML based on artificial neural networks 
that use multiple layers to progressively extract higher 
level features from raw input. Due to its ability to learn 
from data and the environment, DL and neural network 
(NN), also known as artificial neural networks (ANN) 
named after its artificial representation of the working of 
a human nervous system, have become one of the most 
successful techniques in various AI research areas (LeCun 
et al. 2015; Min et al. 2017). It has shown superior perfor-
mance over other ML methods and has recently emerged 
as one of the most promising tools in the field of phar-
maceutical research where its application is not only lim-
ited to the bioactivity predictions but has far exceeded in 
addressing numerous problems in the field of drug design 
and discovery (Ongsulee 2017). Table 1 enlists some of 
the extensively used tools in the field of DL (Gupta 2013; 
Baskin et al. 2016; Abiodun et al. 2018).

Figure 2 represents a typical NN with the working of a 
single neuron. Artificial neural network is a structure which 
has got several input vectors I = [i1, i2, i3, …, in] and an 
appropriate output vector O = [o1, o2, o3,…, om] along with 
several connected elementary units, known as neurons. The 
network initially receives information in the form of input 
vectors and aims to process or learn from it. From here, the 
data go through one or more hidden layers which understand 
the hidden patterns in the data using calculations and carry 
out transformations accordingly. The activation function or 
the transfer function also acts upon the processed data to 
capture the non-linear relationship between the inputs and 
also convert it to a more usable output (Gurney 2018). The 
performance of an ANN depends on the number of layers, 
the number of neurons, transfer function, the presence of 
a bias, and the way neurons are interconnected (Abraham 
2005; Wang 2003; Despotovic 2012; Puri et al. 2016).

Table 1  Some of the packages 
that are extensively used 
for practicing deep learning 
techniques (Jing et al. 2018b)

Package Programming language Reference link

Tensorflow Python https:// www. tenso rflow. org/
Torch Lua http:// torch. ch/
Theano Python http:// deepl earni ng. net/ softw are/ theano/
Caffe C++/Python http:// caffe. berke leyvi sion. org/
DL4J Java https:// github. com/ deepl earni ng4j/ deepl earni ng4j
Paddle Python http:// paddl epadd le. org/
Keras Python https:// keras. io/
CNTK C++/Python https:// www. micro soft. com/ en- us/ cogni tive- toolk it/
MxNet R/Python/Julia http:// mxnet. io/
AlexNet MATLAB https:// www. mathw orks. com/ produ cts/ matlab. html
Pytorch Python http:// pytor ch. org/
DeepChem Python https:// deepc hem. io/

https://www.tensorflow.org/
http://torch.ch/
http://deeplearning.net/software/theano/
http://caffe.berkeleyvision.org/
https://github.com/deeplearning4j/deeplearning4j
http://paddlepaddle.org/
https://keras.io/
https://www.microsoft.com/en-us/cognitive-toolkit/
http://mxnet.io/
https://www.mathworks.com/products/matlab.html
http://pytorch.org/
https://deepchem.io/
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Deep learning tools for drug discovery

To realize the enormous potential of DL algorithms in drug 
discovery and development, computer scientist and medici-
nal chemist have found a common point to work together to 
develop DL-based tools, predictive models and algorithms 
which can be used in the drug discovery and development. 
Here, we have summarized some of the DL-based tools 
which are developed to aid the drug discovery and develop-
ment process.

Deep learning tools for predicting drug–target 
interactions and binding affinity

Drug–target interaction refers to the interactions between 
chemical compounds and bimolecular drug targets in the 
human body and it plays an extremely important role in 
drug discovery and development as the therapeutic effect 
is a result of this interaction. The very small and limited 
knowledge about drug–target interactions based on wet-lab 
experiments have caused a huge gap between the known and 
unknown drug–target pairs which has increased the interest 
in the search for efficient methods of drug–target interac-
tions (DTI) prediction. The traditional practices for DTI 
prediction have been facing monetary and technical limita-
tions, while computational strategies have been proved to 
show efficiency in doing the same. At present, the major 
computational approaches used in DTI prediction includes 

ligand-based approach, docking simulation, chemo-genomic 
approach, text mining methods, ML/ DL based methods, 
and network-based methods, a branch diagram about vari-
ous tools and approaches is given in Fig. 3 (Luo et al. 2017; 
Chen et al. 2018b). Some of the DL-based methods for 
drug–target interaction are discussed below.

The computational prediction of drug target in reaction 
can be largely classified into DTI prediction methods and 
drug target binding affinity (DTBA) prediction methods. 
The DTI prediction methods contains docking simulations, 
gene ontology-based methods, ligand-based methods, text 
mining-based methods and ML/DL/Network-based methods. 
DTBA-based methods are further classified into structure 
based and non-structure based whereas structure based are 
further classified into classical scoring function methods and 
ML-SF/DL-SF methods and classical scoring function meth-
ods are further classified into knowledge based, empirical SF 
based and Force-field SF-based methods.

DTI‑CNN

The convolutional neural network (CNN) is a class of 
NN, commonly used to analyze visual imagery. DTI-CNN 
(Peng et al. 2020; Li et al. 2022; Ding et al. 2021) is a sim-
ple DL-based drug–target interaction prediction tool that 
is said to outperform the existing state-of-the-art methods 
by the intelligent interaction of three components namely, 
(1) heterogeneous-network-based feature extractor, (2) 

Fig. 2  Schematic diagram of working of a single neuron in artifi-
cial neural networks (ANN). It denotes the working performance of 
an ANN that depends on the number of layers, number of neurons, 
transfer function, presence of a bias, and the way neurons are inter-

connected. The figure denotes the various input (i1, i2..) and output 
vectors (v1, v2..) and their interconnections are depicted as neurons. 
These interconnected neurons help maintain the architecture of the 
ANN
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denoising-auto encoder-based feature selector, (3) CNN-
based interaction predictor (Peng et al. 2020; Li et al. 
2022). As the model is based on random walk with restart 
(RWR) and denoising auto encoder (DAE) model, it is 
capable of coping up with low-dimensional feature vec-
tors and noisy incomplete and high-dimensional features 
from heterogeneous data sources, including drug, pro-
teins, side-effects and diseases information. The general 
workflow of DTI-CNN-based DTI prediction is shown 
in Fig. 4.

