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Abstract: Over the last decade, innate immune system receptors and sensors called inflammasomes
have been identified to play key pathological roles in the development and progression of numerous
diseases. Among them, the nucleotide-binding oligomerization domain (NOD-), leucine-rich repeat
(LRR-) and pyrin domain-containing protein 3 (NLRP3) inflammasome is probably the best charac-
terized. To date, NLRP3 has been extensively studied in the heart, where its effects and actions have
been broadly documented in numerous cardiovascular diseases. However, little is still known about
NLRP3 implications in muscle disorders affecting non-cardiac muscles. In this review, we summarize
and present the current knowledge regarding the function of NLRP3 in diseased skeletal muscle, and
discuss the potential therapeutic options targeting the NLRP3 inflammasome in muscle disorders.

Keywords: skeletal muscle; NLRP3; inflammasome; pyroptosis; metabolic syndrome; sepsis; critical
limb ischemia; mmyotrophic lateral sclerosis; myopathies

1. The NLRP3 Inflammasome
1.1. NLRP3 Inflammasome Actors

Sterile inflammation drives the pathogenesis of various diseases and is controlled by
intracellular multiprotein inflammasome complexes. The latter were described, a decade
ago, as a large intracellular signaling platform that contains a cytosolic pattern recognition
receptor, such as the nucleotide binding domain leucine rich repeat-containing receptor
(NLR) [1]. Among NLR, several members, including NLRP1, NLRP2, NLRP3, NLRC4,
NLRP6, NLRP7, and NLRP12, are able to form multimeric inflammasome complexes [2].
Out of them, NLRP3, also known as NALP3, is the best characterized. NLRP3 is a protein
coded by the Nlrp3 (CIAS1) gene and is composed of an amino-terminal pyrin domain
(PYD), a central nucleotide-binding domain (NACHT), and a C-terminal leucine rich repeat
(LRR) motif [3].

In order to be activated, the NLRP3 inflammasome requires a complex association of
specific proteins (Figure 1). The first interaction occurs between NLRP3 and the apoptosis
associated speck-like protein containing a C-terminal caspase recruitment domain (ASC).
ASC is a cytosolic protein composed of a C-terminal caspase recruitment domain (CARD)
and a PYD. This protein plays a central role in the inflammasome complex activation by
acting as a bridge between NLRP3 proteins and pro-caspase-1 [4,5]. The interaction of NEK7
with the LRR domain of NLRP3 is also needed to complete inflammasome activation [6].
NEK7 is a member of the NIMA (“never in mitosis gene a”) related serine-threonine kinase
family, composed of a catalytic domain with a 30–40 amino acid N-terminal extension [7].
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Importantly, in its absence, interleukin-1β (IL-1β) release and the conversion of pro-caspase-
1 into its active form, caspase-1, are suppressed [6].

Figure 1. The nucleotide-binding oligomerization domain like receptor family (NOD-like) pyrin domain containing
3 (NLRP3) inflammasome complex. The NLRP3 inflammasome is a multiprotein complex regrouping several proteic actors.
In basal conditions, NLRP3 is selfrepressed via an internal interaction between its NACHT and LRR domain. ‘S’, ‘P’,
and ‘Ub’ symbols on the inactive form of NLRP3 mean SUMOylation (SUMO, Small Ubiquitin-like Modifier proteins),
phosphorylation and ubiquitination, respectively. After its priming, several posttranslational modifications take place
(1), leading to the removal of this interaction and the binding of NLRP3 to ASC protein, through its PYD domain, and
to NEK7 via its LRR domain, and, thus, NLRP3 activation. In turn, procaspase-1 interacts with ASC through its CARD
domain (2). Oligomerization (3) triggers the activation of caspase-1 (4) and the processing of pro-IL-1β, pro-IL-18 and
Gasdermin D (GSDMD) into their mature forms, thereby triggering inflammatory cytokines release (5) and pyroptosis
(6). ASC, apoptosis associated speck like protein containing a caspase recruitment domain; CARD, caspase recruitment
domain; LRR, leucine-rich repeats; NACHT, NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription
activator), HET-E (incompatibility locus protein from Podospora anserina) and TP1 (telomerase-associated protein) NLRP3,
NOD-, LRR- and pyrin domain-containing protein 3; PYD, pyrin domain.

Caspases are a family of proteolytic enzymes that manage the degradation of cellu-
lar components during programmed cell death. They are divided into three categories:
apoptosis related caspases 2, 3, 6, 7, 8, 9 and 10; inflammation related caspases 1, 4, 5,
11, and 12; and a third category composed of caspases of an unknown function, 13, 14
and 16 [8,9]. Once activated, caspase-1 will, in turn, cleave pro-interleukin-1β (pro-IL-
1β), pro-interleukin-18 (pro-IL-18) and Gasdermin D (GSDMD) into their active mature
forms [4,10].

IL-1β is a key proinflammatory cytokine involved in the mediation of inflammation
in almost every cell type and tissue; where its levels and activities are correlated with
the pathogenesis of various autoinflammatory and autoimmune diseases. Interestingly,
IL-1β is also able to suppress inflammation and control the adaptive immune responses,
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Ref. [11] suggesting that the primary physiological function of NLRP3 is to clear noxious
substances, and to regulate metabolism and inflammation [12].

