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Abstract: Porous polymer-based nanocomposites have been used for various applications due to
their advantages, including multi-functionalities, easy and known manufacturability, and low cost.
Understanding of their mechanical properties has become essential to expand the nanocomposites’
applications and efficiency, including service-life, resistance to different loads, and reliability. In this
review paper, the focus is on the modeling of the mechanical properties of porous polymer-based
nanocomposites, including the effects of loading rates, operational temperatures, and the material’s
porosity. First, modeling of the elastic modulus and yield stress for glassy polymers and polymer
reinforced by nanofillers are addressed. Then, modeling of porosity effects on these properties for
polymers are reviewed, especially via the use of the well-known power-law approach linking porosity
to elastic modulus and/or stress. Studies related to extending the mechanical modeling to account
for porosity effects on the elastic modulus and yield stress of polymers and polymer-nanocomposites
are discussed. Finally, a brief review of the implementation of this modeling into 3D computational
methods to predict the large elastic-viscoplastic deformation response of glassy polymers is presented.
In addition to the modeling part, the experimental techniques to measure the elastic modulus and the
yield stress are discussed, and applications of polymers and polymer composites as membranes for
water treatment and scaffolds for bone tissue engineering are addressed. Some modeling results and
validation from different studies are presented as well.

Keywords: modeling; polymers; polymer nanocomposites; elastic modulus; yield stress; porosity
effect; strain rate effect; temperature effects

1. Introduction

Polymers have been widely used and considered for a variety of applications due to
their advantages such as multi-functionalities, easy and known manufacturability, and
low cost. In order to broaden their applications, increase their functionalities, reliability,
durability, and cost-effectiveness, polymers are reinforced with fillers to improve their
stiffness and strength. Fillers in the nanoscale form are commonly acknowledged to
enhance mechanical, thermal, electrical properties, etc. Nanofillers have at least one length
scale in the order of nanometers [1]. The morphologies of nanofillers vary from isotropic to
highly anisotropic, and uniform dispersion of isotropic and anisotropic nanofillers results
in achieving a very large interfacial area/volume between the nanofillers and the polymer
matrix [2]. This large interfacial area makes a polymer nanocomposite have superior
properties compared to the polymer itself.
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Nanofillers can enhance the mechanical properties, including strength, stiffness, and
toughness, and they can also improve the thermal and electrical conductivities of the
polymers [3,4]. They are also able to add functionality for a particular application [4].

Nanofillers can be classified, see Figure 1, according to the number of dimensions that
are not in the range of nanoscale (<100 nm), as follows [1,2]:

1. Zero-dimensional nanofillers: all dimensions are at the nanoscale (<100 nm). 0-D
nanofillers are also known as nanoparticles;

2. One-dimensional nanofillers: one dimension only is not at the nanoscale. Such
materials include nanotubes, nanofibers, nanowires, and nanorods, e.g., carbon and
halloysite nanotubes;

3. Two-dimensional nanofillers: exactly two dimensions are not at the nanoscale. These
include nanofilms and nanoplates/sheets, e.g., graphene sheets and layered silicate.

As defined previously, the two-dimensional nanofillers are the sheets-like or layered
nanofillers. When integrated into the polymer matrix, the microstructure of layered poly-
mer nanocomposites can be further categorized into: (1) phase-separated (aggregated),
(2) intercalated, and (3) exfoliated, as shown in Figure 2 [5].

Figure 1. The classification of nanofillers. Reprinted with permission from [2].

Figure 2. The dispersion of layered nanoclay. Reprinted with permission from [5].

The focus of this paper is to present a comprehensive and comparative review and
analysis of the mechanical properties of polymer nanocomposites, with both aspects of char-
acterization and modeling approaches. The mechanical properties of polymer nanocompos-
ites are affected by the dispersion of a nanomaterial within a polymer matrix. An exfoliated
nanocomposite has a much higher strength than an intercalated nanocomposite [2,5]. This
is mainly because of the higher degree of contact between the exfoliated nanomaterial and
the polymer [3]. Cho and Paul [6] have prepared Nylon 6/organoclay nanocomposites
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and by using transmission electron microscopy (TEM), a well-dispersed organoclay in
the matrix was observed. Their study indicated that the modulus and yield strength of
the well-exfoliated nanocomposites have increased with increasing the organoclay con-
tent [6]. Liu, Qi, and Zhu [7] have prepared nylon 6/clay exfoliated nanocomposites by
a melt-intercalation process and showed that the yield strength, flexural strength, flexu-
ral modulus, and tensile modulus have all significantly increased with the addition of a
small weight percentage of nanoclay (4.2 wt.%). They have reported that this is because
of the strong interaction between the nanoclay interface and the nylon 6 matrix, which
was indicated by the TEM and X-ray diffraction (XRD) [7]. Ma, Zhang, and Qi [8] have
prepared intercalated clay (MMT)/elastomeric polyurethane (MMT/PU) nanocomposite
and studied the effect of increasing the clay content on the tensile strength. They have illus-
trated that the strength of the nanocomposite has increased as the clay content increased
from 0 to 8 wt.% [8]. However, the strength starts to decline for a clay content higher
than 8 wt.%, which is due to the aggregation of clay as illustrated by wide-angle X-ray
diffraction [8]. Hassanzadeh-Aghdam and Mahmoodi [9] have shown that incorporation
of SiO2 nanoparticles into shape memory polymer (SMP) results in enhancement of the
elastic modulus of the nanocomposite. They concluded that it is essential to account for
the interphase region in the micromechanical modeling to obtain an accurate prediction of
the nanocomposite elastic modulus [9]. Furthermore, Xie et al. [10] have determined the
degree of clay dispersion based on TEM and optical microscopy data. They have shown
that an increase in the storage modulus is achieved by enhanced dispersion of the nanoclay
in the polypropylene (PP) nanocomposite.

The effect of nanofiller agglomeration on the effective properties of nanocomposites is
significant. Haghgoo et al. [11] have predicted the electrical conductivity for carbon fiber-
carbon nanotubes (CNT)-polymer hybrid composite using a two-step analytical method.
They have shown that at a higher CNT volume fraction, the agglomeration effect is higher
due to the formation of more CNT clusters. Higher electrical conductivity is achieved
in the agglomerated state and can be explained by the increase in CNT-CNT contacts
in the clusters [11]. In another study by Haghgoo et al. [12], they have concluded the
importance of the effect of agglomerate size to tunneling distance ratio on the electrical
conductivity. A more recent study by Haghgoo et al. [13] also revealed that the electrical
conductivity increases with the increase in agglomeration size. In terms of thermal conduc-
tivity, Hassanzadeh-Aghdam and Ansari [14] have shown that CNT agglomeration lowers
the thermal conductivity of SMP nanocomposites. Hence, it is crucial to have a uniform
dispersion of the CNT to enhance the thermal properties.

In addition, Hassanzadeh-Aghdam [15] has illustrated the impact of agglomeration
on the creep modulus of graphene nanoplatelet (GNP)-reinforced epoxy nanocomposite.
A homogenization approach based on Mori-Tanaka micromechanical model was used.
To have acceptable predictions, it is important to account for the GNP agglomeration in
the micromechanical analysis as the graphene content increases (i.e., the formation of
agglomeration increases) [15]. In another study done to predict the creep behavior of CNT
polymer nanocomposite (PNC), it was concluded that the dispersion type, directional
behavior of CNTs, and the interphase region are all factors that must be considered to
achieve a more realistic prediction of the CNT-PNC creep response [16]. Shi et al. [17] have
studied the effect of agglomeration of CNTs on the effective stiffness of the composite using
Eshelby’s inclusion model. They illustrated that the agglomeration of CNTS resulted in
reducing the effective elastic modulus. Ji et al. [18] have studied the factors that reduce
the elastic modulus of graphene sheet-reinforced polymer nanocomposites, which are
agglomeration, restacking, and scrolling of graphene sheets. Furthermore, Kundalwal and
Ray [19] have theoretically investigated the effect of the interphase between the CNTs and
the matrix on the effective properties of the composite. They concluded that the effect of
the interphase on the longitudinal effective elastic properties was negligible. However,
the study by Snipes et al. [20] showed the importance of considering the interface region,
between the matrix and fillers phases, on the polymer nanocomposites’ stiffness.
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To enhance the mechanical properties of a polymer nanocomposite, it must have a
good dispersion of nanofillers in the polymer matrix [2,21,22]. In addition, the interfacial
interaction between the polymer matrix and the nanofillers plays a significant role in the
mechanical properties of the polymer nanocomposites [2]. A strong interfacial interaction
usually results in better mechanical properties of the nanocomposites [2,21]. This is not only
shown through experiments but also specifically accounted for with theoretical modeling,
which will be discussed more in detail in this paper.

