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ABSTRACT
Epidemiological studies in adults have shown that exposure to ambient air pollution (AAP) is 
associated with the composition of the adult gut microbiome, but these relationships have not 
been examined in infancy. We aimed to determine if 6-month postnatal AAP exposure was 
associated with the infant gut microbiota at 6 months of age in a cohort of Latino mother-infant 
dyads from the Southern California Mother’s Milk Study (n = 103). We estimated particulate matter 
(PM2.5 and PM10) and nitrogen dioxide (NO2) exposure from birth to 6-months based on residential 
address histories. We characterized the infant gut microbiota using 16S rRNA amplicon sequencing 
at 6-months of age. At 6-months, the gut microbiota was dominated by the phyla Bacteroidetes, 
Firmicutes, Proteobacteria, and Actinobacteria. Our results show that, after adjusting for important 
confounders, postnatal AAP exposure was associated with the composition of the gut microbiota. 
As an example, PM10 exposure was positively associated with Dialister, Dorea, Acinetobacter, and 
Campylobacter while PM2.5 was positively associated with Actinomyces. Further, exposure to PM10 
and PM2.5 was inversely associated with Alistipes and NO2 exposure was positively associated with 
Actinomyces, Enterococcus, Clostridium, and Eubacterium. Several of these taxa have previously been 
linked with systemic inflammation, including the genera Dialister and Dorea. This study provides the 
first evidence of significant associations between exposure to AAP and the composition of the 
infant gut microbiota, which may have important implications for future infant health and 
development.
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Introduction

Exposure to air pollutants has been linked with the 
composition and function of the gut microbiome 
in adults; however, this relationship has not been 
examined in infancy.1–3 The gut microbiome 
interfaces with several physiological systems, 
including but not limited to the immune, endo-
crine, and the nervous systems.4–8 Beyond facil-
itating several functions across various 
physiological systems, the composition of the gut 
microbiome has been associated with several dis-
ease states that may have early life origins, includ-
ing obesity, Crohn’s disease, and type 2 diabetes.9– 

11 Notably, the infant gut microbiome matures 
within the first 2–3 years of life, which may have 
long lasting health impacts.12 For example, a gut 

microbiome missing specific bacteria may increase 
future disease risk through altered immune devel-
opment, metabolism, and/or development of the 
enteric nervous system.13 Therefore, it is impor-
tant to examine the early life factors that may 
impact the development of the gut microbiome, 
including exposure to inhaled pollutants.

Postnatally, the gut microbiome undergoes rapid 
and dynamic microbial colonization.14 Under nor-
mal developmental processes, the newborn gut 
microbiome includes Enterobacteriaceae and 
Bifidobacterium.12 Throughout the first 6 months 
of life, the infant gut microbiome becomes largely 
populated by Firmicutes and Actinobacteria.12 

Beyond mode of delivery, early life feeding prac-
tices, and antibiotic exposure, early life exposure to 
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environmental toxins may also alter the develop-
ment of the infant gut microbiome.12,15 In young 
adults from Southern California, we have shown 
that near-roadway and ambient air pollution 
(AAP) exposure was associated with the composi-
tion and functional potential of the gut 
microbiome.1,2 Another study in adults has also 
shown that the gut microbiota may mediate the 
associations between AAP and risk for impaired 
fasting glucose and type 2 diabetes.3 These results 
suggest that exposure to inhaled pollutants may 
have the potential to impact the human gut micro-
biome and, consequently, contribute to disease risk. 
Compared to adults, infants have higher rates of 
ventilation, which may contribute to higher levels 
of inhaled exposure to air pollutants.16 Early life 
exposure to air pollution has been shown to nega-
tively impact future health, including respiratory 
function, cognitive functioning and cardiometa-
bolic health.17–19 This may be partly due to the 
fact that infancy represents a critical developmental 
window during which many physiological systems, 
such as metabolism, the visual cortex, the motor 
cortex, and the immune systems undergo rapid 
development.20–23 Collectively, increased rates of 
ventilation, rapid physiological growth, and the 
development of the gut microbiome make early 
life a critical window where exposure to AAP may 
have disproportionately deleterious health effects.

Previous work in adults and animal models has 
shown that exposure to airborne pollutants is asso-
ciated with the composition and function of the gut 
microbiome.1–3,24 However, there have been no 
previous studies which have examined the associa-
tions between AAP exposure and the composition 
of the infant gut microbiota to date. Importantly, 
inhaled pollutants have the potential to reach the 
gut and may impact the gut microbiome via several 
mechanisms.24 Briefly, inhaled particles can be 
deposited into the respiratory tract where mucocili-
ary clearance and subsequent ingestion of mucus 
provides a route for air pollutants to reach the gut. 
In the gut, particulate matter(PM) and components 
of traffic emissions, such as carbon derivatives, 
nitrates, sulfates, and toxic metals, may impact the 
gut microbial community in the lumen of the gas-
trointestinal tract.25 Additionally, nitrogen dioxide 
(NO2) serves as a marker for near-roadway air 
pollution, which is a mixture of gases and particles, 

including black carbon, polycyclic aromatic hydro-
carbons, and PM.26,27 Solid components of near- 
roadway air pollution may impact the gut micro-
biome through deposition in the airways, mucocili-
ary clearance and ingestion, while gaseous 
components may alter the gut microbiome through 
endocrine mediated mechanisms.24,28 Further, 
recent studies suggest that AAP may also stimulate 
the release of corticosteroids and catecholamine 
production, both of which have been shown to 
alter the composition of the gut microbiota.29,30 

Therefore, the aim of the current study was to 
examine the relationships between postnatal expo-
sure to patriculate matter < 2.5 and 10 microns in 
aerodynamic diameter (PM2.5 and PM10)and NO2 
during the first 6 months of life and the infant gut 
microbiota at 6 months of age. We hypothesized 
that exposure to AAP would be associated with the 
abundance and diversity of gut bacteria.