IL-18 belongs to the same family of IL-1 cytokines. IL-18 and IL-1β share similar
mechanisms of activation, receptor structure, and signal transduction pathways [13]. IL-18
is a pleiotropic cytokine that provides an important link between the innate and adaptive
immune responses, and is involved in the regulation of both [14]. Depending on the host
microenvironment, IL-18 can be a potent activator of CD4 T helper (Th) 1 lymphocytes
and natural killer cells, but also can modulate Th2 and Th17 cell responses, as well as the
activity of CD8 cytotoxic cells and neutrophils [14]. Interestingly, IL-1 family members are
not secreted via exocytosis as they do not contain a specific secretion signal peptide. As a
result, pore creation via GSDMD activation is needed for IL-1 release [15].

GSDMD is a protein composed of a 31 kDa N-terminal (GSDMD-N) and a 22 kDa
C-terminal (GSDMD-C) domain, which play an important role in the pyroptosis process.
Once recruited by NLRP3 inflammasomes, GSDMD is submitted to a proteolytic cleav-
age by caspase-1 (canonical) or by caspases 4, 5 and 11 (noncanonical) inflammasome
activation [16]. The resulting N-terminal fragment is then released and will oligomerize
with other GSDMD-N, thereby creating a complex able to form nonselective pores in
the plasma membrane, eventually leading to pyroptosis, as well as to IL-1β and IL-18
release [10,17–19].

Pyroptosis is a necrotic cell death type, mediated by GSDMD. In contrast to other
types of cell death, such as necrosis and apoptosis, pyroptosis causes the rupture of
the cell membrane via pores formation and induces the release of mature inflammatory
cytokines, damage associated molecular patterns (DAMPs) and NLRP3 inflammasome
specks into the extracellular compartment where they remain active, ultimately resulting
in an amplification of the inflammatory response [20–22]. Pyroptosis may be a physiologic
process during the acute inflammatory response by maintaining cell homeostasis and
preventing excessive cell proliferation, but under chronic disease conditions, it will lead to
uncontrolled inflammation, excessive cell death and tissue remodeling [23,24].

1.2. NLRP3 Activation

Activation of the NLRP3 inflammasome is regulated at both transcriptional and post-
translational levels. First, NLRP3 activation is generated by a priming signal induced by
tumor necrosis factor alpha (TNFα), pathogen associated molecular patterns (PAMPs), or
IL-1β [25]. All of them act through the nuclear factor (NF)-κB pathway, which, in turn,
will upregulate pro-IL-1β, pro-IL 18 and NLRP3 gene expression inside the cells, as their
levels are otherwise relatively low in numerous cell types [26–28]. Besides the innate
immunity effectors such as myeloid cells (monocytes and macrophages), muscle cells also
contain NLRP3 inflammasomes and thus actively participate in the immune response and
eventually to myofiber damage [29,30]. These priming signals also induce posttransla-
tional modifications such as NLRP3 deubiquitination as well as ASC ubiquitination and
phosphorylation, allowing inflammasome complex assembly [31].

Subsequently, a second signal is transduced by various activators, such as PAMPs
and DAMPs [32]. The latter include viruses [33], adenosine triphosphate (ATP) [34],
glycosaminoglycan hyaluronan composing the extracellular matrix [35], amyloid-beta
fibrils [36], crystalline structures (including silica, asbestos, aluminum salt, uric acid
and calcium pyrophosphate dehydrate (CPPD)) [37], ultraviolet irradiation [38], albu-
min [39], dietary saturated fatty acids [40], a large number of pore-forming toxins, [41]
and aggregates [32,42]. Several molecular mechanisms have been suggested to lead to
NLRP3 inflammasome oligomerization. These include the activation of ATP-dependent
P2X purino-receptor 7 receptor (P2 × 7R), which causes both Ca2+ and Na+ influxes,
thus leading to increased K+ efflux via the opening of the two-pore potassium channel 2
(TWIK-2) [43,44]. In addition, the pore formation induced by bacterial toxins also induces
increased K+ efflux [43–48].
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Lysosomal alterations [49,50] and mitochondrial reactive oxygen species (ROS) gen-
eration [51,52] also promote the complex assembly. More specifically, ROS trigger the
activation of NLRP3 in different ways. Firstly, ROS induce a dissociation of thioredoxin
interacting protein (TXNIP) and thioredoxin (TRX), which leads to an interaction between
TXNIP and NLRP3 [53]. Secondly, ROS cause the release of mitochondrial DNA into the
cytosol, ultimately causing NLRP3 inflammasome activation. In addition, ROS lead to
NF-κB activity, thereby increasing NLRP3 priming and activation [54].

To date, two pyroptotic pathways are known: the canonical (caspase-1-mediated) and
noncanonical (caspases 4, 5 and 11-mediated) inflammasome pathways [55].

The canonical NLRP3 inflammasome pathway is the creation of a multiprotein com-
plex consisting of the previously upregulated NLRP3 protein, an ASC containing a C-
terminal caspase recruitment domain, NEK7 and pro-caspase-1. Briefly, the LRR domain of
NLRP3 will sense the danger signal, inducing NLRP3 monomers oligomerization. Next,
the NLRP3 protein interacts with the PYD of the ASC through homophilic interactions [1].
Afterwards, NEK7 has been demonstrated to bind to the LRR domain of NLRP3 and seems
to be necessary for the activation’s completion [6]. Finally, via CARD, the ASC recruits the
cysteine protease pro-caspase-1. This association results in the activation of pro-caspase-1
into its cleaved form [56–58], leading to the release of mature inflammatory cytokines [59].
In turn, IL-1β and IL-18 will increase the recruitment of white blood cells by activating
chemokines and adhesion molecules, leading to leukocyte extravasation. Subsequently,
white blood cells also secrete cytokines that induce a sustained inflammatory response,
leading to chronic inflammation and increased muscle injury [60].