2. Modeling the Mechanical Behavior of Polymers and Polymer Nanocomposites

It is essential to define the mechanical properties that describe the behavior of polymers
before discussing any mechanical modeling. Figure 3 illustrates a schematic of the typical
stress-strain curve for a polymer below the glass transition temperature [23]. The curve
starts by a linear elastic region where the slope is the elastic modulus. The modulus of
elasticity, or Young’s modulus, is defined as the ratio of stress (σ) to strain (ε) in the linear
elastic region (i.e., E = ∆σ/∆ε). It is a measure of the stiffness of the material. As seen
in Figure 3, the yield strength (σy), or the onset of yielding, is the stress that corresponds
to the end of the elastic region. Within the elastic region, the deformation is reversible,
which means the material completely recovers its original dimension [24]. Hence, in this
region, the linear relationship that exists between the stress and strain is Hooke’s law where:
σ = Eε [25].

Figure 3. Typical stress-strain curve of an amorphous polymer. Reprinted with permission from [23].

However, in the plastic region, the deformation is not recoverable; it is permanent [24].
The behavior, as shown in Figure 3, typically starts with strain softening followed by
strain hardening where neck propagation takes place [26,27]. The ultimate strength, or the
tensile strength, shown in Figure 3, corresponds to the maximum stress before the polymer
fractures. The ultimate elongation or elongation to break is a measure, in percentage, of the
change in length in the material before the fracture. Compared to polymers, ceramics have
a very low elongation to break, and metals have a moderate elongation to break. The area
under the stress-strain curve gives the toughness of the material [24].

In several aspects, polymeric materials are mechanically different from metallic and
ceramic materials. As an example, the maximum tensile strength of a metal alloy can reach
up to 4100 MPa, while the maximum tensile strength of polymers is around 100 MPa [26].
Although metals are sensitive to high strain rate and temperature, the mechanical properties
of polymers are highly sensitive to changes in strain rate and temperature [28]. William
and Rethwisch [26] have discussed the influence of changes in temperature on the stress-
strain behavior of poly(methyl methacrylate) (PMMA). They illustrated that the rise of
temperature (from 4 ◦C to 60 ◦C) leads to a decrease in elastic modulus and yield strength,
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and an increase in ductility. However, the increase in the strain rate has opposite effects
on the stress-strain behavior of polymers to the increase in temperature [29]. As shown in
Figure 4, increasing the strain rate leads to an increase in elastic modulus and yield strength
of PMMA and reduction in ductility [30].

Figure 4. Influence of strain rate on the stress-strain behavior of poly(methyl methacrylate) (PMMA).
Reprinted with permission from [30].

2.1. General Modeling and Simulation Methods

Different modeling tools exist that predict the mechanical properties of polymeric
materials and polymeric nanocomposite materials [31]. In general, the role of modeling can
be schematically viewed in Figure 5. Laboratory experiments are critical for the validation
of the model, and measurements are necessary to obtain certain parameters needed for the
model [32,33]. A model is used to develop the essential theory, which is used to compare
experimental results to the predicted behavior through simulation [33].

Figure 5. A schematic showing the interdependence between modeling and experimental methods
(adapted from Ref. [32]).

According to Valavala and Odegard [33], computational modeling methods used for
the prediction of mechanical properties of materials can be divided into computational
chemistry and computational mechanics methods. Both analytical and numerical methods
are continuum-based methods [34]. Numerical methods include both finite and boundary
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element methods (FEM and BEM) [33]. All the computational modeling methods described
in this paper are considered analytical micromechanics methods.

2.2. Elastic Behavior of Polymers

Temperature and strain rate significantly affect the mechanical properties of a poly-
mer [21,22,35,36]. The elastic behavior of polymers changes significantly as the temperature
and strain rate change [37]. As a result, it is necessary to have a model that considers the
effect of temperature and strain rate on the modulus of elasticity. The modulus of elasticity
or Young’s modulus, is an essential property in polymers. It is the ratio of stress to the
elastic strain, and it depends on temperature and strain rate. Richeton et al. [35] have devel-
oped a model for the stiffness modulus, which takes into account the effect of temperature
and strain rate/frequency. The basis of their work is the statistical model for modulus
dependency on temperature, which was developed by Mahieux and Reifsnider [38,39]. The
Mahieux and Reifsnider model is the only model which is valid from fully glassy to fully
rubbery polymer materials [35]. Their approach is based on the effect of temperature on
bonding in polymers, particularly secondary bonds [38].

In fact, in polymers, from the glassy to the rubbery regions, the modulus of elasticity
drops from gigapascal to megapascal [39]. Hence, it is important to examine how Young’s
modulus for a polymer changes with temperature. Figure 6 shows the log of modulus
(E) versus temperature (T) for a typical linear amorphous polymer [38]. As illustrated in
Figure 6, there are five regions in the curve, which are [40]:

(1) The glassy region where the modulus is high (in GPa);
(2) The glass transition region where the modulus sharply goes down;
(3) The rubbery region where the modulus is low (in MPa);
(4) The viscous region where a polymer begins to flow;
(5) Decomposition region where the chemical breakdown begins.

Figure 6. Log (modulus) vs. temperature for an amorphous polymer. Reprinted with permission
from [38].

Before discussing these regions, note that there are primary and secondary bonds in
the polymer. The primary bonds in the polymer do not break down nor dissociate as the
polymer goes from the glassy to viscous flow region [39]. The primary bonds in polymer
macromolecules are strong covalent bonds with the energy of dissociation ranging from 50
to 200 kcal/mol [38]. On the other hand, the secondary bonds in polymers are weaker: such
as Van der Waals interactions (0.5 to 2 kcal/mol), dipole interactions (1.5 to 3 kcal/mol),
hydrogen bonds (3 to 7 kcal/mol), and ionic bonds (10 to 20 kcal/mol) [38]. The strength
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of the secondary bonds changes as the polymer goes from the glassy to the viscous flow
region. Figure 7 shows the primary and secondary bonds in polymers [38].

Figure 7. Primary and secondary bonds in polymer. Reprinted with permission from [38].

(1) The glass region and secondary relaxation

The glass temperature (Tg) can be defined as the temperature where the secondary
bonds begin to dissociate. When the polymer is loaded at a temperature less than Tg,
the secondary bonds stretch [40]. This elastic deformation is recovered after the load is
removed.

In the glassy region, the modulus of elasticity is the highest, as shown in Figure 6.
If the thermal energy is high, this may lead the side groups to rotate in the polymer
macromolecules [38]. In this case, the secondary relaxation is viewed by a decrease in
the modulus, as shown in Figure 6. This kind of rearrangement requires a low amount
of activation energy, and therefore, these relaxations can happen at a temperature below
Tg [38].

(2) The glass transition region

As illustrated in Figure 6, the glass transition leads to a significant drop in the modulus
of elasticity. Loading the polymer at Tg or above Tg results in the movement of the
macromolecules [41]. The molecules slide in a way known as “reptation” which is usually
referred to as a “snake-like way” as described by Ashby [40]. As a result of molecules’
“reptation”, the secondary bonds begin to break [38].

However, it is important to mention that the movement of polymer macromolecules is
still limited as a result of cross-linking/entanglements of the polymer chains, or presence of
crystallites, and fillers within the polymer matrix, etc. [40,41]. Additionally, in this region,
there is the elastic part, which will restore some of the original shapes of the polymer after
unloading. However, the work of the elastic part takes time since it will pull against the
movement (sliding) of molecules; hence, the polymer has “leathery properties” [40].

(3) The rubbery region

After the glass transition, polymers with a long chain (average degree of polymeriza-
tion > 104) go through the rubbery region. The rubbery state of polymers is a result of the
entanglement of the polymer macromolecule [40].

Above Tg, the entanglements act as “a shape-memory”. When the polymer is loaded,
the entanglements straighten out and when unloaded, the straightened polymeric chains
contract and use the entanglements to pull the polymer to its original shape [40]. The
modulus of elasticity in the rubbery region is low compared to the glassy region.

(4) Viscous flow region

At the viscous region, the temperature is high (>1.4 Tg) and the modulus of elasticity
is low [41]. At this stage, the secondary bonds in the polymer macromolecules had fully
dissociated and the points of entanglements had slithered [38]. Hence, linear polymers
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are viscous liquids at this stage [38]. However, cross-linked polymers will not melt, but
they will decompose at a very high temperature. In addition, the class of thermoplastic
polymers are actually shaped at the viscous flow region [40].

(5) Decomposition region

Decomposition of polymers into monomer units (e.g., poly(methyl methacrylate)
(PMMA)) or into several products (e.g., polyethylene (PE)) occurs at a very high tempera-
ture. As a result, it is vital to ensure that thermoplastic polymers are not overheated when
they are shaped to avoid the decomposition of the polymer [38].

Figure 6 illustrates the changes in modulus in the five different regions for a typical lin-
ear amorphous polymer. Crystallization in polymers increases the Young’s modulus since
the molecules in crystalline polymers are “more densely packed” compared to amorphous
polymers [40,41]. Furthermore, cross-linked polymers have a higher Young’s modulus
in the rubbery region. However, cross-linked polymers do not melt, unlike crystalline
polymers, which melt at a high temperature [40].

