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Abstract: Neuroinflammation within the central nervous system involves multiple cell types that
coordinate their responses by secreting and responding to a plethora of inflammatory mediators.
These factors activate multiple signaling cascades to orchestrate initial inflammatory response and
subsequent resolution. Activation of NF-κB pathways in several cell types is critical during neu-
roinflammation. In contrast to the well-studied role of p65 NF-κB during neuroinflammation, the
mechanisms of RelB activation in specific cell types and its roles during neuroinflammatory response
are less understood. In this review, we summarize the mechanisms of RelB activation in specific cell
types of the CNS and the specialized effects this transcription factor exerts during neuroinflammation.

Keywords: neuroinflammation; NF-κB; RelB; astrocytes; microglia; oligodendrocytes; glioblas-
toma multiforme

1. Introduction

Neuroinflammation is the homeostatic defense mechanism that is activated in the
central nervous system (CNS) and aims at preventing exacerbated damage when faced
with insults such as injury, infection, autoimmune response, or metabolic stress [1–3]. The
innate and adaptive immune systems are activated in response to these insults [4–6]. The
innate immune system is quicker to react but is nonspecific and is composed of innate
immune cells, including the resident microglia of the brain and bone-marrow-derived
monocytes/macrophages [6]. The adaptive immune system, which depends on activation
of B cells and T cells, is much more specific but requires time to ramp up [4]. Nevertheless,
the CNS is separated from the rest of the body by a blood–brain barrier (BBB) that includes
both endothelial cells and astrocytes, limiting the entry to the CNS [7]. Therefore, T cell
entry is tightly restricted, especially at the onset of neuroinflammation [7]. In addition
to the immune cells, other cells, such as astrocytes and oligodendrocytes, modulate the
immune response within the CNS [8–11]. Unresolved chronic neuroinflammation can
lead to neurodegeneration, which manifests by a gradual obliteration of neuronal cells.
Neurodegeneration embodies the pathologies of several debilitating diseases, including
multiple sclerosis (MS), Alzheimer’s disease, Parkinson’s disease, Huntington’s disease,
and amyotrophic lateral sclerosis, among others [12–14]. Neurodegeneration compiles
both molecular and cellular events that include an accumulation of protein aggregates,
modified mitochondria functions, oxidative responses, and cell death [1,15–19]. Although
multiple transcription factors regulate neuroinflammatory responses (reviewed in [20,21]),
this review is concentrated on RelB, which is a member of the nuclear factor kappa B
(NF-κB) family of transcription factors.

2. The NF-κB Signaling Pathways

The NF-κB family of transcription factors includes p65 (RelA), c-Rel, p105/p50 (NF-
κB1), p100/p52 (NF-κB2), and RelB, which can be activated by different ligands via distinc-
tive signaling pathways that have been extensively studied over the last several decades
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(reviewed in [22–24]). The canonical NF-κB pathway is triggered by an array of inflamma-
tory stimuli, including proinflammatory cytokines (i.e., tumor necrosis factor α (TNFα)
and interleukin-1β (IL-1β)), molecules recognized by the pattern-recognition receptors
(i.e., Toll-like receptor (TLRs) ligands), and antigens, among others [23–26]) (Figure 1).
The engagement of the canonical pathway rapidly activates the inhibitor of κB kinase
(IKK) complex, which is made up of three subunits: IKKα (also known as IKK1), IKKβ
(IKK2), and IKKγ (also known as NF-κB essential modulator (NEMO)) [27]. Activated
IKKβ subsequently phosphorylates the inhibitor of NF-κB (IκB) proteins, including IκBα,
which are subsequently ubiquitinated and degraded by the proteasome [28]. This releases
the p65/p50 and c-Rel/p50 complexes that enter the nucleus and induce transcription
of hundreds of target genes, including those encoding major proinflammatory cytokines
and chemokines as well as IκBα and RelB [22,29]. While inflammatory cytokines and
chemokines recruit immune cells at the local sites of inflammation, IκBα and RelB provide
a negative feedback loop needed to limit the initial activation.
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Figure 1. Activation of RelB by the nuclear factor kappa B (NF-κB) signaling pathways. The
canonical NF-κB pathway is activated by interleukin 1β (IL-1 β), tumor necrosis factor α (TNFα),
and liposaccharide (LPS). The noncanonical NF-κB pathway is activated by lymphotoxin β (LTβ), B
cell activating factor of the TNF family (BAFF), and CD40 ligand (CD40L). The canonical activation
of RelB/p50 occurs in cells expressing high levels of RelB (basally or after induction). IκB, inhibitor
of NF-κB; IKK, IκB kinase; NIK, NF-κB-inducing kinase; P, phosphate; and TRAF3, TNF receptor-
associated factor 3.