The first step in using DTI-CNN for DTI prediction 
includes the construction of a heterogeneous network by 
the integration of a large number of drugs and protein 
related information sources and using the RWR model to 
obtain the initial drug feature vector and protein feature 
vector. In the next step with the use of the DAE model, 
the low-dimensional representations of the high-dimen-
sional features of drugs and proteins are obtained. In the 
final step, under the known drug–protein interactions, 
the samples are divided into positive samples and nega-
tive samples. The CNN model is then used to predict the 
association between each pair of drugs and proteins using 
the feature vector of drug–protein pairs (Fig. 4). Another 
such DL-based tool called FRnet-DTI, which is a CNN-
based classifier for drug target interaction prediction and 
uses an auto-encoder-based feature manipulation (Rayhan 
et al. 2020, 2018).

DeepCPI

DeepCPI is a tool based on novel framework that uses DL 
techniques along with unsupervised representation learning 
meant for prediction of DTI (Wan et al. 2019). At first, it is 
said to use latent semantic analysis and Word2vec methods 
to learn the low-dimensional feature representations of both 
the compounds and proteins in an unsupervised manner. 
Then the feature embedding of the compounds and protein 
from the first step is fed to the DL network for successful 
prediction of the drug–protein interaction. The development 
of efficient DTI predicting models is still under progress due 
to the large number of limitations it faces. For example, in 
the case of docking simulation, the 3D structure of the target 
protein is very much required, but is not always available. 
Moreover, it is evident that in comparison to the DTI, the 
strength of the binding (binding affinity) between a drug and 
its target is much more informative for drug development 
process which helps to gain deeper insights into the intermo-
lecular forces operating between them (Thafar et al. 2019b).

The newly developed DL algorithms to predict DTBA 
have shown superior performance in comparison to conven-
tional ML algorithms. These DL-based algorithms use sim-
plified molecular input line entry system (SMILES) which 
is a compact text format of representation of the molecu-
lar structure in which each chemical entity is mapped to a 
single ASCII strings of 20–90 characters, ligand maximum 

Fig. 3  Branch Diagram for various computational drug–target inter-
action predictions. Various DL techniques used for target prediction 
and identification is depicted in the figure. These techniques are gen-
erally classified as either drug target interaction predictions or drug–
target binding affinity prediction. DTBA techniques are further clas-

sified into structure-based and non-structure-based techniques which 
makes use of ML and DL, while DTI prediction tools are classified as 
docking based, ligand based, ML/DL based, gene based and text min-
ing based methods



3 Biotech (2022) 12:110 

1 3

Page 7 of 21 110

common substructure (LMCS), extended connectivity fin-
gerprint (ECFP) or a mixture of the three as an input data 
or as drug features. They also use different neural network 
(NN) types that have their own unique strengths which allow 
them to be suitable for a varied range of applications (IJzer-
man and Guo 2019).

DeepDTA

The first DTBA predicting DL-based approach is DeepDTA 
(Öztürk et al. 2018) which is a non-structure-based method 
and uses SMILES for input data for drugs. The amino acids 
and the protein sequences are similarly encoded in SMILES. 
The CNN used in DeepDTA has three 1D convolutional lay-
ers which follow max-pooling functions which are referred 
to as the first CNN block and are applied on the drug embed-
ding to learn latent features. For the protein embedding, a 
similar CNN block is constructed and applied to it. Deep-
DTA is said to tune a large number of hyper-parameters 
including number of filters, filter length of drug and protein, 
batch size, optimizer, and learning rate in the validation step. 
This model aims to minimize the difference in the values 
of the predicted and real DBTA in the training period. The 
limitations faced in this model due to the usage of CNN can 
be overcome by using much more appropriate architectures, 
which can learn from long protein sequences, like the long-
short term memory (Guo et al. 2019).

WideDTA

WideDTA is a CNN DL model that uses four text-based 
sources of information as input which include, (1) ligand 
SMILES (LS), (2) protein sequences (PS), (3) ligand maxi-
mum common substructure (LMCS), (4) protein domains 
and motifs (PDM). WideDTA differs from DeepDTA as it 
represents LS and PS as a set of words instead of full-length 
sequences. In PS, a word is three-residues in the sequences, 
while in LS it is an eight-residue. The makers claim that the 
features of the protein that are represented by shorter lengths 
of residues are not detected in full-length sequences due to 
the low signal-to-noise ratio and hence the WideDTA is a 
word-based model instead of a character-based one (Öztürk 
et al. 2019; Thafar et al. 2019a).

PADME

The DL-based DTBA predicting method which uses 
drug–target features and fingerprints to different DNN, is 
called protein and drug molecule interaction prediction 
(PADME). When extended-connectivity fingerprint is 
used as the input for the representation of drugs, the tool is 
known as PADME-ECFP. The other PADME version inte-
grates molecular graph convolution into the model to learn 
the latent features of drugs from SMILES by adding one 
more graph convolution neural network and is represented 
as PADME-GraphConv. Protein sequence composition 

Fig. 4  Flowchart for prediction of drug–protein interaction using 
DTI-CNN. The CNN-based drug–target prediction tool makes use 
of the available drug–protein interaction data. Using which, the algo-
rithm extracts similarity matrix of the drug and protein network and 

converts them into drug and protein features. These acts as input for 
the prediction algorithm, as it uses the convolutional network to make 
a max pooling layer. The max pooled layer is later used to predict the 
drug–protein interaction score
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descriptors are used by both versions which contain rich 
information for representing target proteins. Once the feature 
vectors are generated, it is fed into the simple feedforward 
neural network for a particular drug–target pair for predict-
ing the DTBA (Feng et al. 2018).

DeepAffinity

The DL DTBA predicting model which only relies on 
SMILES for representing drugs is known as DeepAffin-
ity. To represent the proteins, DeepAffinity relies on the 
structural property sequence representation that annotates 
the sequence with structural information, which are shorter 
than the other representations, provides structural details 
efficiently and gives higher resolution of the sequences, 
also the regression task is highly benefited. Using a famous 
RNN model, seq2seq, the representations are encoded into 
an embedding form. At later stages of data processing, the 
RNN encoders are coupled with a CNN model whose output 
representations for the drug and target are concatenated and 
to get the final DTBA output values are fed into the FC lay-
ers. The complete model which includes data representation, 
embedding learning, and joint supervised learning trained 
from end to end. Basically, the RNN-CNN pipeline has been 
found to produce high accuracy results when compared to 
other ML-based methods used on the same dataset (Karimi 
et al. 2019).