2.3. Mahieux and Reifsnider Model for the Elastic Modulus

The Mahieux and Reifsnider [38] model is valid from the glassy to the rubbery region
and it includes the three transition temperatures (beta transition (Tβ), glass transition (Tg),
and flow (Tf )) as well as the three instantaneous stiffnesses at the beginning of each region.
The authors used the Weibull moduli (mi) to represent the “statistics of the bond breakage”.
The modulus as a function of temperature, E(T), is:

E(T) = (E1 − E2)· exp
(
−
(

T
Tβ

)m1
)

+ (E2 − E3)· exp
(
−
(

T
Tg

)m2
)
+

E3· exp
(
−
(

T
Tf

)m3
)

.
(1)

Here, each subscript (1,2,3) refers to a particular transition (1 for beta, 2 for glass
transition, 3 for flow transition). The instantaneous modulus Ei is the modulus of each
region just before the transition. The Weibull parameter m1 affects the slope of the secondary
relaxation, m2 affects the slope of the glass transition region, and the last Weibull parameter
m3 affects the slope of the flow region [38]. These Weibull parameters are then important to
define the behavior of the material of interest.

In another paper by Mahieux and Reifsnider [39], they applied the model into four
polymers: polyether ether ketone (PEEK), PMMA, polyphenylene sulfide (PPS) and the
composite AS4/PPS. The model was found to correctly represent all of the four polymers’
responses. However, as clearly shown in the above model, the effect of frequency/strain
rate on modulus is not considered. Therefore, Richeton et al. [35] have modified the above
model to account for the influence of temperature and frequency/strain rate as described
in the next section.

2.4. Richeton Model for the Elastic Modulus

Richeton et al. [35] relied on the model of Mahieux and Reifsnider and included the
frequency or strain rate as follows on the parameters under focus:

The storage modulus is expressed as [35]:

E(T, f ) = (E1( f ) − E2( f ))· exp
(
−
(

T
Tβ( f )

)m1
)

+ (E2( f ) − E3( f ))·

exp
(
−
(

T
Tg( f )

)m2
)

+ E3( f )· exp
(
−
(

T
Tf ( f )

)m3
)

,
(2)



Polymers 2022, 14, 360 9 of 31

where all terms were defined for Equation (1). Similarly, for Young’s modulus, the frequency
( f ) is replaced by the strain rate (

.
ε) in Equation (2) [35]:

E
(
T,

.
ε
)
=
(
E1
( .
ε
)
− E2

( .
ε
))
· exp

(
−
(

T
Tβ(

.
ε)

)m1
)

+
(
E2
( .
ε
)
− E3

( .
ε
))
·

exp
(
−
(

T
Tg(

.
ε)

)m2
)

+ E3
( .
ε
)
· exp

(
−
(

T
Tf (

.
ε)

)m3
)

.
(3)

In these expressions, the instantaneous moduli and transition temperatures have the
following dependence on the frequency or strain rate [35]:

Ei = Ere f
i ·
[

1 + s· log10

(
f

f re f

)]
, (4)

where i = {1, 2, 3}, respectively, for the three aforementioned transitions {β, glass, flow},
“ref ” in the superscript indicates a reference value, and s is the sensitivity constant of the
modulus to frequency for a specified polymer.

1
Tβ

=
1

Tre f
β

+
k

∆Hβ
· ln( f re f

f
) , (5)

Tg = Tre f
g +

−cre f
2 · log

(
f re f / f

)
cre f

1 + log
(

f re f / f
) , (6)

Tf = Tre f
f ·
(

1 + 0.01 log
(

f
f re f

))
, (7)

where k is the Boltzmann constant, ∆Hβ is the activation energy, and cre f
1 and cre f

2 are the
Williams-Landel-Ferry (WLF) parameters [35,42].

For both storage and Young’s moduli, the following equivalence can be applied [35]:

f re f

f
=

.
ε

re f

.
ε

. (8)

Richeton et al. [35] have validated the model with their experimental work by applying
it to two polymers: PMMA and PC. Their results of the dynamic mechanical analysis (DMA)
showed a good agreement with the model for the storage modulus for both polymers under
a wide range of frequency. In addition, the initial Young’s modulus obtained from the
uniaxial compression test was in agreement with the model results.

In a recent paper, Çolak and Çakir [43] have determined the material parameters for
the storage modulus in Equation (2) via a genetic algorithm (GA) optimization method.
They have proven that the procedure is successful for two thermoplastic polymers: one
amorphous (plasticized PVC) and the other semi-crystalline (PP). This was done by compar-
ing the modeling results to experimental DMA data. In another paper by these authors [44],
the material parameters for epoxy resin were successfully determined using the GA op-
timization method and they have shown the agreement between the predicted storage
modulus and experimental data.

3. Elastic Behavior of Polymer Nanocomposites

The Richeton et al. [35] model considered the effect of temperature and frequency/strain
rate, and it is a model that is valid from fully glassy to fully rubbery region. Hence, it is a
significant statistical model that can be used to determine the elastic properties of polymers.
However, it is of great importance to have a model for polymer nanocomposites since they
are needed for numerous applications, such as in the field of water polymeric membranes.
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3.1. Halpin-Tsai Model

The Halpin-Tsai model is a semi-empirical model that has been developed by Halpin
and Kardos [45] to estimate the elastic modulus of composite materials. The Halpin-Tasi
Equation can be written as the following [46]:

E
Em

=
1 + ξηϕ f

1− ηϕ f
. (9)

Here, E is the longitudinal modulus (EL) or the transverse modulus (ET), Em is the
elastic modulus of the matrix, ϕ f is the volume fraction of the fillers, and η is given by [46]:

η =

(
E f /Em

)
− 1(

E f /Em

)
+ ξ

, (10)

where E f and Em are the elastic modulus of the filler and the matrix, respectively. The
parameter ξ depends on the geometry of the fillers. For the transverse modulus, it has
been reported that ξ = 2 gives acceptable results. For the longitudinal modulus, ξ can be
determined using the following Equation where D and L are the diameter and the length
of the filler, respectively [46]:

ξ = 2× L
D

. (11)

Recently, a new form of the Halpin-Tsai model was proposed for the prediction of
the elastic modulus of CNT-reinforced polymer nanocomposites. An orientation factor, fR,
was incorporated into Equation (10) to account for the random dispersion of the CNT into
the nanocomposites. A waviness efficiency factor, fw, was added to account for the CNTs
waviness. In addition, an agglomeration efficiency factor, fA, was added to account for the
CNTs agglomerated state [47]:

η =

(
fR fw fAE f /Em

)
− 1(

fR fw fAE f /Em

)
+ ξ

, (12)

where fw and fA can be defined as follows [47]:

fw = 1− A
W

, (13)

fA = exp
(
−αϕ

β
f

)
. (14)

Hassanzadeh-Aghdam et al. [47] have defined A and W as the amplitude and half-
wavelength of a wavy CNT, respectively. The α and β parameters are related to the degree
of agglomeration.

Hassanzadeh-Aghdam et al. [47] have illustrated that a more realistic prediction of
the elastic modulus of CNT-PNCs was achieved using the new form of Halpin-Tsai model,
which accounts for three important factors: CNT agglomeration state, waviness, and
orientation.

3.2. Richeton-Ji Model for the Elastic Modulus

Wang et al. [21] used the Richeton model accounting for the effect of nanofillers. For
this aim, the Richeton model was incorporated into the Ji model, also using the Takayanagi
homogenization scheme [48]. The resulting three-phase model of Wang et al. [21], called
the RJ model, relies on Ji et al. [49], who developed a model accounting for the interface
bonding between the polymer matrix and the nanofillers. Therefore, the expressions of the
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RJ model for the reference instantaneous moduli of the composite Ere f
ic as a function of the

one of the polymer matrix Ere f
im is given by [21]:

Ere f
ic

Ere f
im

=

(1− α) +
α− β

(1− α) + α(h− 1)/ ln(h)
+

β

(1− α) + (α− β)(h + 1)/2 +
(

E f /Ere f
im

)
−1

. (15)

Here, the three (i = 1, 2, 3) Ere f
ic are determined using Equation (4), and the three Ere f

im
are the instantaneous stiffness of the pure polymer at a reference frequency or strain rate. h
is the stiffness ratio; E f is the Young’s modulus of the nanofillers; the Ere f

ic can be calculated
using Equation (15), and finally used in the Richeton model (Equation (2) or Equation (3))
to determine the modulus of the nanocomposites [21]. α and β are expressed as a function
of the nanofillers volume fraction ϕ f [21]:

α =
√
[2(τ/tc) + 1]ϕ f , β =

√
ϕ f , (16)

where τ and tc are thicknesses for the interphase and particles, respectively.
Wang et al. [21] have used the RJ model to predict the storage modulus and Young’s

modulus as a function of temperature for polypropylene (PP) organoclay nanocomposites
and under different frequencies/strain rates. The RJ model was validated by comparing
results to experimental work done on PP/organoclay. Both the DMA and uniaxial com-
pression test showed good agreement with the results obtained through RJ model for the
storage modulus and Young’s modulus. As an example, Figure 8 shows the validation
of the RJ model with DMA data for the storage modulus of PP (pure, 3 wt.%, and 6 wt.%
nanoclay) at a frequency of 10 Hz.