The noncanonical pathway (reviewed by [30]) is induced by a much more limited
set of ligands that bind to their receptors, which include B cell activation factor receptor
(BAFFR), lymphotoxin β receptor (LTβR), cluster of differentiation 40 (CD40), receptor
activator of NF-κB (RANK), and fibroblast growth factor-inducible 14 (Fn14) [26,31–34]. In
cells expressing NF-κB-inducing kinase (NIK), the TNF receptor-associated factor (TRAF) 3
forms a complex with TRAF2, the cellular inhibitor of apoptosis (cIAP) 1, cIAP2, and NIK,
and this leads to constitutive ubiquitination and degradation of NIK [35]. When the ligands
of the noncanonical pathway bind, they induce the recruitment of TRAF3 to their receptors
and its subsequent degradation [36]. Simultaneously, the released cIAP1/cIAP2/TRAF2
complex no longer can interact with NIK leading to its accumulation. Accrued NIK phos-
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phorylates and activates IKKα [37,38], which in turn phosphorylates p100 (sometimes
referred to as IκBδ) [28]. This results in the processing of p100 into p52 [38], formation
of the RelB/p52 heterodimers [39], translocation of these complexes to the nuclei, and
induction of specific gene transcription, including those regulating lymphoid tissue devel-
opment [40]. In contrast to rapid activation of NF-κB-dependent genes by the canonical
pathway, activation of the noncanonical pathway is much slower and more persistent.
Interestingly, in cells expressing high levels of RelB, LTβ also induces the formation of
RelB/p50 dimers that contribute to the development of Peyer’s patches [26], which are
clusters of lymphoid tissue located in the small intestine and regulate the intestinal flora.

The least studied is the activation of RelB by the canonical pathway, which is limited
to some cell types, such as dendritic cells, and combines factors from both the canonical and
noncanonical pathways (RelB canonical pathway) (Figure 1). Similar to the canonical path-
way, the RelB canonical pathway is stimulated by IL-1β, TNFα, and LPS [41,42] and has the
same upstream factors [43]. In the cytoplasm, the RelB/p50 heterodimers can form com-
plexes with IκB proteins [43]. This requires high levels of RelB expression due to the higher
affinity of RelB to p52 than p50 [44,45], which limits this activation, in normal physiological
conditions, to only some cell types, such as dendritic cells [46]. Although nonlymphoid
cells, including astrocytes, express RelB at low levels, in response to inflammatory stimuli,
such as IL-1β, levels of RelB are dramatically upregulated, which induces the formation of
the RelB/p50/IκBα complexes [42,47]. The RelB/p50 complexes are activated by the canon-
ical pathway, translocate to the nucleus, and initiate the expression of responsive genes,
including anti-inflammatory genes, such as YKL-40 [42] and IκBα [48]. The RelB/p50 com-
plexes also limit expression of the proinflammatory cytokines (Figure 2A) [47]. In myeloid
cells, the RelB/p50 complexes were shown to also limit cytokine expression, however, by
a different mechanism involving epigenetic silencing (Figure 2B) [40,49]. It has also been
proposed that RelB inhibits inflammatory responses by directly binding p65, forming a
transcriptionally inactive complex, and thus limiting activation of p65/p50-dependent
genes (Figure 2C) [50].
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Figure 2. The mechanisms of RelB inhibition of p65/p50-mediated gene expression. (A) Dimer
switching involves replacement of the p65/p50 complexes by the RelB/p50 complexes. (B) Epigenetic
silencing involves recruitment of SIRT1, histone H3 deacetylation, and methylation. (C) Direct
binding of p65 by RelB inhibits DNA binding. Histone H3, (H3); methyl, (Me); phosphate, (P); and
Sirtuin 1, (SIRT1).