Deep docking

Virtual prediction of protein ligand interaction by the help of 
docking can tremendously reduce the time required for the 
process of new drug discovery and development (Morris and 
Lim-Wilby 2008; Meng et al. 2011), but the speed of virtual 
screening-based DTI prediction is offered a limitation due to 
the large chemical library with billions of compounds. Thus, 
a much faster screening technique is required to tackle and 
filter such huge amount of data, deep docking is a new and 
novel method that works on the principles of DL platform 
which is capable of docking billions of molecular structures 
in a quick and precise manner (Gentile et al. 2020). The 
main objective of deep docking is to reduce the database 
of billions of compounds into a few millions of subset of 
data while retaining the extensive majority of the possible 
virtual hits which can then be carried forward for the actual 
docking studies or can be further processed or refined with 
the combination of other methods of virtual screening to 
further narrow down the data containing more concentrated 
virtual hits. Deep docking relies on the deep neural network 
(DNN) training where the training set is expanded along 
with the predicted hit molecules form each previous steps of 
interpretation gradually making more rigorous cutoff toward 
the end of the calculation. It employs the use of quantitative 

structure activity relationship (QSAR) models trained on the 
basis of docking scores obtained for the subsets of a chemi-
cal library to predict the docking results for yet to be docked 
compounds and thus eliminate the molecules not showing 
promise to yield a good docking score in a constant manner. 
It utilizes the use of quick computing and large independent 
QSAR descriptors such as 2D molecular fingerprints (Gao 
et al. 2020), as a result of using DL to quickly determine the 
docking scores for a large dataset of compounds for which 
actual docking is yet to be performed. Deep Docking can 
attain up to 100 folds improvement in virtual screening 
speed and about 6000 folds improvement for identification of 
top ranked compounds thereby avoiding the loss of favorable 
virtual hits (Pereira et al. 2016; Gentile et al. 2020).

DeepBAR

DeepBAR is a DL-based binding affinity predicting tool 
developed by the scientists at MIT by combining chemistry 
and ML (Ding and Zhang 2021). The binding free energy 
measures the affinity between a drug molecule and its target. 
To obtain the best drug amongst a given number of potential 
ones, the drug with the lowest binding free energy value 
should be chosen as it will be able to disrupt the protein’s 
normal function effectively.

Therefore, it can be said that fast and accurate calcula-
tion of standard binding free energy has many important 
applications in this drug discovery process. The BAR in 
DeepBAR refers to the Bennett acceptance ratio method. 
BAR is an outdated algorithm that is used to calculate bind-
ing free power. DeepBAR utilizes the Bennet acceptance 
ratio along with the information from different endpoints 
and other intermediate circumstances.

Protein structure prediction

Proteins are the one of the most important biomolecules 
which plays a wide variety of roles in an organism, like 
enzymatic activity, receptor activity, cell signaling, hormo-
nal activities, intracellular transport, etc. Most of the cur-
rently identified drug targets are also protein molecules, 
whose malfunction leads to pathological states. To study 
the function of proteins, it is important to know the structure 
of the proteins, as the protein structure usually determines 
its function, activity and also pathological conditions. But 
the process of identifying the structure is not very straight 
forward and it requires experimental procedures like X-ray 
crystallography, NMR spectroscopy, cryo electron micros-
copy, etc., which are time consuming and in most cases, 
very difficult to perform. The traditional method of experi-
mental data threw light on the structures of around 100,000 
unique proteins, which is just a fraction of the known pro-
tein sequences. To address the gap of such a large number 
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of unknown protein structures, accurate computational 
approaches are needed, which enables large-scale structural 
bioinformatics (Batool et al. 2019). To make protein struc-
ture determination, a much simpler and less tedious proce-
dure, scientist took help of various DL techniques which can 
predict protein structure with great degree of confidence, 
some of which are discussed below.

Alphafold

AlphaFold (Wei 2019) is a new computational method that 
includes analysis of the covariation in the homologous 
sequences, which are in contact and helps in the prediction 
of protein structures. The initial step of this modern method 
includes training a neural network to make precise predic-
tions of the distances between residue pairs, inferring a bet-
ter idea about the structure. This information can be used to 
construct a potential of mean force that can precisely mark 
out the shape of the protein. Considering the chances of 
having sequences with fewer homologous sequences, the 
potential of mean force can be optimized by a simple gradi-
ent descent algorithm, named AlphaFold, which helps in 
achieving higher accuracy without complex sampling pro-
cedures (Jumper et al. 2021).

AlphaFold generally assembles the best probable frag-
ments based on the analysis of the multiple sequence align-
ment. It interprets the spatial proximity by detecting the 
mutations that have occurred throughout the evolutionary 
timeframes in response to the other mutations. For such a 
task, it utilizes a huge amount of computational power in 
order to manage the truly DNN that identify the evolutionary 
patterns within the protein structure sequences with respect 
to the contact distributions and angular restraints. Addition-
ally, with the help of DL algorithms it can produce a protein 
specific statistical potential using a ‘learned reference state’, 
instead of a physical-based reference state. Thus, AlphaFold 
has given the researchers a tool that has great potential in 
protein structure prediction (Ruff and Pappu 2021; Batool 
et al. 2019).

CASP

The objective of critical assessment of protein structure 
prediction (CASP) (Kinch et al. 2021; Deng et al. 2018; 
Kryshtafovych et al. 2019) is to develop a technology that 
can recognize and construct the three dimensional struc-
ture of the protein from the protein sequences. It can be 
achieved primarily by two ways on the basis of the pres-
ence of any template structure previously available or not, 
namely (1) template-based models and (2) template-free 
models, amongst which the template-based modeling is 
the more preferable one if a good template is available, 
as it utilizes the available protein structure as the base for 

prediction, thereby more matured technique among the two 
and can be readily approached by the researchers who have 
less experience. On the other hand, if there is no template 
present for the protein structure one can employ template-
free modeling to build the structure. Template-free modeling 
has two kinds of approaches, fragment-based assembly and 
de novo folding, where the de novo folding approach aims 
to build the three dimensional structures from the scratch 
using the fundamentals of physics, where the secret to its 
success lies within the use of an accurate energy function to 
efficiently search for the lowest energy state conformation 
and also to discriminate native like structures from decoys. 
Yet, the fragment-based assembly still dominates because of 
its accuracy and better capability in protein structure predic-
tion when there is no good template available.