In addition, the noncanonical activation of the NLRP3 inflammasome, which works in
a Toll-like receptor (TLR)/NF-κB pathway independent manner, is achieved via caspases 4,
5, and 11. The latter are activated after cytosolic detection of lipopolysaccharides (LPS),
which will open a pannexin-1 (panx-1) transmembrane channel, leading to the release
of ATP that open the ATP-gated cation channel receptor (P2 × 7R), thus inducing K+

outflow. The ion balance inside and outside the cell membrane is disrupted, implying
membrane rupture and intracellular inflammatory content release. These signals then
activate the NLRP3 inflammasome [61,62]. Caspases 4, 5 and 11 also specifically cleave
the GSDMD into GSDMD-N and GSDMD-C, directly engaging the pyroptosis process.
This process will then indirectly activate the NLRP3 inflammasome, thereby increasing the
release of inflammatory cytokines and exacerbating the inflammatory response [16]. This
noncanonical pathway might lead to endotoxin induced sepsis [61], and is suggested to
have a crucial role as a transcriptional factor in promoting Th2 cells differentiation [63]
(Figure 2).

1.3. NLRP3 Regulation

As previously explained, the primary role of the NLRP3 inflammasome is to modulate
inflammation, and its anti-inflammatory effect has been proven in several diseases [64,65].
However, excessive NLRP3 inflammasome activation could also lead to certain autoim-
mune and metabolic diseases [66]. Therefore, the activation of this inflammasome should
be tightly regulated to prevent cell damage and excessive inflammation.

Thus, the regulation of NLRP3 is carried out by many post-translational modifications,
such as ubiquitination, phosphorylation, sumoylation and s-nitrosylation [47]. Different
parts of the NLRP3 protein can be the target of post-translational modifications creating
specific, yet distinct profiles of NLRP3 that can be activated or inhibited. Moreover, the
impact of post-translational modifications of NLRP3 is also tissue specific [67].

In addition to post-translational modifications, NLRP3 is also regulated through in-
teractions with partners, called regulators. Among these regulators, many can promote
NLRP3 activation, such as TXNIP [53], guanylate binding protein 5 (GBP5) [68], dou-
ble stranded RNA-dependent protein kinase (PKR) [69,70], migration inhibitory factor
(MIF) [71], microtubule affinity regulating kinase 4 (MARK4) [72], as well as Hsp90 and its
cochaperon SGT1, the latter also protecting NLRP3 from degradation [73,74]. In contrast,
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some regulators are involved in the inhibition of NLRP3: they include pyrin- and CARD-
only proteins, such as pyrin-only protein 1 (POP1) [75], pyrin-only protein 2 (POP2) [76,77]
and inhibitory CARD (INCA also named CARD17) [78].

Figure 2. NLRP3 inflammasome priming and activation pathway. Activation of the NLRP3 inflammasome signaling
pathway requires two signals. The signal 1© or priming (left) is triggered by the stimulation of cytokine receptors (TNFR
and IL-1R) or TLRs via several activators, such as LPS, DAMPs or PAMPs. This interaction with their respective receptors
will then lead to the upregulation of several inflammasome components (NLRP3, pro-IL-1β and pro-IL-18) via the NF-κB
pathway as well as to posttranslational modifications of ASC and NLRP3 protein. Signal 2© or activation (right) is triggered
by numerous PAMPs or DAMPs including virus, crystals, protein aggregates, LPS, bacterial toxins, or ATP, which will,
in turn, activate multiple signaling cascades. The latter involves, among others, K+ efflux, ROS production, lysosomal
dysfunction, and the release of mitochondrial DNA in the cytosol. These signals lead eventually to the interaction between
NLRP3, ASC and pro-caspase-1, allowing the formation of the NLRP3 multiprotein inflammasome complex. Once activated,
caspase 1, the head of the canonical activation, cleaves the pro-IL-1β, pro-IL-18 and Gasdermin D (GSDMD) into their
mature forms, triggering pyroptosis and inflammatory cytokines release. In addition, another way leading to pyroptosis is
the noncanonical pathway, where cytosolic lipopolysaccharide (LPS), via caspases 4, 5 and 11, can also cleave GSDMD and
form pores into the cellular membrane. IL-1R1, IL-1 receptor type 1; PANX1, pannexin 1; ROS, reactive oxygen species;
TNFR, tumor necrosis factor receptor; TRX, thioredoxin.

2. NLRP3 and Skeletal Muscle
2.1. Introduction

Recently, increasing evidence has highlighted skeletal muscle as having an active and
pivotal role in the immune response [30,79,80]. The main evidence leading to this assertion
was the ability of muscle cells to secrete their own cytokines, known as myokines. These
myokines consist of several hundred secreted proteins and peptides, which may act locally



Cells 2021, 10, 3023 6 of 26

or systemically to mediate numerous metabolic and immune responses [81,82]. Moreover,
the detection of the mRNA expression levels of all innate immune receptors in human
skeletal muscle biopsies, isolated muscle fibers and primary myotubes confirmed their
active involvement as immune effectors [83]. We, too, have provided first evidence for the
presence of formed and active NLRP3 within skeletal muscle fibers. NLRP3 inflammasomes
were indeed detected as stained clusters in the sarcoplasm of myofibers from wild type
(WT) mice challenged by LPS, but not from Nlrp3 knockout mice [80].