Results

We examined 103 Latino infants that were 186 days 
old on average (range: 164–219 days). Average 
postnatal exposure to ambient air pollutants 
(AAP) is shown in Table 1. Overall, we observed 
a moderate correlation and covariation among 
these pollutants (Figure S4 and Table S5). For 
example, log transformed postnatal PM10 exposure 
was moderately correlated with log transformed 
PM2.5 (Pearson r = 0.78; p < .001) and log 

Table 1. Characteristics of mother-infant pairs from the Mother’s 
Milk Study.

Maternal Characteristics Mean ± SD

Maternal Age (years) 29.7 ± 6.57
Pre-pregnancy BMI (kg/m2) 28.1 ± 5.56
Socioeconomic Status (Hollingshead Index) 26.9 ± 11.51
Mode of Delivery
Vaginal/Cesarian Section, %Vaginal 81/22 (79%)
Infant Characteristics Mean ± SD
Infant Age (days) 185 ± 8.49
Infant Sex
Female/Male, %Female 56/47 (54%)
Infant Birthweight (kg) 3.38 ± 0.398
Breastfeedings Per Day 3.41 ± 3.36
Life Course Antibiotic Exposure
No/Yes, %No 93/10 (90%)
AAP Exposure (Birth to 6-Months) Mean ± SD
PM10 (µg/m3) 32.8 ± 5.04
PM2.5 (µg/m3) 13.0 ± 1.89
NO2 (ppb) 20.5 ± 4.70

Descriptive characteristics of 103 Latino mother-infant dyads from the 
Southern California Mother’s Milk Study are reported. Data are reported 
as means and standard deviations (SD) unless otherwise noted.
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transformed NO2 (Pearson r = 0.52; p < .001). 
Further, there was moderate correlation between 
birthweight with log transformed NO2 (Pearson 
r = 0.23; p < .05) and log transformed PM10 expo-
sure (Pearson r = 0.20; p < .05). The infant gut 
microbiota at 6 months of age was first examined 
by visualizing the top 10 most abundant taxa at the 
phylum and genus levels (Figure S3). At the phy-
lum level, the four most abundant taxa were 
Bacteroidetes (39%), Firmicutes (24%), 
Proteobacteria (21%) and Actinobacteria (14%). 
At the genus level, the four most abundant taxa 
were Bacteroides (29%), an unclassified genus 
within the family Enterobacteriaceae (18%), 
Bifidobacterium (13%) and Parabacteroides (7%). 
We also examined measures gut bacterial alpha- 
diversity, including Shannon’s index (mean = 
2.91, standard deviation = 0.718), richness 
(mean = 53.6, standard deviation = 26.8), and 
Faith’s phylogenetic diversity (mean = 7.93, stan-
dard deviation = 2.35).

AAP exposure was associated with the gut 
microbiota

Results from the multivariable zero-inflated negative 
binomial regression (ZINBR) analysis revealed that 
postnatal exposure to PM10, PM2.5, and NO2 was 

associated with the infant gut microbiota at 6 months 
of age, after adjusting for infant sex, breastfeeding 
per day, socioeconomic status, birthweight, and infant 
age (Figure 1, Table 2, and Table S6). Here, exposure 
to PM10 and/or PM2.5 was positively associated with 
gut bacterial genera belonging to Actinobacteria, 
Bacteroidetes, Firmicutes, and Proteobacteria. 
Specifically, PM10 exposure was positively associated 
with Dialister (FDRBH = 0.01) and Dorea (FDRBH = 
0.04) from the phylum Firmicutes, as well as 
Acinetobacter (FDRBH = 0.09) and Campylobacter 
(FDRBH = 0.03) from the phylum Proteobacteria. 
Additionally, PM2.5 was positively associated with 
Actinomyces (FDRBH = 0.002) from the phylum 
Actinobacteria. NO2 exposure was positively asso-
ciated gut bacterial genera belonging to 
Actinobacteria, Firmicutes, and Proteobacteria. This 
included Actinomyces (FDRBH = 0.01) from the 
Actinobacteria phylum, Clostridium (FDRBH = 0.09), 
Enterococcus (FDRBH = 0.04) and Eubacterium 
(FDRBH = 0.04) from the Firmicutes phylum, as well 
as Haemophilus (FDRBH < 0.001) from the 
Proteobacteria phylum. Further, exposure to PM10, 
PM2.5, and/or NO2 was inversely associated with gut 
bacterial genera belonging to Bacteroidetes, 
Firmicutes, and Proteobacteria. Here, exposure to 
PM10 and PM2.5 was inversely associated with the 
genera Alistipes (both FDRBH ≤ 0.02) while exposure 