DL tools for compound de novo design

De novo design is defined as a process to generate novel 
molecules according to DTBA / DTI data or pharmacoph-
ore data, where a pharmacophore is the minimum struc-
tural requirements needed for showing biological activity 
(Schneider and Fechner 2005). The de novo design aims at 
discovering novel drug-like compounds. In contrast to the 
early software tools, which have a tendency to discover new 
compounds of some limited chemical attraction and diver-
sity, the modern de novo design algorithms put focus on the 
synthesizability and drug-likeness properties of the com-
pounds (Schneider and Schneider 2016). The previous de 
novo algorithms utilized structure-based approaches to grow 
ligands that will be able to fit the binding site of the target of 
interest both sterically and electronically. One of the major 
drawbacks of these approaches is that the molecules created 
often possess poor drug metabolism and pharmacokinetic 
properties and are synthetically intractable (Olivecrona et al. 
2017). Apart from the structure-based approach, the ligand-
based approaches were also widely used. Although these 
methods are said to generate novel structures effectively 
based on the transformation or reaction rules, the inherent 
rigidness and scope of the synthesizability pose restrictions. 
The approach usually involves the generation of a large vir-
tual library of compounds, usually a chemical space which 
is searched using a function that takes several parameters 
like the drug metabolism and pharmacokinetics profiles 
into account. These virtual libraries are created either using 
chemical reactions along with a group of available chemical 
building blocks or using transformational rules based on the 
expertise of medicinal chemists (Mauser and Guba 2008; 
Perron et al. 2022).

Now with the big data revolution, and the development 
of DL algorithms, de novo methodologies based on deep 
reinforcement learning (RL) have come into action which 
helps in generating compounds with the desired physical, 
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chemical, and bioactivity properties (Zhou et  al. 2019; 
Popova et al. 2018). These deep reinforcement algorithms 
involve the analysis of possible actions and estimation of 
the statistical relationship between the actions and their pos-
sible outcomes, which is followed by the determination of 
a treatment system that attempts to find the most desirable 
outcome. Let us look at some DL models for the de novo 
design.

ReLeaSE

One of the deep RL approaches used here which enables the 
design of chemical libraries with desired properties is rein-
forcement learning for structural evolution (ReLeaSE). The 
most distinct aspect of this approach is the use of SMILES 
to represent the molecules (Popova et al. 2018). Figure 5 
shows the classical representation of reinforcement learning 
for structural evolution.

The ReLeaSE method includes two DNN, namely the 
generative and the predictive which are trained in two stages. 
In stage I, the models are trained separately using different 
algorithms, while in stage II, the models are trained together 
using the RL approach. The generative model in this system 
produces chemically feasible novel molecules, while the pre-
dictive model, estimates the generative model’s conduct by 
allocating a numerical reward or penalty to every molecule 

that has been generated. The generative model is trained to 
maximize the expected reward.

Generative artificial intelligence (AI)‑based model

This model is based on generative AI which claims that it 
autonomously designs novel chemical compounds using the 
knowledge of known bioactive compounds along with inher-
ited bioactivity and synthesizability (Walters and Murcko 
2020). A general overview about generative model is given 
in Fig. 6

This approach consists of two steps, one of which 
includes the creation of a generic model which has learned 
the constitution of drug like molecules from a set of large 
unfocussed compounds. In the second step, the already exist-
ing model is tuned on more specific molecular aspects from 
a small target-focused library of actives. A deep recurrent 
neural network is utilized for training the generic model 
(Vanhaelen et al. 2020).

DeepScaffold

Drug design aims to find novel compounds which have desir-
able pharmacological features. One of the efficient methods 
to develop potential drug candidates is by retaining certain 
scaffolds as the core structures.

Fig. 5  ReLeaSE (reinforcement learning for structural evolution). 
General pipeline of reinforce learning system for the generation of 
novel compounds. This technique uses database such as chEMBL, 
having chemical and biological information regarding available drug 
molecules, and uses these data to identify the initial model of a new 

compound which is likely to have a pharmacological affect. Later 
through a process of reinforcement learning, the initial model is con-
verted into a de novo design, and later converted into the smiles of 
the bioactive molecule

Fig. 6  Overview of generative artificial intelligence (AI)-based 
model. The generative AI model makes use of the information of 
known bioactive compounds as input for training the algorithm 

and use the information to predict new chemical entities which are 
thought to have similar bioactivity
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DeepScaffold is a scaffold-based molecular generative 
model which conducts molecule generation based on scaf-
fold definitions for drug discovery. Scaffold here refers to the 
core structure of a molecule. These include Bemis–Murcko 
scaffolds, cyclic skeletons, and scaffolds with specifications 
on side-chain properties. DeepScaffold is capable of gener-
alizing the learned chemical rules of the addition of atoms 
and bonds to a given scaffold. The molecules generated by 
this method were evaluated by molecular docking in the D2 
dopamine receptor (DRD2) targets, and the results obtained 
can then be successfully applied to solve a large number 
of drug design problems including the generation of com-
pounds containing a given scaffold and de novo drug design 
of potential drug candidates with specific docking scores. 
An overview of how DeepScaffold performs the function is 
shown in Fig. 7.

AIScaffold

Another such AI-based tool is AIScaffold (https:// iaidr ug. 
stone wise. cn), a web-based tool which is mainly utilized for 
scaffold diversification with the use of a deep generative 
model (Lai et al. 2020). Scaffold diversification is often used 
by medicinal chemists for the purpose of lead compound 
optimization, but the software tools for the same are not 
readily available. AIScaffold is one such tool that can be 
utilized for scaffold diversification, unlike other tools which 
are designed to develop results by utilizing the information 
in molecular scaffolds. An overview of AIScaffold function-
ing is shown in Fig. 8

This tool is capable of performing large-scale diversifica-
tion that is up to 500,000 molecules within a matter of sev-
eral minutes and then as a result recommend the top 500 or 
the top 0.1% molecules. It also provides additional features 
such as site-specific diversification. By facilitating the scaf-
fold diversification process, AIScaffold is helping medicinal 
chemists in accelerating drug design.