In normal conditions, once activated, the NLRP3/caspase-1/IL-1β pathway activa-
tion is a defense mechanism leading to an antiviral, antibacterial, antifungal and anti-
inflammatory response that is programmed to cure the pathological tissue [84–87]. Indeed,
in virus mediated disease models, Nlrp3-KO mice developed more severe disease than
infected WT animals [86]. NLRP3 activation has also been shown to induce leukocyte ag-
gregation and efficient inflammatory responses in Aspergillus fumigatus infected mice [87].

On the other hand, excessive NLRP3 inflammasome activation has been tightly associ-
ated with several disorders involving skeletal muscle alterations.

2.2. NLRP3 and Skeletal Muscle Diseases

This section is dedicated to muscle diseases where NLRP3 has been described to play
a key pathogenic role (Figure 3).

Figure 3. NLRP3 inflammasome excessive activation in skeletal muscle diseases. Lymphocytes in
blue, macrophages in purple and neuron in pink.

2.2.1. Metabolic Disorders

Metabolic syndrome (MS) encompasses several disorders involving obesity, insulin
resistance and type 2 diabetes, hypertension and dyslipidemia leading to cardiovascu-
lar disease. Other associated burdens result from ectopic lipid deposits giving rise in
liver to non-alcoholic fatty liver disease progressing into non-alcoholic steatohepatitis
(NAFLD/NASH), and, in skeletal muscle, to myosteatosis. Hyperuricemia is also often
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present in this syndrome [88]. All of these components are characterized by chronic low
grade inflammation potentially mediated by inflammasomes [89–92]. The NLRP3 inflam-
masome may, therefore, be a link between metabolism and inflammation, strengthening
the recent concept of metainflammation.

NLRP3 may be a sensor for metabolic “danger” signals, which may either serve as
priming signals that induce NLRP3 and pro-IL-1β transcription or as second phase signals
triggering inflammasome formation [91,92] (Figure 4).

Figure 4. NLRP3 priming and activation in metabolic syndrome. Several activators of either priming or NLRP3 complex
formation are numbered in red. They include SFA, LPS 1©, inflammatory cytokines such as TNFα 2©, stress molecules
such as ATP 3©, ceramides 4© and ROS 5©, as well as crystals 6©. By contrast, inhibitory hormonal or metabolic signals are
numbered in green: they include adiponectin (1), MUFA (2) or n-3 PUFA (3), or ketone bodies (β-OHB) (4). Adiponectin
binds to AdipoR1 (predominantly expressed in skeletal muscle) or to AdipoR2 (predominantly expressed in liver) to
activate AMPK or PPAR-α signaling, respectively. MUFA and PUFA activate AMPK and PPAR-γ signaling, respectively.
β-OHB is produced by the liver and is used as fuel by other tissues (such as muscle), where it enters via a MCT. β-OHB, β-
hydroxybutyrate; MCT, monocarboxylate transporter; MUFA, mono unsaturated fatty acids; PPAR, peroxisome proliferator
activated receptor; PUFA, poly unsaturated fat; SFA, saturated fatty acids. Symbols in circles indicate: ‘P’, phosphorylation;
‘+’, activation; and ‘−’, inhibition.

Priming signals act through the innate immune receptor (toll-like receptor 4), whose
ligands include LPS and saturated fatty acids (SFA) [93], or through inflammatory cytokine
receptors. Levels of SFA are often increased in MS due to the alleviation of the antilipolytic
action of insulin [94], as well as circulating LPS due to dysregulated microbial colonization
and ensuing increased gut permeability with the translocation of endotoxins [95]. Priming
signals lead to enhanced NF-κB signaling. Like priming signals, second phase signals
are also elevated in MS: these include stress molecules such as ATP, ROS and ceramides
that activate NLRP3 formation [89–91]. Ceramides constitute a subtype of sphingolipids,
which are increased in plasma, adipose tissue, liver and the skeletal muscle of animal
models with insulin resistance and patients with MS. Ceramide levels negatively correlate
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with insulin sensitivity [96]; some ceramides may derive from SFAs [91]. Eventually, uric
acid can form crystals that are well known NLRP3 activators [90]. By contrast, some
molecules may physiologically taper inflammasome responses: adiponectin [82], mono or
poly unsaturated fat (n3) [91] or ketone bodies (β-hydroxybutyrate, β-OHB) [97] (Figure 4).

The adipocyte hormone, adiponectin, could simultaneously thwart several facets of the
metabolic syndrome by its insulin-sensitizing, fat-burning and anti-inflammatory/antioxidative
properties. Adiponectin binds to its receptors: AdipoR1, mainly expressed in skeletal mus-
cle, or AdipoR2, mainly expressed in liver, to activate AMPK or peroxisome proliferator
activated receptor (PPAR)-α signaling, respectively, thereby inducing its biological re-
sponses. However, adiponectin levels are decreased in obesity and in patients meeting
the criteria for the metabolic syndrome [82]. A balanced diet should contain mono or
poly unsaturated fat (n3), which may inhibit inflammasome through AMPK or PPAR-γ.
Unlike caloric excess, energy deficit, such as starvation, generates metabolic signals, such
as β-hydroxybutyrate, that may dampen innate the immune response, which results in
sparing energy for the major ketone dependent organs, such as the brain and heart [97]
(Figure 4).