3. RelB

The gene encoding RelB is located on the human chromosome 19q13.32 and has
recently been shown to encode 12 exons making up a protein with 579 amino acids [51].
The promoter region of RelB is unique and does not have a TATA-binding region but
contains two κB binding sites [52]. While high basal expression of RelB is limited to
dendritic cells [46], proinflammatory stimuli rapidly induce RelB expression in immune
cells, including T cells, B cells, and monocytes as well as other cell types, such as astro-
cytes [42,47,53,54].

RelB is composed of three distinctive domains. The Rel homology domain (RHD) is
shared by all five NF-κB members and is involved in dimerization, nuclear translocation,
and DNA binding [44,55]. However, unlike all the other NF-κB members [56–61], RelB is
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unable to form homodimers [55]. Importantly, RelB forms heterodimers with p50/p105 [62]
and p52/p100 [45] and also p65 [63]. The transcriptional activation domain (TAD) is only
shared between RelB, p65, and c-Rel and is essential but not sufficient for transcriptional
activation of the NF-κB target genes [64,65]. The leucine zipper (LZ) domain that resides
on the N-terminus is unique to RelB and is thought to allow RelB to bind to more diverse
consensus sequences [66,67], but the exact function of this domain remains to be defined.

Like other NF-κB members, regulation of RelB is fine-tuned by post-translational mod-
ifications, including polyubiquitination, SUMOylation, and phosphorylation (Reviewed
in [68]). For example, RelB is destined for degradation by Thr84 and Ser552 phosphory-
lation [69]. While the kinase responsible for Thr84 remains unknown, glycogen synthase
kinase-3β (GSK-3β) mediates Ser552 phosphorylation [70]. Additionally, the IKK com-
plex phosphorylates RelB at Ser472 in response to TNF-α or IL-1β [47,71]. The RelB/p50
complexes containing Ser472 phosphorylated RelB induce the expression of genes associ-
ated with migration of fibroblasts, such as matrix metallopeptidase 3 (MMP3) [71]. This
phosphorylation was also shown to be critical for limiting cytokine gene expression in
astrocytes [47]. It has been proposed that the Ser472 phosphorylation decreases association
with IκBα; however, this is still debated [47,71]. A fourth RelB phosphorylation site was
identified at Ser368, which is critical for the dimerization of RelB with p100 and blocks the
cleavage of p100 to p52 [63]. Additional putative RelB phosphorylation sites have been
identified by mass spectrometry, but their functions in vivo remain unknown [68].

Large amounts of data implicate RelB in immune functions [24,40]. RelB is most
well-known for its critical function in the noncanonical pathway, controlling lymphoid
organ development [31]. Global RelB knockout mice have a range of immune deficiencies,
including impaired development of Peyer’s patches [31], germinal centers [72], and the
medullary epithelium [72] (reviewed by [73]). Further, RelB plays a critical role in the
differentiation of dendritic cells [74], secondary lymphoid tissue organization, and osteo-
clasts [75]. These RelB-dependent functions are also dependent on p52 and localized to the
sites of increased basal RelB expression [31,72]. However, RelB knockout mice have much
more significant deleterious effects than the NIK knockout mice, suggesting additional
roles of RelB that are independent of the noncanonical pathway [76]. The RelB knockout
mice also have a shorter lifespan due to noninfectious multiorgan inflammatory syndrome
that is T-cell dependent but independent of B cells [77].

Interestingly, it has been proposed that RelB stifles expression of proinflammatory
genes in myeloid cells during the late phase of septic shock, thus providing an important
negative feedback loop [78]. In mouse models of endotoxin tolerance, RelB works with
Sirtuin 1 (SIRT1) to coordinate an epigenetic switch, silencing proinflammatory gene
expression, including genes encoding TNFα and IL-1β [49,78,79] (Figure 2).