Figure 8. Prediction of storage modulus with RJ model compared to DMA measurements. Reprinted
with permission from [21].

In a recent paper by Acar et al. [37], they have modeled the elastic-plastic response of
polymer-graphene nanocomposites. They have extended the Richeton model to include the
effect of agglomeration of graphene nanocomposites by defining the three effective transition
moduli (Ere f

i ), which were taken as constant values in the work done by Richeton et al. [35].

3.3. The Richeton-Tandon-Weng Model for the Elastic Modulus

Tandon and Weng [50] have proposed a two-phase model (TW model) which predicts
the elastic modulus of nanocomposites. Their work is based on the model developed by
Mori and Tanaka [51]. Mori-Tanka (MT) model takes into consideration the effect of the
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nanofillers shape by accounting for the aspect ratio. In fact, Mori and Tanaka [51] have
extended the inclusion model by Eshelby [52], where the aspect ratio was considered in the
Eshelby tensor.

The Richeton-Tandon-Weng (RTW) model is the incorporation of Richeton model with
TW model. The RTW model can be expressed as follows:

Ere f
ic

Ere f
im

=
1

1 + ϕ f [−2vm Ai3 + (1− vm)Ai4 + (1 + vm)Ai5 Ai]/2Ai
. (17)

Here, the parameters: Ai3, Ai4, Ai5, and Ai are associated with the properties of the
fillers and matrix and with the components of the Eshelby tensor. These parameters are
determined from the Ere f

im of the pure polymer. In addition, the vm is the Poisson ratio of

the matrix. From Equation (17), the Ere f
ic , are determined and then, the Eic are calculated

using Equation (4). Lastly, the modulus of the nanocomposite can be determined using the
Richeton model.

Similar to the RJ model, Wang et al. [21] have predicted the storage modulus and
Young’s modulus as a function of temperature for PP organoclay nanocomposites using the
RTW model at different values of frequency/strain rate. The results of RTW model were
found to be in reasonable agreement with the experimental results obtained from DMA
(for storage modulus) and uniaxial compression test (for Young’s modulus).

Most of the studies take constant Poisson ratio; however, in the recent study by Bernard
et al. [53], they have proposed to account for the effect of temperature and strain rates on
the Poisson’s ratio through the following Equation:

v
(
T,

.
ε
)
=

 v0 + (vc − v0) exp
(
− T−(Tg(

.
ε)+∆T)

2

2ω2

)
i f T < Tg + ∆T

vc i f T ≥ Tg + ∆T
. (18)

Here, v0 and vc are the Poisson’s ratio at the beginning and at the end of the glass
transition region, respectively. The ∆T is half of the glass transition temperature region,
and ω is a material parameter [53].

Table 1 presents a summary of the models used to predict the elastic modulus of
polymers and polymer nanocomposites.

Table 1. A summary of the models * used for elastic modulus prediction.

Models Equations Parameters * Use Effect of T,f/
.
ε

Mahieux and
Reifsnider model Equation (1) mi , Ei , Tβ, Tg, Tf Polymers Account for the

effect of T

Richeton model

Equation (2) for
storage modulus
Equation (3) for

Young’s modulus

Ei
( .
ε/ f

)
Tβ

( .
ε/ f

)
,

Tg
( .
ε/ f

)
,

Tf
( .
ε/ f

) Polymers Account for the
effects of T, f /

.
ε

Halpin-Tsai model Equation (9) ξ, E f , ϕ f
Polymer

nanocomposites
Doesn’t account
for the effects of

T, f /
.
ε

RJ model Equation (15) ϕ f , τ/tc, h
E f

Polymer
nanocomposites

Account for the
effects of T, f /

.
ε

RTW model Equation (17)
ϕ f vm, Ai3, Ai4, Ai5,

Ai

Polymer
nanocomposites

Account for the
effects of T, f /

.
ε

Alasfar and
co-workers’ model

Equation (43)
Equation (44)

ϕp, n
in addition to

parameters of the
Richeton and RJ

models

Porous polymers
Porous polymer
nanocomposites

Account for the
effects of T, f /

.
ε

* The material parameters in the models are usually measured experimentally, but some are parameters that are
used as fitting parameters. The parameters in this table are defined within the paper.
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4. Yield Stress of Polymers and Polymer Nanocomposites

In this section, the models to predict the yield stress of polymers, as well as polymer
nanocomposites, are discussed.

4.1. Yield Stress of Polymers

To predict the yield behavior of a polymer, Eyring [54] and Argon [55] proposed ones of
the most well-known theories. The Argon and Eyring models were compared by Richeton
et al. [56] with regard to experimental work done on PMMA and PC, and they reported
that both are reasonably good, except only for restricted strain rate and temperature ranges.
Consequently, there was a need for a further model expressing the yield stress within wide
ranges of temperature and strain rate values: the cooperative model.

4.1.1. Eyring Model

The yield stress depends significantly on temperature and strain rate [22]. Eyring [54]
introduced one of the oldest theories, which is “a transition state theory”. This theory
suggests that there is an activation energy barrier that must be overcome by the segments
of the polymer chain at the yielding point. The yield stress, according to the Eyring theory,
is expressed as [57]:

σy

T
=

k
V

sin h−1(

.
ε

.
ε0 exp(−∆H

RT )
). (19)

Here, σy is the yield stress, T is the temperature, R is the universal gas constant, V is
the activation volume,

.
ε0 is the pre-exponential constant factor,

.
ε is the strain rate, and ∆H

is the activation energy.

4.1.2. Argon Model

Argon [55] proposed a theory that accounts for the intermolecular energy barrier to
shear yielding, the yield stress (σy) is given by [56]:

σy =
0.077

√
3

2
E

1− ν2

1− kT
0.77

√
3

2
E

1−ν2 V
ln
( .

ε0
.
ε

)6/5

, (20)

where ν is the Poisson’s ratio, E is the Young’s modulus, T is the temperature, k is the
Boltzmann constant, V is the activation volume,

.
ε0 is the pre-exponential constant factor,

and
.
ε is the strain rate. It is important to note that in this model, the Young’s modulus

(E) is taken as constant for a given test temperature (T). A thermodynamic analysis was
conducted by Richeton et al. [58] for the yield stress of amorphous polymers and showed
that both Argon and Eyring models present nearly the same physical limitations with
regard to the temperature and strain-rate response of yield stress.

4.1.3. The Modified Argon Model

In a recent research work, Bernard et al. [59] proposed a new modification of the Argon
model to extend its application to a broader range of temperature and strain rates. In their
work, instead of using the constant Young’ modulus, as shown in Equation (14), they used
the expression given by the Richeton model, Equation (3) where the Young’ modulus varies
by temperature and strain rate:

σy =
0.077

√
3

2
E
(
T,

.
ε
)

1− ν2

1− kT
0.077

√
3

2
E(T,

.
ε)

1−ν2 V
ln
( .

ε0
.
ε

)
6/5

. (21)

Bernard et al. [59] showed that the modified Argon model could correctly predict the
yield stress over a wider range of temperature and strain rate.
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4.1.4. The Ree-Eyring Model

The work by Bauwens [60], Bauwens et al. [61], Bauwens-Crowet [62], and Bauwens-
Crowet et al. [63,64] have illustrated that in order to model the yield stress, two rheological
phenomena need to be considered. The Ree-Eyring theory of non-Newtonian viscosity
includes two activation processes, which are α and β [65,66]. The Ree-Eyring Equation
expresses the yield stress under uniaxial loading, σy, as follows [66]:

σy

T
= Aα

(
ln
(
2Cα

.
ε
)
+

Qα

kT

)
+ Aβ sin h−1

(
Cβ

.
ε· exp

(Qβ

kT

))
. (22)

Here, the activation parameters, Ai and Ci are for the two processes α and β. Similarly,
the activation energies Qi are also for the two processes α and β. The other terms are as
defined previously. The yield stress is dependent on both temperature and strain rate.
Besides, Duckett et al. [67] and Truss et al. [68] have illustrated the dependency of yield
stress on hydrostatic pressure.

Richeton et al. [56] have compared the three molecular-based theories: the state tran-
sition theory of the Ree-Eyring [54], the conformational change theory by Robertson [69],
and the disclinations theory of Argon [55] for the prediction of yield stress for amorphous
polymers. It was shown that these three models work for restricted ranges of temperature
strain rates and that the Ree-Eyring model gives better prediction at higher strain rate
values compared to the two other models.