Most of the first and second phase signals that enhance NLRP3 responses may either
activate the transcription of inflammatory genes via NF-κB or inhibit key components of
the insulin-signaling cascade through inactivating phosphorylation, thereby promoting
insulin resistance [89,98]. In obesity, adipocyte hypertrophy induces cellular stress together
with immune cell infiltration, the release of inflammatory adipokines and insulin resistance.
Once adipose tissue storage capacity is overwhelmed, ectopic lipid deposit occurs in
several tissues, including the liver and skeletal muscle, further worsening inflammation
and insulin resistance [94]. This leads to NAFLD/NASH in the liver and to myosteatosis
in skeletal muscle. NLRP3 plays a crucial role in metainflammation and in the interplay
between these three insulin target tissues (Figure 5).

Accordingly, Nlrp3-KO mice fed a high fat diet (HFD) were protected from adipose
tissue inflammation and insulin resistance. Likewise, after weight loss, obese patients
showed decreased adipose tissue expression of NLRP3 and IL-1β that was associated
with the improvement of insulin sensitivity [90]. Similarly, specific NLRP3 inhibition with
MCC950 improved inflammation and insulin sensitivity in a model of mice characterized
by type 2 diabetes and dementia [99]. In addition, NLRP3 inhibition by carbenoxolone,
a derivative of glycyrrhizic acid, the active ingredient of licorice, markedly reduced in-
tracellular lipid accumulation, inflammation and insulin resistance in liver and skeletal
muscle of mice under HFD [100]. The effects on skeletal muscle were further strengthened
by in vitro experiments. Lipids within muscle fibers mainly stored in neutral lipid droplets
(LDs) are coated by lipid droplet associated proteins, which are referred to as perilipins
(PLIN). One of these, PLIN2, is a marker for LDs in human skeletal muscle, and the levels
of intramuscular PLIN2 and triglycerides are closely correlated. PLIN2 overexpression in
C2C12 myotubes was accompanied by the activation of the NLRP3 inflammasome, which
led to impaired insulin induced glucose uptake, while the siRNA gene silencing of NLRP3
remedied this effect [101]. In humans, a simple change from the habitually high palmitic
acid (SFA) intake into a high oleic acid diet, oleic acid being an omega-9 monounsaturated
fatty acid (MUFA), resulted in a lower secretion of IL-1β, IL-18, and TNFα, as well as less
NLRP3 mRNAs in skeletal muscle, potentially lowering the prevalence of insulin resistance
and type 2 diabetes [102].

2.2.2. Muscle in Aging/Sarcopenia

As society ages, the incidence of physical limitations is dramatically increasing, thereby
enhancing the risk of falls, institutionalization, comorbidity, and premature death. An
important cause of physical limitations is the age related loss of skeletal muscle mass and
function, also referred to as sarcopenia [103,104]. Beyond physical performance, muscles
also play a crucial role in insulin sensitivity and fuel homeostasis. Muscle disturbances
may, thus, lead to insulin resistance and metabolic disorders [105].
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Figure 5. NLRP3 activation and interplay between insulin target tissues. In obesity, adipocyte
hypertrophy induces cellular stress together with immune cell infiltration, release of inflammatory
adipokines and insulin resistance. Once adipose tissue storage capacity is overwhelmed, ectopic lipid
deposit occurs in several other tissues including the liver and skeletal muscle, further worsening
inflammation and insulin resistance. This leads to NAFLD/NASH in the liver and to myosteatosis in
skeletal muscle. NLRP3 plays a crucial role in metainflammation and in the interplay between these
three insulin target tissues.

Overall loss of skeletal mass results from an imbalance between muscle protein an-
abolic and catabolic pathways, where protein synthesis is hindered and protein breakdown
is excessive [106]. However, the cellular and molecular mechanisms underlying sarcopenia
are still poorly understood, although this condition is currently considered to be multifac-
torial [107]. The aging process is associated with a decline in autophagic capacity which
impairs cellular housekeeping, leading to protein aggregation and the accumulation of
dysfunctional mitochondria, which provoke ROS production and oxidative stress. These
danger signals, in turn, activate inflammasomes which provoke a low grade inflammation
in several tissues, referred to as inflammaging. This further inhibits autophagy and accel-
erates the aging process [108,109]. Chronic inflammation together with reduced muscle
mass could also promote insulin resistance. Insulin resistance, inflammatory cytokines,
the inhibition of autophagic capacity, mitochondrial dysfunction and ROS induce and
perpetuate inflammaging and lead to sarcopenia [110]. In addition, inflammaging could
aggravate several other age related degenerative changes [108,111].

The involvement of inflammasomes in ageing and age related diseases [112], including
sarcopenia, has been strengthened by studies in mice with genetic deletion of Nlrp3. Thus,
deletion of the NLRP3 inflammasome enhances healthspan and protects against insulin
resistance, bone loss, reduced cognitive function and motor performance [113]. Ageing
is also associated with decreased skeletal muscle strength and slowing of movement,
in which increased NLRP3-dependent caspase-1 activity in muscle is described. The
deletion of mouse Nlrp3 prevented the reduction in muscle mass, increased muscle strength
and endurance and protected from age related increases in the number of myopathic
fibers [114]. Another study confirmed these data and further showed a reduction in fibrosis
and apoptotic nuclei in the skeletal muscles of aged Nlrp3-KO mice, compared to wild-
type ones, as well as less mitochondrial damage and multivesicular bodies resulting from
defective autophagy/mitophagy [115]. Oral administration of melatonin, a pineal hormone
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with antioxidant and anti-inflammatory properties, in a mouse model of sarcopenia was
also shown to reduce the expression of pro-caspase 1 mRNA and to preserve the normal
muscular structure and activity of skeletal muscles [116–118].