Figure 1. Dendrograms show the associations between NO2, PM10, and PM2.5 exposure with infant gut microbial taxa at 6 months of 
age using zero-inflated negative binomial regression (ZINBR) analyses. Associations are displayed on a branching tree that shows the 
phylogenetic relationship between taxa examined in this analysis where branch lengths do not represent evolutionary time. ZINBR 
models adjusted for infant sex, breastfeeding per day, socioeconomic status, birthweight, and infant age. The direction and magnitude 
of the association was determined from the incidence risk ratio’s (IRR) distance from an effect estimate which would indicate zero 
association (IRR = 1). IRRs greater than one represent positive associations (blue), IRRs less than one represent negative associations 
(red), and the node size denotes the strength of the association. Only associations that were statistically significant at a 10% false 
discovery rate (PFDR < 0.10) are shown. Nodes framed by a dashed circle indicate statistical significance at a 5% false discovery rate 
(PFDR <0.05). Each edge in the dendrogram represents various phylogenetic levels (inner to outer circle: kingdom, phylum, class, order, 
family, genus).
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to PM10 was inversely associated with Neisseria 
(FDRBH < 0.001) from the Proteobacteria phylum. 
Lastly, exposure to PM2.5 and NO2 was inversely 
associated with Phascolarctobacterium (FDRBH = 
0.005 and FDRBH = 0.001, respectively) from the 
Proteobacteria phylum. These results were largely 
unchanged in sensitivity analyses that adjusted for 
mode of delivery (Table S7). Next, we found that the 
associations between AAP and six gut bacterial taxa 
differed based on infant sex (Pinteraction < 0.05; Table 
S8). For example, PM10 exposure was positively asso-
ciated with the gut bacterial genus Acinetobacter in 
males (P < .001) but not females (P = .631). 
Conversely, PM10 exposure was positively associated 
with the gut bacterial genus Dialister in females (P = 
.002) but not males (P = .125). Additionally, we used 
multivariable linear regression analyses and found 
that postnatal exposure to PM10, PM2.5, and NO2 
was not associated with any of the highly abundant 
gut microbial taxa (i.e., taxa present in > 95% of 
samples) as shown in Table S9. Finally, there were 
no significant associations between AAP exposure 
and measures of alpha- or beta-diversity (i.e., Bray- 
Curtis Dissimilarity Index and Weighted Normalized 
UniFrac).

AAP exposure was associated with gut microbial 
profiles

Using a multinomial regression-based approach, 
we identified gut bacteria that were associated 
with postnatal PM10, PM2.5, and NO2 exposure 
after adjusting for infant sex, breastfeeding 
per day, socioeconomic status, birthweight, and 
infant age. As shown in Table S4, we examined 
the top 35% of taxa as ranked by association with 
exposure to each air pollutant (i.e., normalized to 
be compositionally robust by taking the log-ratio of 

the abundances of those taxa with respect to the 
bottom 35%, and hereafter referred to as ‘important 
taxa’). As shown in Figure 2, we found that AAP 
exposure was also significantly associated with the 
normalized abundance of important taxa. For 
example, NO2 exposure was significantly associated 
with the normalized abundance of important taxa 
(R2 = 0.20, P < .001). Further, PM2.5 and PM10 
exposure were significantly associated with the nor-
malized abundance of important taxa (R2 = 0.28, 
P < .001 and R2 = 0.20, P < .001, respectively). For 
each exposure, we then examined the classification 
of these sub-operational taxonomic units (sOTUs) 
at the genus level and noted specific taxa that were 
contained within the groups of important taxa for 
PM10 (n = 4), PM2.5 (n = 3), and NO2 (n = 6), which 
were also identified in the ZINBR analyses. These 
genera belonged to the phyla Actinobacteria, 
Firmicutes and Bacteroidetes. Of the 13 genera 
identified by both ZINBR and multinomial ana-
lyses, all but one displayed the same direction of 
association with AAP (Table S10).

Discussion

Our results show that increased exposure to AAP 
during the first 6 months of life was associated with 
the composition of the infant gut microbiota across 
multiple taxonomic levels at 6 months of age after 
adjusting for potential confounders such as infant 
sex, breastfeedings per day, socioeconomic status, 
birthweight, and infant age. Importantly, this ana-
lysis represents the first study to examine these 
associations in infancy. Further, this study found 
several differential associations between AAP expo-
sure and the gut microbiota based on infant sex. 
These results, along with other epidemiological and 
animal studies, suggest that environmental 

Table 2. Infant gut bacterial genera belonging to dominant phyla were associated with postnatal exposure to ambient air pollution 
(AAP).

Phyla Actinobacteria Bacteroidetes Firmicutes Proteobacteria

Genus Actinomyces Alistipes
Dialister, 

Dorea

Clostridium,  
Enterococcus,  
Eubacterium

Phascolarcto- 
bacterium

Acinetobacter, 
Campylobacter Haemophilus Neisseria

PM10 Exposure - + + -
PM2.5 Exposure + - -
NO2 Exposure + + - +

Summary table displays statistically significant (PFDR<0.10) positive (+) and negative (-) associations between postnatal exposure to ambient air pollutants (AAP) 
and infant gut bacterial genera that were grouped based on the phyla in which they belong. Further, taxa which had a consistent direction of effect were 
grouped within the same columns. Results shown were based on ZINBR.
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exposures such as AAP may impact the human gut 
microbiota.24 These findings have significant public 
health relevance since 99% of the world’s popula-
tion is estimated to live in areas where air quality 
guidelines are not met.31