4.1.5. Cooperative Model: Governing Equations

A later paper by Richeton et al. [66] focused on the cooperative model. The cooperative
model was first introduced by Fotheringham and Cherry [70,71]. They modified the original
Eyring theory by first accounting for the internal stress as follows [66]:

σ∗ = σy − σi, (23)

where σ∗ is the effective stress, and σi is the internal stress. The concept behind internal
stress is that it accounts for defects resulting from previous thermal history. The internal
stress adds up to the stress applied. Hence, it leads to faster yielding. The second modifica-
tion is that yielding occurs when there is a cooperative movement of several polymer chain
segments. Thus, the strain rate is given by [66]:

.
ε =

.
ε
∗ sin hnC

(
σ∗V
2kT

)
, (24)

where
.
ε
∗ is the “characteristic strain rate”, and nC is a material constant which describes the

motion of chain segments, and the other terms are as defined previously [66]. Therefore,
the yield stress is as follows:

σy

T
=

σi
T
+

2k
V

sin h−1
( .

ε
.
ε
∗

)1/nC

. (25)

Povolo and Hermida [72] and Povolo et al. [73] have shown that the cooperative model
is more successful in the prediction of the yield stress of amorphous polymers, PMMA
and PC, respectively, than the Ree-Eyring model under a wide range of temperature and
strain rate. The same result was concluded by Brooks et al. [74] for the semi-crystalline
polymer PE.

Richeton et al. [66] have used the superposition principle to determine σi and
.
ε
∗. As

they have described, decreasing the temperature affects the yield stress in a similar way
as increasing the strain rate and vice versa. As a result, the well-known time-temperature
superposition principle can be used to establish a master curve for the Eyring plot. The
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Eyring plot shows curves for the reduced yield stress as a function of log
.
ε and at different

temperatures, as illustrated in Figure 9 [66].

Figure 9. Eyring curves. Reprinted with permission from. Reprinted with permission from [66].

As shown Figure 9, there are horizontal ∆
(
log

.
ε
)

and vertical shifts ∆
(
σy/T

)
to es-

tablish a master curve at a reference temperature. The Equations for the shifts are as
follows [37]:

∆
(
log

.
ε
)
= log

.
ε
(

Tre f

)
− log

.
ε (T) (26)

∆
(σy

T

)
=

σy

(
Tre f

)
Tre f

−
σy(T)

T
(27)

Richeton et al. [66] used these shifts along with the expression for the reduced yield
stress given by Equation (19) to have a physical meaning for the internal stress and the
characteristic strain rate. Bauwens-Crowet et al. [63] proposed the superposition principle
for the yield stress and used a “linearized Arrhenius law” to obtain expressions for both
shifts. Hence, Richeton et al. [66] have used these expressions along with Equations they
have determined for σi and

.
ε
∗ to obtain the following Equations:

.
ε
∗
(T) =

.
ε0 exp

(
−

∆Hβ

RT

)
σi(T) = σi(0)−m·T

, (28)

where
.
ε0 is “a constant pre-exponential strain rate”, m is a constant related to the material,

σi(0) is the internal stress at zero K, and ∆Hβ is the beta activation energy (secondary
relaxation). Richeton et al. [66] combined Equation (25) with Equation (28) to obtain the
cooperative model for the yield stress for T < Tg, which is expressed as follows:

σy = σi(0)−m·T +
2kT
V

sin h−1

 .
ε

.
ε0 exp

(
−

∆Hβ

RT

)


1/nC

. (29)

This model was validated by comparing the results with experimental work done on
three amorphous polymers (PMMA, PC, and PVC). It was proven that the model is valid
even at high strain rates. In fact, Richeton et al. [66] have extended the cooperative model
to above Tg and validated the model at high temperatures. Additionally, another paper by
Richeton et al. [36] illustrated the influence of strain rate and temperature on the mechanical
behavior of amorphous polymers. They did uniaxial compression tests (quasi-statics and
dynamics) on three amorphous polymers (PMMA, PC, and polyamidimide (PAI)) and
showed that elastic modulus, yield stress, and strain hardening rate all decrease with
increasing temperature, and they all increase with increasing strain rate. Moreover, it is
vital to mention that adiabatic heating affects strain hardening, especially at high values
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of strain rate. Strain hardening decreases substantially at a high strain rate because of the
effect of adiabatic heating [36].

4.1.6. Cooperative Model: Yield Stress for Semi-Crystalline Polymers

The cooperative model was used to predict the yield behavior of semi-crystalline
polymers by Gueguen et al. [57]. This latter class of polymers consists of two phases: amor-
phous and crystalline. Therefore, to extend the cooperative model from Equation (23) for
semi-crystalline polymers, the activation volume and activation energy will be the effective
activation volume and effective activation energy. To this aim, Gueguen et al. [57] used
the phenomenological law that was proposed by Takayanagi [75] as the homogenization
method, as follows [22]:

∆HM =
ϕ·∆Hc·∆Ha

Ω·∆Ha + (1−Ω)∆Hc
+ (1− ϕ)∆Ha

VM =
ϕ·Vc·Va

Ω·Va + (1−Ω)Vc
+ (1− ϕ)Va

. (30)

Here, ∆HM is the effective activation energy and VM is the effective activation volume
for semi-crystalline polymers. ∆Hc and ∆Ha are the activation energy, respectively, of the
crystalline and amorphous phases. Vc and Va are the activation volume of the crystalline
and amorphous phases. The parameters Ω and ϕ are related to the amorphous ( fa) and
crystalline ( fc) volume [57]: {

fc = ϕ·Ω
fa = 1− ϕ·Ω . (31)

In the case of semi-crystalline polymers, Gueguen et al. [57] have reported a good
agreement between the theoretical and experimental results for the cooperative model on
polyethylene (PE) and polyethylene terephthalate (PET).

4.2. Yield Stress of Polymer Nanocomposites (Extended Cooperative Mode)

In the work done by Matadi Boumbimba et al. [22], an extension of the cooperative
model was proposed for the yield stress of the following polymer nanocomposite: PP
filled with organoclay. As the PP matrix is a semi-crystalline polymer matrix, the effective
activation energy and effective activation volume for semi-crystalline PP are determined
using the expression given in Equation (30). Similarly, in the reported composite approach,
since the nanofillers contribute to the plastic deformation, Matadi et al. [76] have extended
the expression of the effective parameters (∆He f f & Ve f f ) of the cooperative model after
Takayanagi model [77]:

∆He f f =
ϕ·∆H2·∆H1

Ω·∆H1 + (1−Ω)∆H2
+ (1− ϕ)∆H1

Ve f f =
ϕ·V2·V1

Ω·V1 + (1−Ω)V2
+ (1− ϕ)V1

. (32)

Here, ∆He f f is the effective activation energy and Ve f f is the effective activation
volume for semi-crystalline polymers. ∆H1 and ∆H2 are, respectively, the activation energy
of the matrix and fillers phases. V1 and V2 are the activation volume of the matrix and fillers
phases, respectively. Ω and ϕ are parameters related to the volume fraction of the fillers.

4.2.1. GMC Model

Matadi Boumbimba et al. [22] have presented two modified cooperative models; called
the GMC and CBP models. The GMC model assumes that the polymer nanocomposite
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is a material of two phases: the matrix and the filler. In this model, the yield stress of
nanocomposites is predicted as follows [76]:

σy,c

T
=

σi(0)−m·T
T

+
2k

Ve f f
sin h−1

 .
ε

.
ε0 exp

(
−

∆He f f

RT

)


1/nC

. (33)

Here, σy,c is the yield stress of the nanocomposite material, ∆He f f and Ve f f are the
effective activation energy and effective activation volume of the polymer nanocomposite,
and the other parameters are defined after Equation (29).

The effective activation energy increases when the volume fraction of organoclay
increases, while the effective activation volume decreases when the volume fraction of
organoclay increases [22,76].

4.2.2. CBP Model

Turcsányi et al. [78] have developed a relation to predict the yield stress of nanocom-
posite materials by considering the composite material to have a third phase that accounts
for the extent of interfacial interaction as follows:

σy,c

σy,M
=

[
1− ϕ f

1 + 2.5ϕ f
exp

(
Bϕ f

)]
. (34)

Here, ϕ f is the volume fraction of the fillers, B is a parameter that quantitatively
measures the interphase/interface strength (B = 0 for a weak matrix-fillers interaction),
and σy,c, σy,M are the yield stress of the nanocomposite material and polymeric matrix,
respectively.