3.1. RelB in the CNS

RelB has been found to potentially play a role in a variety of CNS diseases. First,
intracerebral hemorrhage induces expression of all members of the NF-κB family, including
RelB [80]. Second, chronic hyperglycemia-induced oxidative stress also activates NF-κB
signaling with induction of p65, RelB, and p50 in the hypothalamus, basolateral amygdala,
and cerebral cortex [81]. Third, p65, RelB, and p52 undergo nuclear translocation in a
mouse model of Parkinson’s disease that destroys dopaminergic neurons in the substantia
nigra [82]. Although RelB forms dimers with estrogen receptor beta (ER-β), the effect
of these dimers on neuroinflammation remains unknown [82]. Fourth, APOE ε4 allele
is a known genetic risk factor for the late-onset Alzheimer’s disease [83,84]. Two inde-
pendent studies identified RelB gene variants that associate with APOE ε4 [85,86]. Rare
RelB variants associated with amyloid burden in the frontal and parietal lobes and the
hippocampus [85,86]. While evidence accumulates on the expression, interacting partners,
kinetics, and functions of RelB in the CNS, additional studies are needed to determine
whether RelB could be targeted for future therapy.
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3.2. RelB in Microglia

Microglia are the long-lived resident immune cells of the brain [87]. However, unlike
short-lived macrophages which originate in the bone marrow, microglia stem from myeloid
precursors in the yolk sac [88,89]. Their motile processes provide constant surveillance of
the local microenvironment. Microglia express a wide array of pattern recognition receptors
that enable rapid detection of pathogens and cell debris [90–92]. When responding to injury
or disease, microglia acquire phenotypes that range from pro- to anti-inflammatory [93].
Depending on the phenotype, microglia release a plethora of cytokines, chemokines, growth
factors, and other pro- and anti-inflammatory molecules [91,94]. Further, microglia have
critical phagocytic properties that are required for removing debris, including apoptotic
cells, in both the healthy and diseased brain [95].

Similar to macrophages [96], microglia display adaptive responses to subsequent
infections and inflammatory encounters [97]. After a stimulus, such as LPS, the immune
cells may become preprogrammed for a subsequent stimulus [5,98]. When the initial
dose of LPS is low, immune cell training (also known as priming) occurs, resulting in
increased response to subsequent stimulation [98]. Directly contrasting this, immune cell
tolerance follows pre-exposure to higher doses of LPS, which limits microglia response
upon re-exposure [98].

It has been elegantly shown that tolerance in microglia is mediated by RelB [99].
Interestingly, tolerized microglia display a blunted immune response with reduced cytokine
production, but they increase their phagocytic activity and secretion of inducible nitric
oxide synthase (iNOS), retaining the properties that resolve inflammation [99]. Although
the detailed mechanism remains unknown, tolerance in microglia involves epigenetic
alterations to the chromatin of targeted loci (Table 1). An increase in the dimethylation of
histone H3 on lysine 9 (H3K9me2), which is a silencing modification, has been observed [99].
Interestingly, RelB-dependent tolerance also occurs in monocytes. It has been proposed that
RelB binds with histone H3K9 methyltransferase G9a, which is critical for silencing [49].
Microglial tolerance is long lived, lasting at least six months [98], which may be due to
microglia’s long lifespan [100,101] and important in the prevention of excess CNS damage.
Further, microglia tolerance is not limited to LPS re-exposure as tolerance also protected
against Alzheimer’s pathology and ischemia, although the role of RelB has not been directly
studied in those cases [98].

RelB was also proposed to suppress proinflammatory pathways in human immun-
odeficiency virus-1 (HIV-1)-associated neurocognitive disorder (HAND) [102]. HAND is
thought to be induced by inflammation and oxidative stress mediated by the transactivator
of transcription (Tat) protein [103]. In microglia, Tat induces the expression of RelB and
TNF-α [102]. RelB counteracts inflammation through anti-inflammatory pathways and
provides a negative feedback loop against p65/p50 activation [102]. Altogether, RelB works
to suppress proinflammatory immune responses in microglia.

Table 1. Mechanisms of RelB action in the central nervous system (CNS).