2.2.3. Critical Limb Ischemia

Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral
arterial disease, where failure to establish revascularization eventually leads to amputation
and even to death [119]. Metabolic syndrome and ageing, both characterized by low grade
inflammation, are risk factors for the development of peripheral arterial disease and are
known to impair skeletal muscle postischemic vascular recovery [120]. However, the
molecular mechanisms involved are still unknown. A hypothesis suggests that NLRP3
could also be implicated in mediating inflammation and angiogenesis after ischemia. In a
hind limb ischemia mouse model, blood flow and vascular density were impaired in HFD
mice. This was carried out through TXNIP-dependent NLRP3 inflammasome activation in
muscle, which led to significant increases in active caspase-1 and IL-1β and compromised
vascular recovery in response to ischemia. Targeting the NLRP3 inflammasome by using
Txinpt-KO mice mitigated HFD-induced inflammation and impaired angiogenesis, thus
opening a potential therapeutic target in obesity induced vascular complications [121].

Ischemic murine muscle also exhibited a reduced expression of a specific circular RNA
(circHIPK3). Treatment with exosomes delivering circHIPK3 into skeletal muscle reduced
ischemia induced pyroptosis caused by inflammasome, as evidenced by less activation
of NLRP3, cleaved caspase-1, and reduced increase in IL-1β and IL-18. Accordingly, this
treatment improved blood perfusion, running distance and muscle force in mice. Taken
together, these data indicate that inhibition of inflammasome and pyroptosis prevents
hindlimb ischemic injury [122].

Finally, heme oxygenase-1 (HO-1) could also be a critical player in inducing NLRP3
in ischemic muscle. While postischemic inflammation is needed for initiation of neovas-
cularization, excessive inflammatory response suppresses perfusion recovery. HO-1 is an
immunomodulatory enzyme primarily expressed in macrophages [123]. A recent study
found the upregulation of HO-1 expression in murine muscle after hindlimb ischemia
surgery which mainly occurred in infiltrated macrophages. Suppressing HO-1 was able to
restore blood flow, motor function and attenuate tissue damage in muscles after hindlimb
ischemia. This was carried out by reducing NLRP3 inflammasome activation and accelerat-
ing its autolysosomal degradation. Moreover, inhibiting inflammasome activation with
i.p. MCC950 improved blood flow and capillary density in mice, therefore underlining the
importance of NLRP3 in ischemic muscle diseases [124].

2.2.4. Sepsis Induced Muscle Atrophy

Sepsis is an excessive response of the body against an infection leading to tissue
and organ damage. This condition requires intensive care management and accelerates
muscle atrophy in bed bound patients [125]. Muscle wasting is linked to the inflammatory
response occurring during the acute phase of sepsis, and might potentially be mediated by
the NLRP3 inflammasome [126].

The skeletal muscles of mice subjected to acute inflammation by intraperitoneal LPS
injection displayed significantly high levels of inflammatory components, such as the
NLRP3 inflammasome and IL-1β. This was accompanied by an increase in muscle atrophy
signaling pathways. The Forkhead box O (FoxO) family of transcription factors plays a
critical role in protein breakdown by activating the expression of atrogenes (which include
two muscle specific ubiquitin ligases, atrogin-1 and MuRF1) responsible for profound
loss of muscle mass. All of these components were upregulated in the muscles of LPS
mice. These deleterious effects were abolished in mice pretreated with an inhibitor of a
double strand RNA-dependent protein kinase (PKR), which blocks inflammatory cytokine
expression [127]. Likewise, Triptolide, a plant derivative previously described as an
NLRP3 inhibitor [128], attenuated LPS-induced myotube atrophy in vitro in C2C12 cells
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and in vivo in LPS injected mice. Thus, triptolide decreased plasma inflammation while
increasing skeletal muscle weight, strength and locomotion, thereby preventing muscle
atrophy in LPS challenged mice [129]. OLT1177, an orally active β-sulfonyl nitrile molecule
targeting the NLRP3 NACHT domain, was also shown to reduce the severity of systemic
inflammation in mice challenged with LPS, where muscle IL-1β and oxidative stress were
lowered [130]. Moreover, Nlrp3-KO mice, submitted to polymicrobial sepsis induced by
cecal ligation and puncture surgery, had a survival benefit and did not lose body or muscle
weight during 96 h of sepsis, when compared to wild type ones. This was associated
with a reduction in IL-1β serum levels [131]. In humans, administration of the ketone
body β-hydroxybutyrate (β-OHB) reduced muscle protein breakdown after LPS injection,
indicating that β-OHB exerts anticatabolic effects during acute inflammation [132]. Taken
together, all these data reinforce the idea that NLRP3 plays a crucial role in inflammation
induced muscle atrophy in sepsis.

Finally, blocking gasdermin D pore formation by Disulfiram treatment (an approved
drug used to treat alcohol addiction, see last chapter) tapered LPS induced sepsis in
mice: circulating levels of inflammatory cytokines were reduced and survival was greatly
improved. One advantage of this drug is to block LPS induced inflammasome activation
by both noncanonical and canonical pathways [133].

2.2.5. Inherited Myopathies

Inherited myopathies are a heterogeneous group of diseases primarily affecting the
skeletal muscle tissue. These are caused by mutations in different genes encoding proteins
that are critical for muscle structure and function [134] (https://rarediseases.info.nih.gov/,
accessed on 12 October 2021). They are characterized by progressive muscle weakness and
wasting, along with a severe and persistent muscle inflammation that plays a central role
in the onset and progression of these diseases [82]. Various studies have demonstrated
that the NLRP3 inflammasome triggers a pathogenic inflammatory response in many
inherited myopathies, including limb girdle muscular dystrophy type 2B (LGMD2B) [30],
valosin-containing protein (VCP) associated diseases [79], and Duchene muscular dystro-
phy (DMD) [80,135].