Therefore, the CBP model considers the polymer nanocomposite to be a three-phase
material where the third phase is the interphase between the matrix and the filler. The CBP
model considers the nanofillers to be rigid elastic but accounts for matrix/fillers interphase
as the third phase. By introducing the expression of σy,M to the Equation above, the CBP
model can be written as [22]:

σy,c

T
=

[
1− ϕ f

1 + 2.5ϕ f
exp

(
Bϕ f

)]
×

σi(0)−m·T
T

+
2k

Ve f f
sin h−1

 .
ε

.
ε0 exp

(
−

∆He f f

RT

)


1/nC
, (35)

where all terms have been defined previously. Matadi Boumbimba et al. [22] have found
that both GMC and CBP models give good predictions for the yield stress when compared
to the experimental results for PP organoclay nanocomposite. However, they suggested
that the CBP model is better since it considers the presence of interphase.

In a recent paper, Majzoobi et al. [79] have proposed a modification to the first term in
Equation (35) through the introduction of a second and a third parameter of B (B2 and B3)
as follows:

σy,c

T
=

[
1− ϕ f

1 + 2.5ϕ f
exp

(
B1 ϕ f + B2 ϕ f

B3
)]
×σi(0)−m·T

T
+

2k
Ve f f

sin h−1

 .
ε

.
ε0 exp

(
−

∆He f f

RT

)


1/nC
.

(36)

According to Majzoobi et al. [79], this model adjustment helps improve the prediction
of the agglomeration for nanofillers when the filler content increases. Figure 10 shows the



Polymers 2022, 14, 360 18 of 31

prediction of the yield stress for polycarbonate reinforced by graphene oxide (GO) as a
function of the weight fraction of GO for three different temperatures (23, 55, and 75 ◦C) at
.
ε = 10−2 s−1.

Figure 10. Yield stress/temperature ratio vs. GO weight fraction for
.
ε = 10−2 s−1. Reprinted with

permission from [79].

As illustrated in Figure 10, the prediction of the yield stress by the new model pre-
sented in Equation (36) fits better with the experimental data than the old model presented
in Equation (29); especially for higher weight fraction of GO where the agglomeration of
the nanofillers in the matrix increases.

Table 2 shows a summary of the models used to predict the yield stress for polymers
and polymer nanocomposites.

Table 2. A summary of the models used for yield stress prediction.

Models Equations Parameters * Use Remarks

Eyring model Equation (19) .
ε0, V, ∆H Polymers

Argon model Equation (20)
.
ε0, V, ν

E (constant) Polymers

Modified Argon
model Equation (21)

.
ε0, V,

E
(
T,

.
ε
) Polymers

Ree-Eyring model Equation (22) Ai , Ci , Qi
i = α, β Polymers

Cooperative model
T < Tg:

Equation (29)
σi(0), m, V, ∆Hβ,

.
ε0, nc

Polymers

Compared to
previous models,
this model is the

most accurate
model for yield
stress prediction

Extended
cooperative model

GMC:
Equation (33)

σi(0),
.
ε0, m, ∆He f f ,
Ve f f , nc

Polymer
nanocomposites

Two-phase

CBP: Equation (35) σi(0),
.
ε0, m, ∆He f f ,

Ve f f , nc, ϕ f , B

Three-phase
(the third phase is

the interphase
between matrix

and fillers)

Alasfar and
co-workers’ model Equation (45)

ϕp, n
in addition to

parameters of the
extended

cooperative model
(CBP)

Porous polymer
nanocomposites

Three-phase
(the third phase is

the interphase
between matrix

and fillers)

* The material parameters in the models are usually measured experimentally, but some are used as fitting
parameters. All parameters in this table are defined within the paper.
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5. Modeling the Porosity Effect on the Mechanical Behavior

Porosity is one of the critical parameters that influences the mechanical properties
of different polymeric materials, such as polymeric composite foams used for bone tissue
engineering and polymeric nanocomposites-based membranes used in water treatment
applications [80–82]. In fact, different studies have focused on studying the effect of porosity,
pore size, and pore size distribution on the mechanical properties of materials, especially
ceramic and rocks [83–85]. Wagh et al. [84] have mentioned several semi-empirical formulas
linking elastic modulus to the total porosity including:

E(p) = E0e(−bp), (37)

E(p) = E0(1 + Ap/[1− (A + 1)p]), (38)

E(p) = E0

(
1− f1 p + f2 p2

)
, (39)

where E(p) is the Young’s modulus of a porous material, E0 is the Young’s modulus of the
nonporous material, and p is the porosity volume fraction. The constants b, A, f1, and f2
are all adjustable parameters. According to Wagh et al. [84], the problem with these
formulas is that there is no correlation between the material’s microstructure and the
material’s mechanical properties. In other words, there is no physical significance of the
constants shown in these formulas.

A more interesting formulation linking porosity to the modulus of elasticity is the
power-law model. The formulation, explanation, and significance of this model are given
in the following sections.

5.1. Power Law for Modeling Porosity

Gibson and Ashby [86] have studied the three-dimensional mechanics of cellular solids
(foams). They have discussed the mechanics of natural (e.g., wood) and human-made (e.g.,
foam polymers) cellular solids. Ashby [87] has discussed the typical stress-strain curve for
a foam under compression. Ashby [87] has mentioned that there are three regions in the
stress-strain curve, starting with the linear elastic region at low strain; then passing through
a plateau of deformation region where the stress is almost constant, and the last region
is called the densification region, which signifies a collapse of the cell walls completely.
Gibson and Ashby [86] have analyzed how these three regions affect the behavior of three-
dimensional cellular materials (both open-cell and closed-cell foam) and proposed models
to determine the mechanical properties of foams.

The Gibson and Ashby model relates the linear elastic modulus with the relative
densities as given by the following Equation [86]:

E
Es

= C
(

ρ

ρs

)n
. (40)

Here, E and Es are the Young’s modulus of the foam (i.e., porous) material and the
Young’s modulus of the solid (i.e., nonporous) cell wall material, respectively. Similarly, ρ
and ρs are the foam’s density and cell wall material’s density, respectively. Finally, C and n
are both constants. Gibson and Ashby [86] have done experiments on three types of foams
open-cell polyurethane (flexible), closed-cell foam polyurethane (rigid), and closed-cell
foam polyethylene (flexible). They have shown that C = 1 through comparing experimental
data with Equation (40). Ashby [87] has also shown that C = 1.

Blaker et al. [80] have used the model by Gibson and Ashby to relate elastic modulus
to the porosity (ϕp) using the following expression:

ϕp = 1− ρ

ρs
, (41)
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E
Es

= C
(
1− ϕp

)n (42)

Hence, according to Bruno et al. [88], the parameter n in the power law is called the
pore morphology factor. Wagh et al. [84] have reported that the parameter n depends on the
tortuosity of the material, and Wong et al. [83] have stated that n is related to the pore size
distribution of the material. According to Blaker et al. [80] and Roberts and Garboczi [85],
the parameter n depends on the material’s microstructure. Both studies [80,85] have
demonstrated that the general range value of n is from 1 to 4. Roberts and Garboczi [85]
have stated that according to previous experimental results, the range for n is 1 < n < 2 in
the case of a closed-cell porous structure, and n increases to 2 for open-cell porous structure.
In addition, Gibson and Ashby [86] have illustrated that n = 2 in the case of open-cell
porous isotropic structures. According to Ashby [87], most synthetic foams are practically
isotropic and open-cell.

5.2. Modeling the Mechanical Behavior of Porous Polymers and Polymer Nanocomposites

A recently reported study has correlated the power-law model to the significant
elastic modulus and yield stress models to predict the mechanical properties of porous
polymeric-based materials and porous polymeric nanocomposites-based materials [89].

5.2.1. Elastic Modulus

Alasfar et al. [89] have incorporated the effect of porosity into the model proposed by
Richeton et al. [35] to investigate the elastic modulus of porous polymeric materials:

E
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T
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)m2
]
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[
−
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T
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)m3
]}
·
(
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)n.
(43)

This model was applied to examine the storage modulus of porous PP. To investigate
the effect of porosity on porous polymeric materials reinforced by nanofillers. The power-
law model was also incorporated into the model proposed by Wang et al. [21] as follows:
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(44)

All parameters in this model are as defined in the previous section. This model
was applied to the porous PP reinforced by nanoclay. Both models have shown that the
existence of pores has lowered the storage modulus for both pure PP and PP-organoclay
nanocomposites.

Regarding the pore morphology factor (n), Alasfar et al. [89] have conducted a sen-
sitivity analysis to investigate the effect of the parameter (n) on the storage modulus of
porous PP-organoclay nanocomposites. The (n) values chosen for the sensitivity analysis
were 1, 2, 3, and 4 since the reported range for n is between 1 and 4. Figure 11 illustrates
that as the value of the parameter (n) increases from 1 to 4, so does the stiffness of the
porous PP with 6 wt.% nanoclay [89].
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Figure 11. Sensitivity analysis on the pore morphology factor. Reprinted with permission from [89].

5.2.2. Yield Stress

The modified cooperative model by Matadi Boumbimba et al. [22], CBP model, has
been recently extended to account for the effect of porosity similarly using the power-law
model [89]:

σy,c

T
=

[
1− ϕ f

1 + 2.5ϕ f
exp

(
Bϕ f

)]
×σi(0)−m·T

T
+

2k
Ve f f

sin h−1

 .
ε

.
ε0 exp

(
−

∆He f f

RT

)


1/nC
× (1− ϕp

)n.