DESMILES

DESMILES is based on the principles of DNN model which 
is a ML approach toward a newer drug design and works on 
the basis of recurrent neural network (RNN) architecture 
(Maragakis et al. 2020). DESMILES mainly aims to pro-
duce a series of small molecules which could be chemically 
identical to the given input of small molecule, it utilizes 
molecular fingerprint as an input and then corresponds it 
to a matching sequence of SMILES string with an objec-
tive of correlating the fingerprint to the SMILES string. 
DESMILES could be incorporated in the early phase of 
drug design and discovery process where it could be used in 
combination with various molecular screening technologies 
in order to identify some newer scaffolds for possible drug 
candidates. Extended connectivity fingerprint is another 
form of representations that are explicitly designed to cap-
ture various molecular features that may be relevant to the 
molecular activity, and is thus advantageous over SMILES 
form of representation but lacks the structural details of the 
molecule thereby making it difficult to generate molecular 
structures from the fingerprints.

Fig. 7  Overview of DeepScaffold. A comprehensive tool for scaf-
fold-directed drug discovery can generate molecules based on CSKs, 
classical molecular scaffolds, such as Bemis–Murcko scaffolds, and 

those with additional pharmacophore-based queries for side chains. 
Reprinted (adapted) with permission from (Li et  al. 2019; Rezaei 
et al. 2020). Copyright (2020) American Chemical Society

https://iaidrug.stonewise.cn
https://iaidrug.stonewise.cn
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DL tools for hit identification using virtual screening

Virtual screening is another in silico technique used in drug 
discovery to search large libraries of small molecules to 
identify those hits which have a higher probability to bind to 
a drug target. The virtual screening technique uses biologi-
cal, topological, and physicochemical properties of a chemi-
cal compound as well as the targets. The virtual screening 
methods can be mainly divided into two categories: (I) 
structure-based, which uses the 3D structure of targets and 
chemical compounds to model and visualize the interactions 
(Lionta et al. 2014; Li and Shah 2017). The 3D structure 
can be obtained by X-ray crystallography or by Nuclear 
magnetic resonance. Once the 3D structural information 
is collected, docking can be applied to find the interaction 
between a compound and a particular target. (II) Non-struc-
ture based which can be further subdivided into two groups, 
(a) ligand-based virtual screening (Ripphausen et al. 2011; 
Chen et al. 2007) which employs the molecular properties 
of compounds to model and analyzes the interactions with 
targets and (b) proteo-chemometric modeling which includes 
combining non-structural descriptors and targets at the input 
level (Wu et al. 2012).

Many studies have shown that DL algorithms show much 
better results in comparison with other ML algorithms in the 
case of virtual screening, especially due to their impactful 
applications in the de novo molecular design, where mol-
ecules with desired properties are generated by the utiliza-
tion of sequence data (Bahi and Batouche 2018; Liu et al. 
2019b). Some of the DL-based tools used in Virtual screen-
ing and QSAR are discussed below.

Deep VS

DeepVS is a DL approach to improve docking-based virtual 
screening. In DeepVS, the output from the docking program 

is used for the extraction of relevant features from the availa-
ble basic data from protein ligand complexes. This approach 
uses atom and amino acid embeddings for implementing an 
effective way of creating distributed vector representations 
of protein–ligand complexes by modeling the compound as 
a set of atom contexts that is further processed by a convo-
lutional layer. It also has an added advantage of having no 
requirement of feature engineering (Shen et al. 2020). The 
workflow of Deep VS is represented in the Fig. 9.

SIEVE score

SIEVE score is a newly developed AI-based virtual screen-
ing tool, also called Similarity of Interaction Energy Vec-
tor Score (Yasuo and Sekijima 2019; Arora and Bist 2020). 
This Virtual screening tool has been said to be a promising 
method for hit identification and aims to enrich potentially 
active compounds from a large library of chemical com-
pounds for the purpose of biological experiments. This tool 
is said to have a better performance in terms of efficiency as 
compared to the state-of-the-art virtual screening methods 
which were based on ML. The screening results obtained 
from this tool are also human interpretable in the form of 
important interactions which make it easy to distinguish 
between active and inactive compounds (Qiao et al. 2020; 
Yasuo and Sekijima 2017).

Similarity search

Similarity searching is a method that allows fast identifica-
tion of chemical analogs to biologically active compounds 
(Cereto-Massagué et  al. 2015; Muegge and Mukherjee 
2016). It is a deep-learning model which follows the prin-
ciples of ligand-based drug design, where it utilizes the 
molecular signatures as vectors to construct a connected 
neural network. A promising technique to predict various 

Fig. 8  Overview of AIScaf-
fold. AI scaffold makes use of 
an initial input scaffold of a 
bioactive compound and tries to 
modify the structural features of 
the molecule by a diversification 
process by adding or deleting 
scaffolds, which is later filtered 
and predicts a set of chemi-
cally diversified molecules with 
promising bioactivity
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properties/parameters that are essential for hit identification 
like the bioactivity, aqueous solubility and toxicity based 
on the structure of the compound under investigation. Such 
multi-task neural network models can help in predicting 
the activity for multiple targets for the same hit much more 
effectively as compared to the single task networks because 
of the better representation of the data and much accurate 
recognition of the general patterns within the data.

Similarity search is a two-step de novo approach which is 
based on PERL script, where specific inputs are utilized to 
improve the efficiency of the resulting outcome. This tech-
nique combines the DNN along with the ML approach as 
a scoring function for the virtual screening or for predict-
ing the affinity of the compound under investigation for the 
selected target. By this method, one can test numerous com-
pounds against a single target or to test a single target with a 

single compound (Khan et al. 2019). The model was applied 
to a single drug, namely piperine, and its experimental tar-
gets. A general docking approach and molecular dynamics 
simulation approaches were used as supplementary valida-
tion methods to investigate the potential of the predicted 
compounds against the prioritized targets. Both structurally 
close and diverse analogs can be recognized using similarity 
search based on the applied metrics (Eckert and Bajorath 
2007). It is extremely important in the analysis of hits and 
the schematic representation of Similarity search is shown 
in Fig. 10.