LGMD2B is one type of limb-girdle muscular dystrophy, a group of heterogeneous
diseases that affect the voluntary muscles. LGMD2B is caused by mutations in the dysferlin
gene, which encodes a protein that is thought to aid in repairing the muscle fiber membrane
when it becomes damaged or torn. LGMD2B is a slowly progressive disease that causes
muscle weakness and atrophy, mainly of the pelvic muscles and muscles of the shoulder
girdle [136] (https://rarediseases.info.nih.gov/, accessed on 12 October 2021). Rawat and
colleagues were the first to show that, besides immune cells, primary skeletal muscle cells
expressed TLRs and can efficiently produce and secrete IL-1β in stressful conditions. They
also showed that inflammasome components were significantly up regulated in dysferlin
deficient muscle cells, and likely contributed to the pathogenesis of LGMD2B [30].

VCP is a newly identified calcium associated ATPase protein that has been associated
with various degenerative disorders that encompass inclusion body myopathy, Paget’s
disease of bone, and frontotemporal dementia. VCP disease is a rare and progressive
neuromuscular disorder, with death typically occurring in the 50s and 60s from respiratory
and cardiac failure [137] (https://rarediseases.info.nih.gov/, accessed on 12 October 2021).
Recently, the NLRP3 inflammasome and IL-1β were found to contribute to the pathogenesis
of VCP associated myopathies. Indeed, NLRP3 was active in primary cultures of myoblasts
derived from VCP patients, in quadriceps muscles of VCP mice, and in the inflammatory
macrophages that infiltrated those muscles. Treatment with MCC950 reversed NLRP3
activation, both in vitro and in vivo, and significantly ameliorated the muscle strength of
VCP mice [79].

DMD is the most frequently inherited human myopathy and the most devastating type
of muscular dystrophy. DMD is caused by mutations in the gene encoding for dystrophin,
a key scaffolding protein, which forms an important protein complex that connects the actin

https://rarediseases.info.nih.gov/
https://rarediseases.info.nih.gov/
https://rarediseases.info.nih.gov/
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cytoskeleton of myofibers to the extracellular matrix (Figure 5). This complex is crucial for
maintaining cell membrane stability and permeability, as well as normal contractile func-
tion of the skeletal muscle. Absence of dystrophin leads to the disruption of this complex
and, thus, to membrane damage, allowing for DAMP release, chronic inflammation and
severe muscle degeneration. DMD remains a lethal muscle disorder with no cure, where the
first signs of muscle weakness begin early on in life and, without proper intervention, death
typically occurring in the 20s and 30s [82,138]. Our group has shown that NLRP3 and IL-1β
were highly expressed, not only in C2C12 murine cell lines challenged by inflammation
but, also, in human primary cultured myotubes derived from DMD patients. Likewise, all
inflammasome components were upregulated in the skeletal muscles of mdx mice (a mouse
model of Duchenne), and the complex was overactivated [80]. Specific NLRP3 depletion in
mdx mice markedly protected the skeletal muscle against inflammation, oxidative stress
and injury, while increasing its force and endurance, thus helping to rescue the dystrophic
phenotype [80,82]. Moreover, we discovered that adiponectin, a pleiotropic adipokine
with potent anti-inflammatory effects, could significantly downregulate the NLRP3 in-
flammasome [80]. Briefly, adiponectin binds to its muscle specific receptor, AdipoR1, and
activates the AMPK pathway, which, in turn, represses the NLRP3 inflammasome, in part
through reduction of NF-κB activity and oxidative stress [82,138]. In addition, activating
AMPK leads to an upregulation of the adiponectin muscle anti-inflammatory mediator,
miR-711. We found that adiponectin, through miR-711, could be a major repressor of the
NLRP3 inflammasome by inhibiting both its priming and activation in muscle [80,82]. This
repression occurred both in vitro, in C2C12 myotubes, and in vivo after either local or
systemic adiponectin supplementation [80,139] (Figure 6). In agreement with our data,
other drugs and molecules that mainly activate AMPK signaling, such as AICAR (ana-
log of adenosine monophosphate), resveratrol, a natural polyphenolic compound, and
metformin (used for treating type 2 diabetes) were also found to mitigate some features
of DMD in cell cultures and in animal models [140–143]. Metformin was also tested in a
randomized, double-blind, placebo-controlled Phase III clinical trial in combination with
L-citrulline, as a possible treatment for DMD. The study is completed and it showed only a
small reduction in motor function decline among the stable subgroup of patients treated
with this combination therapy (ClinicalTrials.gov Identifier: NCT01995032, accessed on
2 November 2021). A big part of their beneficial effects is mediated through the reduction
in inflammation and in the inflammasome [112,138]. Similar to adiponectin, the gastric
peptide ghrelin, famously known as the “hunger hormone”, is another circulating hormone
with an anti-inflammatory effect [144]. Once injected in mdx mice, ghrelin was found to
improve muscle performance and alleviate muscle pathology through the inhibition of
NLRP3 inflammasome activation and subsequent maturation of IL-1β [135]. In addition,
the plant compound, curcumin, a NF-κB inhibitor, also showed beneficial effects on the
dystrophic skeletal muscle by reducing the levels of TNFα and Il-1β and improving cell
membrane integrity, once injected in mdx mice [145] (Figure 6).