The gut microbiome develops during the first 2– 
3 years of life.32 During this time, the gut micro-
biome shifts from being dominated largely by 
Bifidobacterium (Actinobacteria) to Bacteroidetes 
and Firmicutes.33 Previous studies in adults have 
shown that exposure to air pollutants is associated 
with the composition and functional potential of 
the gut microbiome.1–3 In the current study, we 
found that measures of AAP were negatively asso-
ciated with the microbial family Rikenellaceae, 
whereas a previous study in young adults found 
that near-roadway air pollution exposure was posi-
tively associated with the abundance of 
Rikenellaceae.2 Additionally, in previous human 
studies, exposure to particulate matter and NO2 
was inversely associated with measures of alpha- 
diversity in some but not all studies.1–3 Whereas, 
in the current study, AAP exposure was not asso-
ciated with measures of alpha-diversity or beta- 
diversity. These differential findings may be due to 
compositional dissimilarities in gut bacterial taxa in 
early life compared to adults, where the mature gut 
is more diverse and largely populated by Firmicutes 
and Bacteroidetes. Additionally, regional differ-
ences in the composition of ambient and near- 
roadway air pollution may contribute to differential 
effects on microbial communities irrespective of life 
stage.34–36 Despite this, several of the associations 

that we observed among infants overlap with find-
ings from a previous study among adults. For 
example, we found that exposure to PM2.5 was 
associated with Phascolarctobacterium and Dorea. 
Among adults, species within these genera have 
been shown to mediate the associations between 
PM2.5 exposure and type 2 diabetes.3 In the current 
study, we also found that the associations between 
AAP exposure and six gut bacterial taxa differed by 
infant sex. This is consistent with previous work 
that found that the associations between arsenic 
exposure and the gut microbiome differed among 
male and female infants.37 These differential asso-
ciations may be due to sex based differences in the 
structure of the gut microbiome and/or gastroin-
testinal physiology.38–40

The current study examined the associations 
between multiple ambient air pollutants and the 
infant gut microbiota, including PM2.5, PM10, and 
NO2. During infancy, age, breastfeeding, introduc-
tion of solid food, and mode of delivery have each 
been shown to impact the development of the gut 
microbiome.33,41–43 Results from our study suggest 
that AAP exposure may also be an important factor 
in the development of the gut microbiome. Within 
Bacteroidetes, higher postnatal exposure to PM2.5 
was associated with a lower abundance of the family 
Rikenellaceae and the genus Alistipes. This suggests 
that PM2.5 exposure may impair the normal transi-
tion from Bifidobacterium (Actinobacteria) to 
Bacteroidetes as one of the dominant taxa. 
Exposure to PM10 was positively associated with 
bacteria belonging to the phylum Firmicutes, 

a. b. c.

Figure 2. Associations between (a) NO2, (b) PM10, and (c) PM2.5 exposure during the first 6 months of life and differentially ranked log 
ratios. The differentially ranked log ratios represent the ratio between the top and bottom 35% of sOTUs as ranked based on their 
association with each pollutant by Songbird (i.e., important taxa).
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including the genera Dorea and Dialister. Similarly, 
multiple gut bacteria belonging to the Firmicutes phy-
lum were positively associated with exposure to NO2 
at the order, family, and genus levels, which included 
the genera Clostridium, Enterococcus, Phascolarctoba- 
cterium and Eubacterium. Additionally, NO2 exposure 
was positively associated gut bacteria belonging to 
Actinobacteria at the order, family and genus levels 
that included the genus Actinomyces. These findings 
suggest that NO2 and PM10 exposure may shape the 
developing gut microbiota via the early establishment 
of Firmicutes and Actinobacteria as dominant gut 
bacterial phyla. Such impacts on the developing gut 
microbiome may have important implications for 
infant health and development. For example, 
a higher ratio of Firmicutes to Bacteroidetes has been 
associated with obesity in adults and animal studies.44

At the genus level, we found that AAP exposure 
was associated with bacteria that have been linked to 
adverse health outcomes as well as those known to 
produce short-chain fatty acids (SCFAs). For exam-
ple, PM10 exposure was positively associated with 
the abundance of Campylobacter, which has been 
linked with gastroenteritis.45 Further, PM2.5 and 
NO2 exposure was negatively associated with the 
abundance of the genus Phascolarctobacterium, 
which has been found to produce high levels of 
SCFAs.46 SCFAs are a major microbial metabolite 
that has been linked with gut barrier integrity, meta-
bolic and cardiovascular health, as well as gut-brain 
communication and the maintenance of the blood 
brain barrier.47–49 Alterations to SCFA producing 
microbes have the potential to impact SCFA avail-
ability in the body and play a role in the pathophy-
siology of various disease states (e.g., inflammatory 
bowel diseases, obesity, cancer, Parkinson’s disease 
and celiac disease).50–53 Further, the genera Dialister, 
Dorea and Alistipes have previously been linked to 
negative health outcomes such as systemic inflam-
mation, cancer, multiple sclerosis and mental health 
in adults.54–57 We found PM10 to be positively asso-
ciated with Dialister and Dorea, while PM10 and 
PM2.5 were inversely associated with Alistipes. 
However, it is difficult to draw conclusions given 
that the health effects of these taxa have not been 
examined in infancy. Lastly, we observed that post-
natal PM2.5 and PM10 exposure had overlapping 
associations with gut microbial taxa. For example, 
five of the seven taxa which were associated with 