DL tools for pharmacokinetic property prediction

Pharmacokinetics is the study of how a drug is being 
absorbed, distributed, metabolized, and excreted from the 

Fig. 9  Representation of deep learning-based virtual screening. It 
includes (1) dataset preparation: select target of interest, or upload a 
private dataset for DNN training. (2) Features: selection for molecu-
lar vectorization. (3) Parameters: select model parameters for train-

ing classification or regression models. (4) Virtual screening: virtual 
screening against the chemical library or de novo library. Reprinted 
(adapted) with permission from (Liu et al. 2019a). Copyright (2019) 
Oxford University Press

Fig. 10  Schematic representa-
tion of similarity search. The 
figure represents the outline 
of the workflow, which can be 
divided into three parts: (A) use 
of deep-learning methodology 
for the prediction of piperine 
targets, (B) similarity search 
from the ZINC and PubChem 
databases using a ML approach 
to get top 100 best hits based 
on piperine, (C) validation and 
comparison of how well the 
compounds predicted the FDA-
approved drugs for the selected 
targets. Reprinted (adapted) 
with permission from (Khan 
et al. 2019). Copyright (2019) 
The Royal Society of Chemistry
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body. ADMET includes all the pharmacokinetic parameters 
as well as the toxicity profile of the xenobiotic (ADME-
Tox). Hence, the ADME-Tox profile of a lead compound 
can impact its efficacy and safety. Drug efficacy and safety 
are considered to be some of the major causes of clinical 
failure of drugs in the process of drug discovery. There is an 
increasing need for an efficient predictive tool of ADMET 
properties to serve two main purposes—first, at the initial 
stage of selection of new compounds and compound librar-
ies, to reduce the risk of late-stage attrition, and second, to 
optimize the screening and testing by predicting the ADMET 
profile of the lead compound in drug discovery. In this con-
text, ML techniques have been often used in ADME-Tox pre-
diction. These predictions are possible due to the availability 
of large amount of pharmacokinetic data of compounds to 
make models with the help of ADMET in-silico modeling, 
we can predict several properties such as dose size, dose fre-
quency, oral absorption, bioavailability, Blood–brain-barrier 
(BBB) (Maltarollo et al. 2015; Alqahtani 2017). Table 2 lists 
few examples of ADMET properties that are being modeled 
using ML algorithms and Table 3 denotes some of the ML 
algorithms used in ADMET predictions.

With the development of different algorithms and 
detailed analysis over the years, it has been found out that 
the newly developed DL methodologies when used to predict 
ADMET, produce efficient results in comparison to the other 

mentioned model. Researchers all over the world have not 
only developed specific tools that work on dl techniques for 
predicting one property at a time but also have been able to 
make complete in silico ADMET platforms. Some of these 
tools and platforms have been mentioned below.

Tox_(R)CNN

The cytotoxic changes induced by drugs cause cellular and 
nuclear morphological changes which are characteristic 
of the specific cell-death pathway involved (Bácskay et al. 
2018). These changes are usually being identified based 
on the visualization of nuclei using different microscopic 
approaches for years. Tox_(R)CNN is a modern-day tool that 
has been designed to detect cytotoxicity from microscopic 
images of fluorescently stained nuclei, without using specific 
toxicity labeling. The tool Tox_(R)CNN has been operated 
using DL technologies, as DL is the most powerful super-
vised ML methodology available and has the exceptional 
abilities to solve computer vision tasks (Jimenez-Carretero 
et al. 2018). This tool uses two convolutional neural net-
works (CNN):

1. Tox_CNN—classifies cells based on prior cell segmen-
tation and cropping of nuclei images.

2. Tox_RCNN—carries out fully automated cell identifica-
tion and classification.

These networks provide classification outputs that give 
sensitive screening readouts that detect pre-lethal toxicity 
and hence make the tool extremely useful and affordable 
and even applicable to other in vitro toxicity readouts. The 
model constitutes a robust screening tool for drug discovery.

Metabolite prediction

Studies show that more than about 25% of the compounds 
are withdrawn from the market or trials due to metabolic, 
pharmacokinetic, or toxic problems and hence causes a lot 
of financial loss to the company. The experimental methods 

Table 2  Following are the examples of ADMET properties that are 
modeled using Machine Learning algorithms:

Properties Measurement

Solubility Kinetic solubility
Clearance Rodent in vivo—snapshot PK
Permeability Caco-2, MDCK, PAMPA
Transporters such as P-gp Transporters overexpressing cell lines
Metabolic stability Liver microsomes and hepatocytes
Drug–drug interactions CYP450s, transporters
Blood–brain barrier (BBB) Mouse brain endothelial cell line
Cardiotoxicity (hERG) Binding or flux in different cell types

Table 3  Following are some of the examples of common machine learning algorithms which are applied in ADMET prediction

Algorithm Summary

Random forest (RF) An ensemble learning method that constructs many decision trees and outputs class or mean prediction
Support vector machine (SVM) A supervised learning method. The examples are mapped in space and classes separated by a hyperplane
Neural network A simple neural network has input, hidden and output layers
K nearest neighbors (KNN) A non-parametric method that uses the K closest training examples in the feature space and classifies 

objects by a majority vote or in regression uses the average of the values of the nearest members
Naive Bayes (NB) A probabilistic classifier, considers features to contribute independently to the probability
Deep learning (DNN) Uses multiple layers of a neural network, where each layer uses the output from the previous one. It can 

learn multiple levels of representations at different levels of abstraction
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developed to identify and study the metabolic processes 
in drugs are extremely demanding in terms of equipment, 
expertise, cost, and time and hence researchers are trying 
to find computational alternatives for the same. The two 
main research directions which provide necessary support 
and guidance are metabolic sites (SOMs) and metabolite 
structure that show extensive help in computer-aided meta-
bolic prediction methods. The model mentioned here per-
forms the function of metabolites prediction in the following 
steps: it first establishes the database with broad coverage of 
SMARTS-coded metabolic reaction rules. Then, to construct 
a DL algorithm-based classification model, the molecular 
fingerprints of compounds are extracted. The model can 
identify the reaction types that have a higher probability to 
occur in comparison to others. According to the researchers, 
this method is capable of generating higher accuracies than 
random guess and the rule-based methods used for metabo-
lite prediction (Djoumbou-Feunang et al. 2019; Wang et al. 
2020).

Oral bioavailability prediction

Oral bioavailability plays an important role in determining 
the absorption of a drug in the body. If we are capable of 
predicting bioavailability, which is difficult to do as it is 
dependent on highly complex factors and processes, then 
it would be extremely easy to prioritize drug candidates in 
the process of drug discovery. This model uses DL and six 
experimentally determined in vitro and physicochemical 
endpoints including membrane permeation, free fraction, 
metabolic stability, solubility, pKa value, and lipophilicity 
to determine the oral bioavailability in rats. The chemical 
structure of the drugs is encoded as fingerprints or SMILES. 
Modeling the available information along with the structural 
information of the chemical compounds, the model achieves 
an accuracy of 70%. It might seem that ADMET predicting 
models or tools should be able to predict direct distribu-
tion, absorptions, etc. of drugs directly, but the fact that sev-
eral parameters govern such pharmacokinetic property and 

prediction of one such parameter is itself highly significant 
and serves as an ADMET tool.