(45)

In the case of a pure porous polymer, the first term is equal to one as ϕ f = 0 and B = 0,
as explained by Matadi Boumbimba et al. [22]. Figure 12 illustrated the effect of varying the
parameter B on the yield stress of porous (ϕp = 5%) PP reinforced by 3 wt.% nanoclay [89].

Figure 12 demonstrates that the larger the parameter B is, the higher the yield stress of
porous PP nanoclay. According to Alasfar et al. [89], the explanation behind this behavior is
the fact that a higher exfoliation degree of PP/nanoclay is represented by a larger value of
parameter B. According to Matadi Boumbimba et al. [22], determining the parameter B can
be useful in estimating the extent of exfoliation. They illustrated that a 3 wt.% organoclay
concentration corresponds to an exfoliation degree of 27%, as shown in Figure 13.

Figure 12. The effect of parameter B on the yield stress of PP 3 wt.% nanoclay. Reprinted with
permission from [89].
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Figure 13. Yield stress/temperature versus log (strain rate) [22].

6. Three Dimensional Computational Implementation to the Elastic-Plastic
Stress-Strain Curve

The original work of Boyce et al. [90] has demonstrated the implementation of the
Argon model into a three-dimensional constitutive model. This model describes the elastic-
viscoplastic deformation for glassy polymers. It incorporates the yield and post-yield
behavior of glassy polymers and takes into account the effect of strain rate, temperature,
pressure, strain softening, and strain hardening. Arruda and Boyce [91] have shown that
this constitutive model is capable of predicting the stress-strain behavior of the two amor-
phous polymers, PC and PMMA, from low to moderate strain rates. Boyce et al. [92] have
also demonstrated the successful ability of the constitutive model to predict the behavior of
PC polymer under different states of deformation (simple shear, uniaxial compression and
plane strain compression, and uniaxial tension). They compared simulated prediction to the
experimental results. Wu et al. [93] used this modeling approach to predict the stress-strain
response, under large compressive deformation, of a non-filled and silica-filled resin.

Later on, Mulliken and Boyce [94] extended the model to predict amorphous polymers’
behavior for high strain rates and a wide range of temperature, using the Ree-Eyring
concept for the yield behavior. The 3D constitutive model was numerically implemented
into ABAQUS through a user material subroutine. It was shown that the model has
successfully predicted the linear elasticity, yield behavior, strain softening, and strain
hardening for the polymer PC. However, the problem with the Mulliken and Boyce model
is that it is not valid through the glass transition temperature. Besides, the effect of adiabatic
heating needs to be incorporated since it is an essential aspect of material deformation
behavior. Therefore, Richton et al. [58] have proposed the use of the cooperative model
for the yield stress in the 3D modeling. This formulation is valid from a glassy to rubbery
region under a wide range of temperature and strain rate, and it took into consideration
the effect of adiabatic heating.

To account for the strain softening observed on the stress-strain curves after the onset
of yielding, a phenomenological relation was proposed by Boyce et al. [90]. The softening
evolution of the shear resistance,

.
S, can be expressed as follows [93]:

.
S = hs

(
1− S

Sss

)
.
ε

p . (46)
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Here, hs is the softening slope, S is the material current state of athermal deformation
resistance, and Sss is the steady state value of S [58,90,93]. In this case, the Argon’s model
is expressed as follows:

σy = S
[

1− (1− v)T
0.076 GV

ln
( .

ε0
.
ε

p

)] 6
5

. (47)

where the initial value of athermal resistance, S0, can be defined as:

S0 =
0.076G
(1− v)

, (48)

here, G is the shear modulus, and v is the Poisson ratio.
To account for this strain softening in the case of the cooperative model, Richeton

et al. [58] proposed a similar phenomenological relation, but applied to the evolution of the
internal stress in the cooperative model. In this work, Richeton et al. [58] have also added
the effect of hydrostatic pressure in the evolution relation of the internal stress.

As was shown in Figure 3, the stress-strain response shows a strong strain hardening
region at large strains when the polymer is deformed at a temperature below the glass
transition. This hardening is due to molecular orientation and is similar to the hardening
observed at large strains when the polymer is deformed above the glass transition (rubbery
behavior). To model the hardening in glassy polymers, a flow rule with kinematic hardening
was proposed by Parks et al. [95] and Boyce et al. [90]. In these works, they used a statistical
rubber-elasticity model based on the tree-chain approach to compute the back stress due
to molecular orientation. This statistical rubber elasticity modeling of the back stress for
molecular orientation resistance was later extended to the eight-chains modeling approach
for rubber-elasticity by Arruda and Boyce [96]. This eight-chain theory was then used by
several authors to model the orientation hardening during large deformation of glassy
polymers (see [58] and references therein). The formulation based on Richeton et al. [58]
was implemented into the finite element code Abaqus by Bernard et al. [53]. In more recent
work, Bernard et al. [97] proposed a generalized 3D formulation based on the strain-strain
duality to correctly account for large deformation kinematics. To account for the hardening
due to molecular orientation, another method proposed by Çolak et al. [98] was successfully
used to predict the stress-strain response of PMMA. This approach, called the cooperative-
VBO model, is based on implementing the cooperative model into the 3D elastic-viscoplastic
formulation of the overstress model (see Çolak et al. [98] and references therein). This
cooperative-VBO model was also extended, in a composite formulation, to predict the
elastic-viscoplastic behavior of polymer nanocomposites by Acar et al. [37]. Other important
works in this 3D computational work of large deformation behavior of polymers were
proposed by Naït-Abdelaziz and co-workers for silica/polymer nanocomposites as well as
for semi-crystalline polymers [99,100].

At relatively high strain rates, the temperature of the plastically deformed polymer
samples increases due to adiabatic heating. Since polymers are very sensitive to temperature
changes, the 3D constitutive model accounts for heat generated during plastic deformation
of a polymer, which is known as adiabatic heating [101,102]. As previously mentioned,
adiabatic heating affects strain hardening and strain softening, especially at high strain rate
values [36]. The Equation for general energy balance can be written as [58]:

.
q = ρ(T) · cp(T) ·

.
T − div(Γ · grad(T)), (49)

where
.
q is the rate of heat generated due to plastic flow, ρ(T) is the density, cp(T) is the

specific heat, and Γ is the thermal conductivity [91,103]. Unlike in metals, where it is well
established that only 90% of the plastic work is converted to heat, this percentage is not
clearly defined for polymers.
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7. Experimental Characterization of Mechanical Behavior of Polymers and
Polymer Nanocomposites

The aim of this section is to briefly discuss the main experimental characterization tech-
niques used to investigate the mechanical behavior of polymeric materials and nanocom-
posites. It is important to note that a detailed review of the experimental characterization
of the mechanical behavior is beyond the scope of this review paper. The purpose here is to
highlight the important experimental tools necessary to validate models’ prediction and
obtain critical material parameters needed for the modeling approach.

As reported by Wang et al. [104] and Wang et al. [105], particular care has to be taken
using conventional tests as these are difficult to directly apply to study the mechanical
properties of membranes for water treatment because of their small thickness. However,
in this section, the widely used mechanical tests are briefly addressed without going into
details of the thin versus thick samples.

Dynamic mechanical analysis (DMA) is a powerful method that applies cyclic stress
or cyclic deformation, and the corresponding strain or stress, respectively, is measured.
The DMA test is a well-known tool to measure the mechanical properties as a function
of frequency, temperature, and time [106]. In DMA, a sinusoidal deformation is applied
to the material sample, and the response is measured. The thermal transitions, including
secondary transition and glass transition temperature of polymers, can be detected using
the DMA approach [107]. Hence, both storage modulus and loss modulus can be measured
as a function of temperature at different frequencies. Ghasemi et al. [108] have prepared
glass-fiber-reinforced PP and incorporated graphene nanoparticles at different loading.
DMA test was used to investigate the effect of graphene nanoparticles on the storage
modulus and showed a significant improvement in the modulus with the addition of
1 wt.% of nanoparticles. The stress-strain curve can be obtained, which will provide
information about the elastic behavior (Young’s modulus and yield stress) as well as the
viscoelastic behavior of the polymeric material. Many researchers use this tool to validate
the predicted results of the models reviewed in this paper, such as in the work by [21,35,66]
and others.

Uniaxial testing is one of the most common methods used to determine Young’s mod-
ulus, yield stress, ultimate tensile stress, fracture toughness, and elongation at break [104].
All these properties can be determined via reporting the stress-strain curve. Moy et al. [30]
have investigated the stress-strain response for PMMA under the uniaxial compression test.
For quasi-static and intermediate strain rates, they used servo-hydraulic Instron test frame
to perform the experiment. For the dynamic uniaxial compression test, a split-Hopkinson
pressure bar (SHPB) was used for investigating the mechanical behavior of PMMA at high
strain rates and under room temperature.