PM2.5 were similarly associated with PM10, poten-
tially because PM2.5 makes up a subfraction of PM10. 
Conversely, NO2 exposure was associated with 10 
taxa that were not associated with PM2.5 or PM10. 
This may be due to the fact that NO2 is a marker for 
near-roadway air pollution, which has a different 
chemical composition than ambient particulate 
matter.58 These differential chemical constituents 
likely have distinct toxicological mechanisms by 
which they interact with the gut microbiome. For 
example, gaseous pollutants have been shown to 
disrupt endocrine function, whereas components of 
particulate matter (e.g., heavy metals) may exert 
direct microbiocidal effects.25,28,30 When considered 
in conjunction with previous work, the current find-
ings seem to suggest that the AAP induced altera-
tions to the gut microbiome may alter human health 
through inflammatory pathways and altered micro-
bial metabolite production.

Whereas this study provides the first evidence of 
important associations between postnatal AAP 
exposure and the developing infant gut microbiota 
at 6 months of age, there are several study limitations 
that should be considered. First, we were unable to 
examine longitudinal associations between AAP and 
the developing gut microbiome. However, at the 
completion of infant follow-up, we plan to investi-
gate the associations between AAP with the devel-
oping gut microbiome in this cohort. This study also 
examined associations between AAP and the gut 
microbiota in a low-income Latino population 
from Southern California, which may limit general-
izability to other populations. However, Latino com-
munities in the US experience a disproportionate 
level of AAP exposure that may contribute to health 
disparities observed in an understudied and at-risk 
population.59 Further, we characterized the infant 
gut microbiota using 16S rRNA amplicon sequen-
cing, which does not allow for reliable taxonomic 
characterization of gut bacterial taxa below the genus 
level.60,61,62,63 Within all microbial sequencing stu-
dies, there is the potential for contamination or 
index hopping. For this reason, we noted gut bacter-
ial taxa that were associated with AAP exposure and 
present in our negative controls. However, these taxa 
have not been identified as common kit 
contaminants.64 Infant AAP exposure was estimated 
using residence based spatial interpolation, which 
may introduce error to the classification of exposure 

e2105096-6 M. J. BAILEY ET AL.



estimates when compared to personal monitoring. 
Yet, such exposure misclassification is likely random 
and would thus bias our results to the null.65 

Additionally, without PM speciation data, we were 
unable to determine if specific components of AAP 
were more strongly associated with the infant gut 
microbiota. Future studies should examine the com-
position of AAP to further elucidate what mechan-
isms may functionally and toxicologically underlie 
these associations. Beyond this, future work should 
incorporate animal and in vitro studies to examine 
the specific mechanisms by which AAP alters micro-
bial communities. Additionally, tools such as fecal 
microbiota transplantation can be used to examine 
the potential physiological implications of AAP- 
inducted alterations to the gut microbiome.

There were also several statistical limitations of 
the current study. While all statistical analyses were 
adjusted for multiple hypothesis testing using 
a 10% FDR, we cannot rule out the possibility of 
false positives. Therefore, results from this study 
should also be viewed as hypothesis generating for 
future longitudinal investigations. Due to normal 
developmental processes, we observed a high pre-
valence of low abundant taxa in the infant gut. For 
this reason, we used three complementary analyti-
cal approaches to examine the associations between 
postnatal AAP exposure and the infant gut micro-
biota at 6 months of age. These methods included 
multivariable linear models, ZINBR analysis, and 
multinomial regression models that adjusted for 
important early life factors that were identified 
based on our directed acyclic graph (DAG), includ-
ing infant sex, breastfeeding per day, socioeco-
nomic status, birthweight, and infant age. Overall, 
taxa found to be associated with AAP in the ZINBR 
analyses were also identified in the differential 
abundance (i.e., Songbird multinomial regression) 
analysis and largely displayed the same direction of 
association. While ZINBR analyses are sensitive to 
false positives and model diagnostics can be sub-
jective, the concordance in findings between the 
differential abundance analyses and ZINBR ana-
lyses help to alleviate these concerns. Based on 
our DAG, mode of delivery and early life antibiotic 
treatment were not identified as potential confoun-
ders in the relationship between air pollution expo-
sure and the infant gut microbiota. Nevertheless, 
due to the importance of these factors in the 

context of the gut microbiota, we sought to per-
form additional sensitivity analyses that included 
adjustment for these variables. Overall, we found 
that our results were largely unchanged after 
adjusting for mode of delivery. However, in the 
current study we were unable to adjust for antibio-
tic exposure since 90% of infants did not receive 
antibiotics in the first year of life.

In conclusion, our results demonstrate that 
increased exposure to PM2.5, PM10, and NO2 in 
the first 6 months of life was associated with the 
abundance of several infant gut bacterial taxa 
belonging to the Bacteroidetes, Firmicutes, 
Proteobacteria, and Actinobacteria phyla. While 
previous work has established associations between 
air pollution exposure and the gut microbiome in 
adults, this study represents the first characteriza-
tion of the relationships between postnatal expo-
sures to air pollutants and the infant gut 
microbiota. Many of the infant gut bacterial taxa 
that were found to be associated with postnatal 
AAP exposure have previously been linked with 
adverse health outcomes such as systemic inflam-
mation, gastroenteritis, multiple sclerosis, and 
mental health disorders. Further, several of the 
identified taxa are involved in the production of 
important gut microbial derived metabolites (e.g., 
SCFAs) that play an integral role in human phy-
siology. These results, along with other epidemio-
logical and animal studies, suggest that exposure to 
air pollutants may impact the gut microbiome in 
early life, which may have implications for human 
development, health, and physiology.