Model Mechanism Cell Type Reference

LPS induced tolerance Epigenetic silencing Mouse microglia [99]
HIV/Tat induction Repression of p65 Mouse microglia [102]

IL-1β induced tolerance Dimer switching/phosphorylation Human astrocytes [47]
EAE Repression of p65 Mouse oligodendrocytes [104]

miRNA inhibition of CDH7 Activation of RelB/p50 Human glioma stem cells [105]

TWEAK induction Activation of noncanonical pathway
(RelB/p52) Human glioma cells [106]

Overexpression of Eva1 Activation of noncanonical pathway
(RelB/p52) Human glioma-initiating cells [107]

IL-1 β and OSM stimulation RelB/p50/YY1 complex formation Human GBM cells [108]
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3.3. RelB in Astrocytes

Although astrocytes were originally thought to be only the supporting cells of the
CNS, recent data clearly demonstrate that these cells are critical regulators of many pro-
cesses in the CNS [109,110]. Astrocytes support neurons, maintain ion balance, support
the blood–brain barrier, regulate water transport, reinforce and prune synapses, guide
migrating neurons, regulate concentrations of neurotransmitters, and aide with immune
functions [109–113]. However, when astrocytes become reactive, they undergo morpholog-
ical and functional changes, reprogram gene expression profiles, and secrete and respond
to a plethora of inflammatory mediators [112,114]. These responses may be beneficial or
harmful and are heterogeneous, depending on the phenotypic polarization of astrocytes,
their diversity, and the type and magnitude of the stimulus [115].

In cultured human astrocytes, RelB is expressed basally at low levels [42,47]. Af-
ter stimulation with IL-1β, the p65/p50 complexes translocate to the nuclei and induce
transcription of target genes, including proinflammatory cytokines and chemokines, as
well as RelB [47]. Once the RelB protein is synthesized, it is phosphorylated on Ser472 by
IKK-dependent mechanisms [47]. Similarly to tolerance in microglia, tolerance has also
been observed in astrocytes [47,116]. The proposed mechanism of tolerance in astrocytes
involves RelB; however, it is different than the one described for microglia and mono-
cytes [78,99]. Tolerance in astrocytes occurs after p65/p50 dimers are stripped from the
DNA by resynthesized IκBα that enters the nuclei. The previously proposed dimer switch-
ing [117] occurs with p65/p50 dimers being replaced by the RelB/p50 complexes [47]. It
is speculated that RelB Ser472 phosphorylation prevents the stripping of RelB/p50 com-
plexes from the DNA by resynthesized IκBα, allowing perdurance of RelB/p50 on the
cytokine promoters [47]. Indeed, this phosphorylation persists in astrocytes for several
days. However, RelB is also known to stabilize p100 [63,118], which could limit p65/p50
activation. Similarly to microglia, RelB was shown to bind SIRT1 in astrocytes [47]. This
suggests that SIRT1 may be responsible for deacetylation of p65, allowing its removal from
the DNA as observed in other cell types [119]. In contrast to microglia [99], epigenetic
changes at RelB-regulated cytokine promoters have not been observed in astrocytes. Addi-
tionally, tolerance in these cells last for days [47], which differs from long-lasting tolerance
of microglia [99]. Importantly, astrocytic RelB also controls tolerance in vivo in a mouse
model of systemically induced neuroinflammation [47].

Not surprisingly astrocytic RelB expression is also increased during experimental
autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS) [120].
Its expression is also downregulated in human astrocytes in vitro by a drug used to treat
relapsing-remitting MS, isosorbide dimethyl fumarate (IDMF) [121]. However, conditional
deletion of RelB from astrocytes in mice only delays the onset of EAE but does not protect
the mice from the disease [104]. This observation confirms the known role of astrocytes in
the pathogenesis of EAE and MS but also indicates that multiple cell types contribute to
the disease.

3.4. RelB in Oligodendrocytes

Oligodendrocytes are the myelinating cells of the brain and spinal cord that create an
insulating sheath around axons in a concentric fashion [122,123]. The myelin sheath accel-
erates rapid transmission of action potentials due to its low capacitance. Oligodendrocytes
also provide metabolic support by generating lactate for energy, have an immunomodula-
tory capacity, and provide trophic factors [123,124]. Interestingly, oligodendrocytes can be
differentiated in the adult brain from oligodendrocyte precursors cells (OPCs) by exiting
the cell cycle and producing myelin proteins [125]. The myelination in the adult can be con-
trolled by neuronal activity and is critically regulated by epigenetic modifications [125,126].