OpenChem

Openchem is a DL toolkit with Pytorch backend which is 
freely available via the GitHub repository. It aims at making 
easy-to-use DL models, for computational chemistry and 
drug design research (Korshunova et al. 2021). This toolkit 
is very helpful in keeping track of the training set, as well 
as in visualizing the evaluations, and project embedding in 
lower dimensional space. The toolkit helps in data preproc-
essing and has a very fast training process due to the support 
of multi-GPU. It is user-friendly as new models are built 
with only configuration files. The above toolkit helps us in 
the classification of data, regression analysis of data, and 
helps in generating various models which help in predicting 
the ADME properties of a lead compound. The workflow 
diagram of OpenChem is shown in Fig. 11.

Over the past 2 decades, many in silico fragment-based 
drug discovery (FBDD) platform has been developed with 
a goal to generate a variety of models to study the phar-
macokinetics and physicochemical for drug discovery and 
development at its early stage. The main principle for the 
fragment-based drug discovery includes a screening of low 
molecular weight compounds against macromolecular tar-
gets such as proteins. The screening technology includes dif-
ferential scanning fluorimetry, surface plasmon resonance, 
and thermophoresis, followed by structural characterization 
using nuclear magnetic resonance (NMR) or X-ray crystal-
lography of the individually soaked fragments of the lead 
compounds.

Tools for drug activity prediction

DL tools are able to identify chemical features in drug mol-
ecules and predict the activity of known molecules includ-
ing their biological activity. One such DL-based tool is dis-
cussed below.

Fig. 11  OpenChem flow dia-
gram. Showing the schematic 
representation of OpenChem 
which is PyTorch Based a DL 
toolkit to carry out the com-
putational chemistry work and 
drug design
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MultiCon

To diminish the workload of a large amount of supervised 
data and improve the model efficacy, semi-supervised learn-
ing algorithms can be used. By predicting the therapeutic 
application of drugs from their structural formulas using the 
semi-supervised learning algorithm, the cost, as well as the 
time consumed, will reduce significantly. Using the Multi-
Con toolkit (Sahoo et al. 2020), 1 can classify a drug into 
12 categories, depending on their therapeutic applications 
and image analysis of their structural formulas. Studies show 
that MultiCon has a higher rate of class prediction compared 
to other pre-existing semi-supervised learning algorithms, 
because of its rational usage of data balancing, the limited 
number of labeled data, online argumentations of drug 
image input during training, along with the combined usage 
of multi contrastive loss with consistent regularization. The 
working principle of MultiCon is overviewed in Fig. 12.

Application of DL in clinical trial design

The clinical study is the next step of the drug development 
process, which constitute a multi-billion-dollar industry, 
aiming for a successful evaluation of drug effectiveness by 
testing the lead molecules on human subjects (Piantadosi 
2017). A clinical researcher’s first and foremost objective is 
to figure out that whether the new treatment, like a new drug 
or dosage form or medical device (like a pacemaker) is safe 
and effective for humans to use. Usually, it is designed in a 
way to understand if the newer treatment under investigation 
is more efficacious and has less harmful side effects than the 
conventional treatment available and also design the dosage 
in such a manner based on these results to attain optimum 
therapeutic effect where the minimal amount of the drug 
is needed to elicit a therapeutic response (Friedman et al. 
2015).

On an average, it takes 10–15 years with a cost of 1.5–2.0 
billion USD for new drug molecule to reach the market. 
Studies have shown that approximately half of the time, 
human resource and expenditure during the drug discovery 

process is spend in the clinical trial phases. The remain-
ing 50% of the time and money covers the preclinical lead 
compound identification, optimization as well as regulatory 
processes (Harrer et al. 2019). Records have shown that 
one of the main obstacles in the drug development cycle 
is the high failure rate of clinical trials. The factors lead-
ing to the high failure rates of the clinical trials are patient 
cohort selection and recruitment of mechanisms that fail to 
provide the best suited patients to a trial in time, as well as 
lack of technical infrastructure to cope with the complexity 
in the later phases of clinical trials, such as the absence of 
a reliable and efficient adherence control, patient monitor-
ing, and clinical endpoint detection systems. Past research 
has witnessed the high potential of AI and other advanced 
analytics tools to automate clinical trial processes, which 
makes it a cost-effective approach (Walczak 2018). Some of 
the currently available AI-based tools used in clinical trial 
setup is discusses below.

TRIALS.AI

Trials.ai is an AI-based startup which helps in design of 
clinical trial protocols. It makes use of Natural language 
processing and other AI techniques. The software collects 
and analyze data from different source like journals, drug 
labels, private data from hospitals with which the company 
have connections. These data are used to study proposed 
trials, strictness of eligibility criteria, and how it affects the 
clinical trials outcome like cost, participation retention etc. 
(Woo 2019a).

AICURE

Success of well-designed protocols depends on whether the 
participants follow the instructions or not. A small mistake, 
like forgetting to take a pill can negatively impact the study 
results. AICURE is an AI-based platform which helps clini-
cal trials participants use their smartphone to record videos 
of them having medication. Using computer vision algo-
rithms, AICURE software can predict the person have taken 

Fig. 12  Overview of the Multi-
Con toolkit. Working princi-
ple of the MultiCon toolkit 
which predicts the therapeutic 
application of drugs from their 
structural formulas using the 
semi-supervised learning algo-
rithm, where it takes chemical 
structure as inputs and predicts 
the drug function
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the medication or not. This tool can also analyze the facial 
expression of person to track how they respond to treatment 
which can help in development of therapies (Woo 2019a).

Success stories of the use of DL in drug discovery 
and development

With the development of DL methodologies, we have seen 
major pharmaceutical companies shifting toward AI, leaving 
behind the old traditional methods, to maximize patient’s 
profit along with their own. Astrazeneca is a global, science-
led multinational pharmaceutical company that have reached 
the heights of success by integrating AI in every step of drug 
discovery going from virtual screening to clinical trials. The 
way they incorporated AI to redefine medical science has 
allowed them to gain a better understanding of existing dis-
eases, identify new targets, design better clinical trials and 
in general speed up the complete process. Astra Zeneca’s 
growth is itself a successful example of how integrating AI 
with medical science can help achieve wonders. Their con-
stant efforts on increasing AI use can be easily seen by the 
collaborations they are doing with other AI-based compa-
nies. One such example is their collaboration with Alibaba 
subsidiary Ali Health which aims to develop AI-assisted 
screening and diagnostics platforms in China.