Patients, materials and methods

Study design

Participants were recruited from the Southern 
California Mother’s Milk Study, which is examin-
ing the associations between breast milk factors and 
infant growth and the gut microbiota in Latino 
mother-infant pairs.66 At the time of analysis, 103 
of the 219 mother-infant pairs had complete post-
natal AAP exposure data as well as assessment of 
the gut microbiota at 6-months of age (Figure S1). 
These 103 infants were recruited between 2016– 
2017 from clinics in Southern California. On aver-
age, those included in the current analysis did not 
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significantly differ on any important baseline char-
acteristics except for average AAP. Specifically, 
AAP exposure was higher among participants that 
were included in the current analysis than those 
who were excluded (Table S1). Inclusion criteria 
for the Mother’s Milk Study included healthy term 
singleton births, first time mothers over the age of 
18 years, mothers and fathers with self-reported 
Hispanic/Latino ethnicity, and an intent to breast-
feed for at least 3 months postpartum. Exclusion 
criteria included medical diagnosis that may affect 
metabolism, nutritional status, and mental or phy-
sical health. Additionally, participants were 
excluded if they were taking medication which 
may affect body weight/composition, insulin resis-
tance, or lipid profiles. Further, current smoking or 
recreational drug use, pre-term births, low birth-
weight, and fetal abnormalities were exclusion cri-
teria. Written informed consent was obtained from 
all participants and the study protocol was 
approved by the University of Southern 
California, Children’s Hospital Los Angeles, and 
the University of Colorado Boulder Institutional 
Review Boards.

Study visits

As part of the ongoing Mother’s Milk Study, 
mother-infant pairs are brought in for clinical 
assessments at 1, 6, 12, 18, and 24-months of age 
as previously reported.67 The Mother’s Milk 
Study is currently ongoing and not all partici-
pants have completed all clinical assessments. 
Maternal weight was measured to the nearest 
0.1 kg (Tanita BC-549 Plus Ironman Body 
Composition Monitor) and standing height was 
measured to the nearest 1 mm (Seca 126, Seca 
GmBH & Co. KG) to calculate body mass index 
(BMI). Maternal pre-pregnancy BMI was based 
on self-reported height and weight prior to preg-
nancy. Infant weight was measured in duplicate 
to the nearest 5 g by net difference of the 
mother with and without baby on a Tanita 
scale. Birth weight (kg) and length (cm) were 
obtained from hospital records. Infant length 
was measured to the nearest 1 mm using an 
infantometer. Infant breastfeedings per day 
were based on questionnaire data with the fol-
lowing answer choices: 0–1, 1, 2, 3, 4, 5, 6, 7, 

and ≥8 breastfeedings per day. Briefly, 0–1 
breastfeedings per day were assigned to 0 breast-
feedings per day, 2–7 breastfeedings per day 
were assigned to their reported values and ≥8 
breastfeedings per day were assigned a value of 
8. Lastly, information regarding parental occupa-
tion and education was used to examine indivi-
dual socioeconomic status based on a modified 
version of the four factor Hollingshead Index as 
previously reported.67,68

Ambient air pollution exposures

Time weighted average AAP exposure was exam-
ined during the first 6 months of life. Exposures 
included PM2.5, PM10 as well as NO2 which was 
used as a marker for near-roadway air pollution. 
Detailed residential address histories (including 
birth to 6-months of age) were determined at 
the first study visit and geocoded at the street 
level using the Texas A&M Geocoding Services 
(http://geoservices.tamu.edu/Services/Geocode/). 
Monthly averages of ambient pollutant exposures 
were estimated from the U.S. Environmental 
Protection Agency’s Air Quality System (AQS, 
http://www.epa.gov/ttn/airs/airsaqs), which records 
hourly air quality data from ambient monitoring 
stations. Spatial interpolation of up to four of the 
closest monitoring stations within 50 km of infant 
homes was performed via an inverse distance- 
squared weighting (IDW2) algorithm. This method 
has been demonstrated to be robust to leave-one- 
out validation for the same data source in 
California with R2 values of 0.73, 0.53, and 0.46 
for NO2, PM2.5, and PM10, respectively.69 Postnatal 
exposure was modeled based upon the cumulative 
average exposure from birth to the 6-month visit 
(mean exposure day: 185.3, range: 164–219 days). 
PM2.5 and PM10 are reported in micrograms per 
cubic meter (μg/m3) and NO2 is reported as parts 
per billion (ppb).