In the disease pathology of both MS [127] and EAE [128], oligodendrocyte death is
followed by the regeneration by OPCs, which is a main determinant of clinical prognosis
(reviewed by [129]). However, microglia and astrocytes are the primary producers of the
inflammatory mediators, not the oligodendrocytes (reviewed by [130]). It has been shown
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that p65 aids in survival of oligodendrocytes in vitro [131–133]. However, constitutively
active IKKβ in oligodendrocytes of mice had little effect on the survival and functions
of oligodendrocytes under normal conditions [134]. By contrast, during EAE, these mice
had reduced demyelination, oligodendrocyte death, and axon degeneration, resulting in
overall decreased disease severity [134]. This phenotype was attributed to the activation
of p65 and increased p65-dependent oligodendrocyte survival [133,134]. Interestingly, in
a mouse expressing a IκBα∆N super-repressor (lacking N terminus and thus resistant
to proteasomal degradation) in oligodendrocytes, there was no effect on demyelination
or remyelination in a cuprizone model of MS [133]. However, additional interferon γ
treatment induced more severe disease in these mice [133]. Similarly to these findings,
decreased EAE severity has been reported in oligodendrocyte-specific RelB conditional
knockout mice [104]. This was attributed to prolonged activation of p65 and increased
oligodendrocyte survival [104]. Although the exact mechanism remains elusive, p65 is
known to control expression of several antiapoptotic genes including cIAPs, cellular FLICE-
inhibitory protein (cFLIP), Bcl-2, Bcl-xL, TRAF1, and TRAF2 [135,136]. Ultimately and in
contrast to the role of RelB that limits expression of inflammatory mediators in microglia
and astrocytes, RelB limits p65-dependent oligodendrocyte survival [104,134].

3.5. RelB in Neurons

Neurons, electrically excitable cells of the CNS, are represented by a large number
of highly specialized subtypes [137]. These cells create specific neural circuits through
the expansion of axons, prevention of collision of axons and dendrites, specification of
axon-dendrite partners, and creation and refinement of synapses [138–140]. A variety of
molecular mechanisms define the programs that generate neuronal development, including
neuronal cell lineage, timed cell division, contact inhibition, secreted factors, and lateral
inhibition [141].

Although NF-κB signaling is important for neuronal survival, the role of RelB has
not been decisively established [142,143]. A novel reporter mouse identified that RelB is
expressed in the nervous system in the postnatal and adult brain [144]. While the specific
cell types expressing RelB were not identified, RelB was absent from the myelin tracts and
was speculated to be expressed by neurons [144]. This finding supports previous data
indicating enriched RelB expression in the synaptosome fraction [145]. Additionally, con-
stitutive NF-κB activity is required for the survival of neurons [146]. It has been proposed
that the neuroprotective effects of glial cell line-derived neurotrophic factor (GDNF) on
dopaminergic neurons is NF-κB-dependent [147]. These cells express NIK and GDNF in-
duces IKKα-mediated phosphorylation of p100 and its subsequent processing to p52 [147].
Surprisingly, however, it was proposed that the p65/p52 heterodimers translocate to the
nucleus and block apoptosis, and this process is independent of RelB [147]. Of note, LTβ
induces gliogenesis of neural progenitor cells/neural stem cells primarily through acti-
vation of the canonical NF-κB pathway and also induces RelB, but the implications of
RelB activation remain unknown [148]. NF-κB signaling is also critical for maintaining
neural cell integrity in the brain and retina during oxidative stress, ischemic stroke, and
neurodegeneration [149]. Neuroprotectin D1 (NPD1) aids with cell survival by inducing
the expression and activation of c-Rel, which stimulates RelB expression independently
of the canonical pathway [149]. However, the direct implications of RelB on maintaining
neural integrity remain elusive.

3.6. RelB in Other Cells of the CNS

The role of RelB in other cell types of the CNS remains largely unexplored. It is ac-
cepted that NF-κB activation in endothelial cells observed during neuroinflammation con-
tributes to BBB dysfunction [150]. In addition to endothelial cells, pericytes are essential in
blood vessel formation, BBB maintenance, and regulation of leukocyte infiltration [151,152].
In a model of diabetic retinopathy, IL-1β secretion from microglia and endothelial cells
results in the activation of NF-κB in pericytes, inducing apoptosis and reducing the num-
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ber of tight junctions [153]. Further, RelB is critical for lymphatic vessel maturation and
function that is not dependent on p52 [154]. However, the role of RelB in brain endothelial
cells and pericytes remains elusive.