Similarly, Richeton et al. [36] have conducted uniaxial compression tests on three amor-
phous polymers (PAI, PC, and PMMA) under a wide range of strain rates and temperatures.
In their work, SHPB was used to conduct the high strain rate experiments. The results of
these tests provide information about the compressive yield stresses for a wide range of
temperatures and strain rates, which is necessary for developing models that can accurately
predict the mechanical behavior of the polymers. Uniaxial tensile testing is commonly used
for porous polymeric membranes by uniaxially stretching the sample at a constant speed
while both ends are gripped [104]. Both the load (force) and speed can be controlled. Reiter
and Major [109] performed uniaxial tensile tests on PP from low to high strain rates and
used the international standard for the tensile test to ensure reliable prediction for the FEM
simulation and modeling.

Nanoindentation is a method that can be used to determine the modulus, fracture
toughness, and hardness of material [104]. In the indentation test, the applied force into a
specimen by an indenter and the corresponding displacement are measured. The stiffness
of the material can then be determined from the load (force)-displacement curve. This
method is considered effective for thin films and materials with small volumes [104]. Zhang
et al. [110] have extracted the PMMA parameters in the model through fitting indentation
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test results. They showed that the FE-simulation results agree with the experimental results
using these parameters [110,111]. Wang et al. [112] have used a nano-indenter to measure
the modulus and hardness for a complex nanohybrid polymeric membrane and showed
the effect of incorporation of graphene oxide on increasing both the modulus and hardness
of the membrane.

8. Modeling of the Mechanical Behavior of Polymer Nanocomposites:
Application Cases

The models reviewed in this paper for predicting the mechanical behavior of porous
polymers and polymer nanocomposites can be used for different applications. In water
treatment applications, porous polymer membranes have been widely employed due to
their high efficiency and low cost [113]. Polyvinylidene fluoride (PVDF), polyethersulfone
(PES), and polysulfone (PSF) have been most often used for the fabrication of micro-and
ultrafiltration membranes owing to their mechanical, thermal, and chemical properties. In
general, polymer membranes are required to have good mechanical strength, stability, and
durability in addition to controllable porosity and filtration functionalities. The mechanical
behavior of polymer nanocomposite membranes can be notably enhanced by incorporating
a target nanofiller, and the nanofiller loading and distribution within the membrane matrix
largely affect the total porosity and porous morphology of the prepared nanocomposite
membranes. For example, Zhong and coworkers [114] prepared membranes from PSF
blended with sulfonated polysulfone (SPSF) and reinforced by cellulose nanofillers (CNF).
In another study, PSF was blended with surface modified CNF (M-CNF) after the addition
of excess M-CNF [115]. Kamal et al. [116] prepared PSF/PVP membranes and incorporated
halloysites nanotubes (HNTs) into the matrix. These studies showed that a specific addition
of the nanofiller enhances the mechanical properties of the prepared membrane. In the
paper by Zhang et al. [115], the addition of 0.4 wt.% M-CNF resulted in the highest tensile
strength of the composite membrane. In the paper by Kamal et al. [116], the optimal HNTs
loadings leading to the maximum elastic modulus and yield stress were 0.2 wt.% for the PSF
matrix and 0.3 wt.% for the PSF/PVP matrix. However, Manawi et al. [117] have reinforced
PSF with carbon nanotubes (CNT), and they showed that the mechanical properties (yield
stress and Young’s modulus) dropped with the increase in the CNT content as a result of
higher porosity in the fabricated composite membrane samples.

The importance of having good mechanical strength is dictated by the fact that the
porous membrane might experience physical compaction when exposed to operating
pressure, which severely deteriorates the membrane performance. In addition, polymeric
membranes with low mechanical strength may fail at high operating pressure and during
backwashing cleaning. Because the membranes are subjected to cycles of pressure and
temperature changes during operation and cleaning; thus, it is necessary to investigate
how the polymeric membranes behave under stress conditions similar to the ones in
operation [104]. As a result, it is important to examine the membranes’ capability to endure
deformation mechanisms to predict their lifetime. The mechanical properties essential
for the membrane application in water treatment include the elastic modulus and yield
stress. Hence, the discussed prediction models could be useful to foresee the mechanical
properties of polymeric/polymeric nanocomposite-based membranes, which are essential
for their efficient long-term performance. The experimental characterization techniques
described in Section 7 can be effective for validating these models as well as determining
the critical material parameters needed for the models.

In addition, modeling of the mechanical properties of nanocomposites could facilitate
the development of novel scaffold materials such as polyglycolide and polylactide incorpo-
rated with hydroxy apatite (HA), bioactive glass or other inorganic particles in bone tissue
engineering [80]. Poly-D-L-lactide (PDLLA)/nano-HA is a common porous composite
that is considered as a biological scaffold material. This composite material exhibits shape
memory property under uniaxial compression or bending test, which is an important
property when this scaffold is implemented into the body [118]. A material with shape
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memory property can return to its original shape after temporarily being deformed by an
external stimulus (e.g., light, temperature, or pH) [119]. Zheng et al. [120] have prepared
PDLLA/HA composites and examined their mechanical properties in addition to their
shape memory effect through DMA. Han et al. [118] have theoretically investigated the
mechanical behavior of porous PDLLA/nano-HA through four hyper-elastic constitutive
models and validated the models with results from the uniaxial compression experiment.
According to Meskinfam [121], evaluating the mechanical properties is an essential step in
the development of scaffolds. The mechanical properties that are important to evaluate
include elastic and flexural modulus, tensile and compressive strength, and maximum
allowable strain. It is vital to mention that the pore morphology and porosity largely
influence the mechanical properties of scaffolds. Hence, accounting for the porosity and
pore morphology effect in mechanical modeling is a must for the application of bone tissue
engineering.

9. Conclusions

Polymers are widely used for various engineering applications, especially polymers
reinforced by nanofillers, which increase their functionality and significantly improve their
mechanical, thermal, and electrical properties. Hence, studying the mechanical proper-
ties of polymers and polymer nanocomposites is essential to decide on the most efficient
polymeric/polymeric nanocomposite material needed for a specific application. Computa-
tional modeling is a useful tool to investigate the mechanical properties of polymers and
polymer-based nanocomposites (both dense and porous). Reliable, accurate mechanical
models can significantly reduce the number of experiments conducted and hence save time,
effort, and cost.

This paper has presented a review of essential models widely used to predict the
elastic behavior and yield stress of polymers and polymer reinforced by nanofillers. In
terms of the elastic behavior, the Mahieux and Reifsnider model, the Richeton model,
the Richeton-Ji model, and the Richeton-Tandon-Weng model have been discussed. For
the yield stress, the Eyring model, Argon model, modified Argon model, Ree-Eyring
model, and the cooperative model (both general and extended model for the cases of
semi-crystalline polymers and polymer nanocomposites) have been reviewed. Results from
different modeling studies on polymer nanocomposites have been reviewed as well.

This paper also reviewed the widely used models for predicting the porosity in terms
of the elastic modulus. The recent models used to predict the elastic modulus and yield
stress of porous polymers/polymer nanocomposites are discussed. The computational
implementation of the elastic-plastic stress-strain curve has also been reviewed.

The review paper also briefly summarizes the experimental characterization tech-
niques most used to investigate the mechanical behavior of polymeric/polymeric nanocom-
posite materials. The purpose is to highlight the important experimental tools necessary to
validate the models’ prediction and obtain critical material parameters needed for the mod-
eling approaches. The experimental characterization techniques reviewed in this paper are
the DMA method, uniaxial test (compression and tension), and nanoindentation method.

Finally, the recent models that were reviewed in this paper for predicting the me-
chanical behavior of porous polymers and polymer nanocomposites can be used for dif-
ferent applications. In the field of water treatment, porous membranes made of poly-
meric/polymeric nanocomposite materials are usually used due to their wide commercial
availability, low cost, and moderate efficiency. Porous polymer nanocomposites can also
find their application in the field of bone tissue engineering as scaffold materials.

Based on this review paper, the authors would like to recommend the following for
future work:

• The recent models used to predict the elastic modulus and yield stress of porous
polymers/polymer nanocomposites have performed a sensitivity analysis on the
pore morphology factor (n). More investigation on this parameter can be helpful to
determine its value depending on the microstructural features of the chosen material;
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• There is a need to conduct experiments on different porous polymeric materials or
polymeric nanocomposite materials. This will help in increasing the validity of the
models for the prediction of the elastic modulus and yield stress of porous poly-
mers/polymer nanocomposites. Future experiments can include DMA tests as well as
uniaxial compression/tension tests;

• The model given by Equation (45) for the yield stress prediction can be further mod-
ified by considering the three parameters of B presented in Equation (36). A study
can be done to investigate how this modification can improve the prediction of the
agglomeration for nanofillers.
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