Gut microbiota

As previously reported, infant stool samples were col-
lected at 6-months postpartum using OMNIgene 
GUT kits (DNA Genotek, Ottawa, ON, CAN) and a 
subset have undergone 16S rRNA sequencing.70 

Briefly, DNA was extracted and the bacteria/archaeal 

e2105096-8 M. J. BAILEY ET AL.

http://geoservices.tamu.edu/Services/Geocode/
http://www.epa.gov/ttn/airs/airsaqs


16S rRNA gene sequenced using the 515/806 bar-
coded primer pair (515 F [Parada]): GTGYCAGC 
MGCCGCGGTAA, 806 R [Apprill]: GGACTACN 
VGGGTWTCTAAT), standardized in accordance 
with the Earth Microbiome Project.71 A ~150-bp frag-
ment was sequenced including variable region 4 (V4) 
of the 16S rRNA gene. All samples were amplified in 
triplicate and then pooled into a single sample. 
Amplicons from each sample were then run on agar-
ose gel to verify the presence of PCR product.71 The 
515/806 barcoded primer pair has previously been 
used for cross-cultural analysis, which included 
infants.12 Paired-end (2x150bp) next-generation 
sequencing was performed using the Illumina MiSeq 
platform available at the Institute for Genomic 
Medicine at the University of California (UC) San 
Diego.72 Demultiplexed files were processed using 
Qiita (https://qiita.ucsd.edu).73 Sequences were 
trimmed to a length of 150-bp, and Deblur was used 
to remove suspected error sequences and assign 
amplicon sequence variants called sOTUs.74 

Subsequently, a feature-table was generated with 
counts of each sOTU for each sample. To generate 
a phylogeny, Deblur tag sequences were inserted into 
the GreenGenes 13_8 backbone phylogeny using 
SATÉ-enabled phylogenetic placement (SEPP), and 
all sOTUs not placed were removed from the feature- 
table.75 Negative controls (blanks) and extraction con-
trols were included throughout the amplification and 
sequencing of samples. The average read depth of the 
blanks was 1,336 reads as compared to an average read 
depth of 19,822 for infant stool samples. Taxa present 
in the blanks were not excluded from the analysis as 
we were unable to determine if taxa originated from 
contamination or index hopping.62 Given this, we 
calculated a ratio between the average counts of indi-
vidual taxa across the blanks to the average counts 
across the infant samples. The taxa reported in these 
analyses that exceeded a 1:10 ratio were the order 
Bacillales, the families Rikenellaceae and 
Paraprevotellaceae, and the genera Dialister and 
Alistipes.

Statistical analyses

Analytical approach
Descriptive statistics, including means and fre-
quencies of key variables were examined. 
Overall, three separate and complementary 

analytical approaches were used to examine the 
associations between AAP and the infant gut 
microbiota. ZINBR was the primary analysis per-
formed, as it accounts for over dispersion and 
a high proportion of zeros present within these 
data. Complementary analyses were performed to 
validate the results of the ZINBR as well as to 
examine aspects of the gut microbiota that cannot 
be captured via a ZINBR. For example, Songbird 
analyses account for the compositional nature of 
microbiome data and use a multinomial regres-
sion model to estimate differential rankings for 
features based on their abundances with respect 
to model variables. Thus, Songbird analyses were 
used to provide insight into microbial profiles 
that may be associated with AAP exposure and 
to also validate the findings from ZINBR. In 
addition to these analytical approaches, we also 
utilized multivariable linear regression to examine 
highly abundant taxa and alpha-diversity metrics, 
since these data structures are not appropriate for 
ZINBR. Finally, Mantel tests were used to evalu-
ate if AAP was associated with measures of beta- 
diversity (i.e., similarity and dissimilarity 
matrices). All models were adjusted for infant 
sex, breastfeedings per day, socioeconomic status, 
birthweight, and infant age, which was based on 
a DAG (Figure S2). All participants had complete 
data for the aforementioned covariates. Race/eth-
nicity was not controlled for within our statistical 
models as all participants were Latino. Models 
which displayed a significant association between 
AAP exposure and individual taxa were further 
examined to determine if these associations dif-
fered by infant sex by including an interaction 
term (air pollutant * infant sex). In the case that 
this interaction term was significant, a stratified 
analysis was conducted. P-values from all statis-
tical analyses were adjusted for multiple hypoth-
esis testing using a false discovery rate (FDR) of 
10% with the Benjamini-Hochberg (BH) proce-
dure. This threshold for statistical significance 
was determined to increase our statistical power, 
while also acknowledging that this procedure may 
be an overadjustment since gut microbial abun-
dances are correlated and the BH procedure 
assumes independence of tests.76 Lastly, the cur-
rent analysis will be used to generate hypotheses 
for future investigations related to air pollution 
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exposure and the developing infant gut micro-
biome in all study participants once follow-up 
of the Mother’s Milk Study is completed. All 
statistical analyses were conducted using 
QIIME2 v.2020.11 and R (Version 4.1.1). Some 
figures were produced using Prism (GraphPad 
Version 9.2.0).77

Gut bacterial diversity
To normalize for sequencing depth, samples were 
rarefied to a standard read depth of 10,000, which 
resulted in two samples being dropped. We quanti-
fied alpha-diversity (i.e., Shannon’s index, richness, 
and Faith’s phylogenetic diversity) and beta- 
diversity (i.e., Bray-Curtis Dissimilarity Index and 
Weighted Normalized UniFrac) via QIIME2.77 

Associations between AAP and estimates of alpha- 
and beta-diversity were interpreted via linear 
regression models and a Mantel test, respectively. 
For alpha-diversity metrics, linear regression mod-
els adjusted for infant sex, breastfeedings per day, 
socioeconomic status, birthweight, and infant age.

Linear regression
Multivariable linear regression analysis was used to 
examine the associations between postnatal ambient 
air pollution exposure and the relative abundance of 
25 highly abundant gut microbial taxa (Table S2), 
which were present in more than 95% of the raw 
sample counts. Relative abundance was log trans-
formed (Equation 1) to satisfy the assumptions of 
linear regression.78 Specifically, relative abundance 
was log transformed to better meet the assumption 
of normality and homoscedasticity, which were 
examined via Q-Q plots and by plotting fitted values 
against standardized residuals, respectively. All mod-
els adjusted for the variables identified as potential 
confounders by a DAG (Figure S2).