Dendritic cells are antigen-presenting cells that survey the environment, including the
CNS. The expression of RelB in dendritic cells is essential for the quantitative regulation of
Tregs [155]. Deletion of RelB from dendritic cells induces an influx of Tregs and protects
mice from EAE [155]. Interestingly, deletion of gene encoding p100/p50 only partially reca-
pitulates this phenotype, suggesting that the noncanonical pathway is not fully responsible
for Treg accumulation [155].

4. The Immunosuppressive Role of RelB in GBM

Glioblastoma multiforme (GBM) is the most common type of primary brain cancer in
adults, and a stage IV glioma as classified by the world health organization [156]. GBM
has a poor survival rate with a median survival of only fifteen months even after resection,
radiation, and chemotherapy [157–159]. GBM tumors are extremely invasive and exten-
sively angiogenic and necrotic [160,161]. Additional characteristics of GBM include inter-
and intra-tumor heterogeneity [162–164], regions of blood–brain barrier (BBB) disorgani-
zation (reviewed by [165]), malignant neovascularization [166], and immunosuppressive
inflammation that inhibits antitumor responses and promotes GBM growth and progres-
sion [166,167]. While all these characteristics make GBM difficult to treat, the high levels of
immunosuppressive inflammation have proven particularly challenging to combat.

Ultimately, three main pathways are often altered in GBM, including p53 signaling,
retinoblastoma (RB)-mediated cell-cycle control, and receptor tyrosine kinase (RTK) sig-
naling [168,169]. While originally four different molecular GBM subtypes were identified
based on unsupervised gene clustering [170,171], recently three major subtypes, proneural,
classical, and mesenchymal have been recognized [163,171,172]. The proneural subtype
frequently has PDGFRA amplifications, as well as mutation in IDH1 and TP53 [171]. The
classical subtype often has EGFR abnormalities, and the mesenchymal subtype displays
alterations to NF1 and also increased RelB expression [171,173]. Extensive studies indi-
cate the oligodendrocyte precursor cell as a cell of GBM origin [174–177]. The immune
landscape also differs across GBM subtypes with the largest infiltration of microglia,
macrophages, and lymphocytes in the mesenchymal subtype [178], while the classical
subtype contains a significant number of astrocytes [163,179]. This complicated network of
cells in the GBM microenvironment is a key factor contributing to the immunosuppressive
inflammation [109]. Glioma-associated microglia/macrophages (GAMs) make up to 30%
of the GBM tumor mass, aide in tumor proliferation and invasion, and correlate with poor
prognosis [158,178,180,181]. GAMs exhibit a complex immunosuppressive phenotype [182]
and express both anti- and pro-tumorigenic factors normally expressed by M1 and M2
macrophages and microglia. GAMs also express an array of other factors such as VEGFA,
TGFβ, and metalloproteases [183–187]. By contrast, lymphocytes compose less than 5% of
the tumor microenvironment [178]; however, increased numbers of Treg cells infiltrating
the tumor have been found in GBM patients [188,189].

In addition to immune cells, astrocytes that contact GBM cells encompass the tumor,
become reactive, and alter their gene expression, including increased GFAP expression,
which is historically used to visualize them (reviewed by [190]). These reactive astrocytes
promote cell proliferation and infiltrative capacity of GBM cells increasing tumor malig-
nancy [190–195]. GBM cells crosscommunicate with the cells of the microenvironment by
secreting a variety of cytokines that promote immunosuppression, increase angiogene-
sis, and decrease T-cell activity [166,196–200]. They also release chemoattractants, such
as CXCL12 [201], CSF-1 [202], and CCL2 [203,204] to recruit myeloid cells [201]. Ulti-
mately, glioma growth occurs in a specialized immunosuppressive microenvironment that
promotes proliferation and invasion [190,197].

RelB was identified as a prognostic marker for GBM [108,205,206]. Analysis of patients
data from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas
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(CGGA) indicates that increased RelB expression correlates with more severe glioma grade,
shorter life expectancy, and overall negative prognosis [205,206]. High RelB expression
associates with programs linked to pathways for both the innate and adaptive immune
responses, apoptosis, and cell adhesion [205].