The outbreak of the SARS-CoV-2 virus has brought a 
large number of companies under the pressure to find out 
the best drug in the shortest time possible. To achieve these 
companies have resorted to using AI along with the informa-
tion available. Some examples of such success stories of the 
companies who have been able to identify potential leads 
against the COVID-19 virus have been mentioned below.

MT-DTI (Molecule Transformer Drug Target Interac-
tion Model), a deep-learning based drug-protein interaction 
prediction model, by Deargen, a South Korea-based com-
pany. This model is used to predict the interaction strength 
between a drug and its target protein using simplified chemi-
cal sequences instead of 2D or 3D molecular structures. The 
model was used on the available FDA-approved antiviral 
drugs, and it found out that Atazanavir, an HIV medication, 
is highly probable to bind and block a prominent protein on 
the COVID-19 causing virus SARS-CoV-2. Along with this, 
it also identified other three antivirals and a not yet approved 
drug Remdesivir which is now being tested in patients. Dea-
gen being able to identify antivirals using DL techniques is a 
great step on advancing pharmaceutical research and making 
the process less tedious and more efficient. If such drugs 
are properly tested, there is a great probability, we would be 
able to overcome this pandemic in the shortest time possible 
(Beck et al. 2020; Scudellari 2020).

Another example is that of the Benevolent AI, a London 
based Biotechnology Company that uses biomedical data, 
AI and ML to accelerate research in the health sector. So 

far, they have been able to identify six drugs and one of 
them Ruxolitinib is said to be under clinical trial for COVID-
19 (Gatti et al. 2021). The company has been using a large 
repository of medical data, along with information extracted 
from the scientific literature by ML, and their AI system 
to identify potential drugs that might block the viral rep-
lication process of SARS-CoV-2. They got the Food and 
Drug Administration (FDA) approval for the use of their 
proposed Baricitinib drug in combination with Remdesivir 
where recovery rate increased for the hospitalized COVID-
19 patients (Richardson et al. 2020).

One of the most common types of cancers across the 
world is skin cancer. As its incidence is continuously 
increasing and it is becoming extremely important to detect 
skin cancer in its early stages as studies show early detec-
tion and treatment is the key to increase the survival rate of 
skin cancer patients. With increasing growth in both medi-
cal science and AI, a no. of Skin cancer smartphone apps 
has been launched into the market which provides people 
with a technological approach who have suspicious lesions 
to decide whether they should seek medical help. Studies 
show that about 235 dermatology smartphone apps were 
developed between the years 2014 and 2017 (Flaten et al. 
2018). Earlier, they operated by sending the photo of the 
lesion to a health professional, but now with inbuilt AI algo-
rithms in smartphones, these apps are successfully capable 
of detecting and classifying images of lesions into high or 
low risk along with immediate risk assessment and subse-
quent recommendations to the patient. One such successful 
app is SkinVison (de Carvalho et al. 2019).

Conclusion

ML has been adapted in the field of drug discovery and 
development since 1990s with a long and fruitful history 
of DL, the current extension of ML was established based 
on the concept of multi-layer neural networks, and some of 
these techniques have been engrossed only recently in the 
pharmaceutical research arena, accelerating the drug dis-
covery process. Unmistakably, application of DL needs a 
cautious analysis and a rigorous explanation of their respec-
tive realm of application that it may provide for the chemists 
in their quest for new drug discovery. Overall, it is a well-
appreciated method in the field of modern drug discovery 
and development and with the recent advancements in the 
DL tool box, it can yield far reaching results. Taking into 
consideration of the recent success of such methodologies 
and its utilization by the pharmaceutical companies to boost 
its search for new drugs, it is convincing that the modern 
DL methodologies will be highly appreciated in the com-
ing era of big data search and analysis for drug design and 
discovery.
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Drug discovery and development has always been 
a challenging process which involves a lot of time and 
investment to move a drug candidate into the clinical tri-
als. AI has been proven to demonstrate a substantial pro-
gress in boosting the success rate of the process, thereby 
reducing the overall costs of the research (Paul et  al. 
2021; Chan et al. 2019; Lavecchia 2019). Several compa-
nies have been investing time and money to develop their 
proprietary algorithms such as to tackle the challenges of 
the modern drug discovery and development process. The 
major key to the development of these algorithms is to 
bring together a group of experts from different domains 
such as data science engineers, chemists, and biologists 
under the one ecosystem of in silico drug design (Ekins 
2016).

Lack of valid information regarding biological systems 
have made it difficult to label proper descriptors and end-
points, such that AI or DL tools cannot be applied in an 
effective manner to expect a reproducible outcome. Hence, 
the inability to properly model the biological system is 
one of the main limitations of AI in drug design (Bender 
and Cortés-Ciriano 2021; Bender and Cortes-Ciriano 
2021). Another important limitation of AI in drug dis-
covery is the selection of appropriate data sets and over 
focus on speed and cost-effectiveness in drug discovery. 
The enormous amount of available proxy chemical data 
set and advanced computational techniques, combinato-
rial chemistry, etc., have made it possible to synthesize 
more and more molecules in very limited time and that 
too in a cost-effective manner, but despite the efforts to 
synthesizing more molecules, the actual number of drugs 
making into the market via clinical trials is still very less 
considering the efforts done. This is mainly because all 
the available data and endpoints are generated and used in 
ligand design and discovery focusing toward the activity 
against the targeted disease thus the ligand might have 
good pharmacodynamics properties but fails to attain opti-
mal pharmacokinetic properties thus the primary focus 
must be on designing a ligand that displays optimum phar-
macokinetic and pharmacodynamics properties to become 
a good clinical candidate. Rather than focusing on creat-
ing more ligands, we have to come up with novel data, 
and meaningful endpoints which help us to utilize the full 
potential of AI and ML techniques to predict and bring 
potential drug candidates to the clinic which have good 
pharmacokinetic properties, safety, and efficacy (Smith 
et al. 2018; Fleming 2018; Díaz et al. 2019).

It is a great opportunity to make use of AI and DL in 
the field of drug discovery to develop methods and tech-
niques for proper modeling of biological systems, by gen-
erating well-validated data having well-defined labels and 
endpoints, providing information regarding the targets and 
their interactions with ligands.
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