Equation 1. General Equation for Log 
Transformed Relative Abundance 

Zero-inflated negative binomial regression
Due to normal developmental processes, there were 
several taxa that were not present in a high propor-
tion of samples. Therefore, ZINBR analysis (PSCL 
R package) was used to examine the associations 
between AAP and the abundance of gut microbial 
taxa after removing rare taxa (i.e., those present in 
<10% of samples).79,80 Briefly, this technique mod-
els the abundance of microbes as a mixture of two 
components: a negative binomial count distribu-
tion and a point-mass at zero. For ZINBR models, 
raw counts were used as the outcome of interest 
and models were offset by the total sample sequence 
reads to account for differences in sequencing 
depth between samples. A zero-inflated model was 
used to account for overdispersion and two distinct 
zero-generating processes, one of which is technical 
and potentially due to sampling error, the other is 
biological. Additionally, ZINBR was selected due to 
the potential occurrence of excess zeros due to low 
abundance taxa in early life as well as potential 
sampling error. Specifically, ZINBR was chosen 
over other generalized linear models (e.g., negative 
binomial regressions and zero-inflated Poisson 
regression) due to the presence of a high propor-
tion of zeros between 49% and 73% at each taxo-
nomic level (Table S3), and overdispersion of 
microbial counts. In the current analysis, there 
were an average of 55 microbial taxa with zero 
counts. Additionally, the average predicted prob-
ability of an observation being an excess zero was 
0.34. This high proportion of zeros, coupled with 
significant Vuong tests, suggest that these zero 
inflated count regression models are an improve-
ment over standard negative binomial models. 
Specifically, Vuong tests, performed as a sensitivity 
analysis, revealed significant raw, Akaike informa-
tion criterion (AIC) and Bayesian information cri-
terion (BIC) corrected and positive z-statistics 
when individual ZINBRs were compared to 

Log10
Raw count in sample ið Þ

# of sequences in sample ið Þ
� Average number of sequences per sample

� �

þ 1
� �
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standard negative binomial regressions. This sug-
gests that these zero-inflated models have better 
model fit as compared to non-zero-inflated 
models.81,82 Within our analysis, this technique 
models the abundance of microbes in the count 
portion of the model as well as the presence of 
excess zeros. Incidence risk ratios (IRRs), which 
represent the estimated cumulative incidence for 
a one-unit increase in each AAP exposure, were 
estimated for microbes based only on the negative 
binomial distribution. The average number of zero 
count taxa and the average predicted probability of 
an observation being an excess zero at each taxo-
nomic level can be found in Table S3. The “esti-
mated excess zero” sample points were not 
included in the negative binomial portion of the 
model. Several additional steps were taken for sen-
sitivity analysis. Predicted values were compared to 
standardized residuals and theoretical normal 
quantiles were compared to sample quantiles 
(Q-Q plots). Further, outliers, with respect to 
microbial counts, were filtered from the data-set 
and truncated models were compared to full mod-
els to determine if significance was retained. 
Overall, three statistically significant associations 
between gut bacteria and AAP were not reported 
due to being driven by outliers with respect to 
microbial counts or having Q-Q which varied sig-
nificantly from the expected distribution. The 
negative binomial portion of the model adjusted 
for infant sex, breastfeedings per day, socioeco-
nomic status, birthweight, and infant age as iden-
tified by our DAG. The zero inflated portion of the 
model adjusted for AAP exposure, age, birth-
weight, and breastfeeding since these variables 
were thought to potentially contribute to the 
occurrence of a non-natural zero (e.g., sampling 
error). Although mode of delivery was not identi-
fied as a traditional confounder via our DAG, 
sensitivity analysis was performed where models 
additionally adjusted for mode of delivery. This 
additional sensitivity analysis was performed due 
to existing literature that suggests that mode of 
delivery is significantly associated with the com-
position of the infant gut microbiome. 
Dendrograms were created using the ggtree 
R package to summarize the associations between 
AAP exposure and the abundance of gut bacterial 
taxa based on ZINBR models (Figure 1).83

Differential abundance testing
Songbird (v1.0.3) and Qurro (0.7.1) were used to 
calculate and examine the differential ranks of 
sOTUs associated with AAP exposure.84,85 Briefly, 
Songbird accounts for the compositional nature of 
microbiome data and uses a multinomial regression 
model to estimate differential rankings for features 
based on their abundances with respect to model 
variables. The full list of feature rankings from this 
analysis are included in Table S4. Using Qurro, we 
then selected the top- and bottom 35% of ranked 
sOTUs, which corresponds to those 35% of taxa 
that are most- or least-associated with each AAP 
exposure. Based on this selection, all 103 samples 
were included when examining NO2 and PM10, 
while one sample was excluded when examining 
PM2.5 exposure. For visualization purposes and to 
perform hypothesis testing, we then examined the 
log-ratio (Equation 2) of the same microbes with 
each air pollutant using univariate models and 
R-squared (R2) values.

Equation 2. General Equation for Differentially 
Ranked Log Ratio 

ln
Top 35% Differentially Ranked Taxa

Bottom 35% Differentially Ranked Taxa

� �
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