Multiple specific RelB-dependent mechanisms have been proposed to date that func-
tion in GBM cells. RelB was shown to drive GBM progression through the induction of
the proneural to highly aggressive mesenchymal transition [105,207,208]. This progression
may depend on GAMs that release extracellular vesicles with microRNAs (miRNAs) [105].
These miRNAs target chromodomain helicase DNA-binding protein 7 (CDH7), which
is upregulated in proneural GBM and prevents progression to the mesenchymal sub-
type [105,209]. Interestingly, the inhibition of CDH7 activates both the RelB/p50 and the
p-STAT3 but is independent of p-p65 [105], although p65 was previously shown to regulate
this transition [210]. RelB also promotes the expression of CHI3L1 (YKL40), a marker
of the mesenchymal subtype [42,105,206,211]. RelB expression also correlates with the
expression of a long-coding RNA, LOXL1-AS1 [207]. Interestingly, decreased LOXL1-AS1
expression limits RelB levels, repressed CD44 mesenchymal subtype marker expression,
and induced Olig2 proneural subtype marker abundance [207]. However, overexpression
of RelB also induces the expression of Olig2 [206]. Altogether, RelB plays a critical role in
tumor progression through the induction of the proneural to mesenchymal transition.

There is substantial evidence implicating the noncanonical pathway in GBM
[106,206,212–215]; however, only some of the effects are likely mediated by RelB. Addition-
ally, activation of the RelB canonical pathway has also been implicated in GBM [105,108].
On this note, aberrant NF-κB signaling through both p65/p50 and RelB/p52 heterodimers
correlates with cancer progression (Reviewed by [216]). Smac mimetics were initially iden-
tified as small-molecule inhibitors of apoptosis (IAP) antagonist that block antiapoptotic
functions [217,218]. However, the Smac mimetic BV6 has broader roles in cancer [215]. BV6
promotes GBM cell migration and invasion through the activation of the noncanonical NF-
κB pathway [215,219,220], including binding of RelB, p52, and p50 subunits to the DNA,
and the induction of target genes, such as TNFα [215]. BV6 also promotes the differentiation
of GBM cancer stem-like cells in a RelB/p52-dependent manner, inducing the expression
of CD133, Nanog, and Sox2 as well as GFAP [219]. Furthermore, tumor necrosis factor-like
weak inducer of apoptosis (TWEAK), which activates the noncanonical pathway [34,106],
induces accumulation of RelB in the nuclei of GBM cells and promotes GBM growth and
invasion [106]. RelB has also been shown to promote proliferation of glioma-initiating cells
as well as tumor growth and invasion [107,206]. However, even though the noncanonical
pathway has been greatly implicated in GBM progression, sulfasalazine, an inhibitor of
NF-κB, failed GBM clinical trials [221].

In addition to the noncanonical pathway-activated RelB/p52 signaling, activation of
the RelB/p50 complexes by the canonical pathway is also a critical event promoting the
immunosuppressive state and GBM progression [108]. High expression levels of both IL-1β
and oncostatin M (OSM) correlate with poor patient prognosis. Furthermore, IL-1β and
OSM induce RelB/p50 heterodimers formation and their translocation to the nuclei and
surprisingly induce expression of proinflammatory cytokines [108]. This directly contrasts
the anti-inflammatory role of RelB/p50 heterodimers in astrocytes [47]. Unlike RelB/p50
repression of cytokine genes in astrocytes [47], RelB/p50-mediated activation of cytokines
in GBM cells is independent of SIRT1 and likely involves Yin Yang 1 (YY1) [47,79,108].
Interestingly, expression of colony stimulating factor 1 (CSF1), CSF2, CSF3, C-C motif
ligand 2 (CCL2), CCL7, and C-X-C motif ligand 2 (CXCL2), which promote myeloid
cell recruitment [222] and drive tumor progression [223], was dependent on RelB [108].
Ultimately, it was proposed that RelB acts as a molecular switch in GBM promoting chronic
immunosuppressive inflammation [108].
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5. Conclusions

Activation of the NF-κB pathways and p65 during neuroinflammation is relatively well
examined. However, the role of RelB has been overlooked for a long time. Accumulating
data indicate that RelB plays critical roles in coordinating neuroinflammatory responses
in the CNS. In addition, RelB may be one of the critical factors in the development of the
immunosuppressive state associated with GBM.
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