Finally, we are currently investigating a possible beneficial and therapeutic effect
of MCC950, a specific NLRP3 inhibitor, on the pathogenesis of DMD using both in vivo
mdx mice and in vitro primary cultures of human DMD myotubes. Preliminary results
look promising and show an improvement in muscle performance and protection against
muscle inflammation [146] (Figure 6).

2.2.6. Acquired Myopathies

Idiopathic inflammatory myopathy (IIM) is an acquired immune mediated muscle
disease including dermatomyositis (DM), polymyositis (PM), sporadic inclusion body
myositis (sIBM) and juvenile dermatomyositis (JDM) [147]. IIM is characterized by myalgia,
muscle weakness, and extramuscular manifestations. Muscle biopsies show alterations
such as necrosis, atrophy and sometimes inflammatory infiltrates [148–150].

ClinicalTrials.gov
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Figure 6. NLRP3 inflammasome and diseased skeletal muscle, case of Duchenne muscular dystrophy.
This figure summarizes the central role of NLRP3 in dystrophic muscle inflammation, as well as
several of its potential inhibitors. Briefly, the dystrophic muscle is characterized by absence of the
dystrophin protein and its associated protein complex, which, in normal cells, links the intracellular
cytoskeleton to the extracellular matrix, thus preserving the fiber membrane stability and permeability.
Simple contraction of the dystrophic muscle causes microtears in the membrane and the subsequent
release of intracellular DAMPS, which, in turn, can act in an autoparacrine manner to activate NLRP3
inflammasome in muscle fibers. Activated NLRP3 leads to an extreme release of inflammatory
cytokines and DAMPS, thus maintaining and exaggerating the inflammatory response, eventually
leading to pyroptosis and muscle degeneration. Rescuing the dystrophic phenotype can be achieved
by alleviating muscle inflammation, in part through repression of NLRP3 inflammasome. This action
can be accomplished by several factors. Firstly, adiponectin, a pleiotropic adipokine with potent
anti-inflammatory effects, could strongly activate AMPK pathway that represses NLRP3 through
reducing NF-κB activity and oxidative stress. Secondly, adiponectin, also through AMPK, increases
the expression of its muscle anti-inflammatory mediator, miR-711, which can inhibit both the priming
and activation of NLRP3. Thirdly, several drugs and molecules, such as AICAR, resveratrol and
metformin, could repress NLRP3 through specific activation of the AMPK pathway. Fourthly, ghrelin,
a gastric peptide with anti-inflammatory effect, could also put a brake on muscle inflammation
through reduction in NLRP3 activation. Fifthly, curcumin, a potent NF-kB inhibitor, could hinder
NLRP3 and the production of inflammatory cytokines. Finally, MCC950, a specific NLRP3 inhibitor,
could greatly attenuate the pathogenesis of the dystrophic phenotype, mainly by protecting the
muscle from inflammation. Symbols in circles indicate: ‘P’, phosphorylation; ‘+’, activation; and
‘−’, inhibition.

To date, the pathogenesis of IIM remains unclear. However, several pieces of evidence
indicate that the NLRP3 inflammasome may be involved in muscle damage. Recent studies
have shown the direct impact of the canonical and noncanonical pathways of pyroptosis in
the occurrence and progression of IIM [60,151]. In the experimental autoimmune myositis
(EAM) mice model, serum levels of IL-1β and IL-18, as well as mRNA expression and
the protein levels of NLRP3, GSDMD, Caspase 11 and P2X7R were increased [60]. The
implication of the NLRP3 inflammasome has also been confirmed in humans, where IL-1β
and IL-18 were shown to be highly expressed in the muscle and serum of DM and PM
patients [29,152,153]. Moreover, DM and PM patients displayed a higher protein expression
of NLRP3 and caspase-1 in muscle tissues, in comparison with controls [29,153]. Finally,
N-GSDMD, the executioner of pyroptosis, was also upregulated in PM patients [150].
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Taken together, these results confirm the potentially pivotal regulatory role of the NLRP3
inflammasome in IIM genesis and progression.

Several molecular pathways have been proposed to explain NLRP3 inflammasome
activation in IIM pathogenesis. Firstly, TNFα activates NF-κB signaling leading to the
canonical activation of the NLRP3 inflammasome [154]. Secondly, ROS trigger the ac-
tivation of the NLRP3 inflammasome through TXNIP and the release of mitochondrial
DNA [54]. Thirdly, mTOR pathway, via mTORC1 activation, stimulates IL-1β expression
and maturation through hypoxia inducible factor-1α (HIF-1α), while rapamycin, a selective
inhibitor of mTORC1, reduces NLRP3 and IL-1β levels [60]. Moreover, hypoxia upregu-
lates the high mobility group box 1 protein (HMGB1), leading to the activation of NF-κB
pathway and of NLRP3/IL-1β axis, thus triggering an inflammatory response [60].

Finally, glucose metabolism dysregulation could also contribute. Indeed, 18-fluorod-
eoxyglucose positron emission tomography/computerised tomography (PET/CT) showed
abnormal glucose uptake in muscle tissues of patients with IIMs [155]. These observations
were then explained by the direct implication of the glycolysis in the muscle damage
process in IIM. Indeed, upregulation of pyruvate kinase isozyme M2 (PKM2) was shown in
DM and PM compared with controls. Moreover, muscle PKM2 expressions were correlated
with NLRP3 inflammasome expression levels [150], confirming a relationship between
NLRP3 and dysregulated glucose metabolism [156].

Taken together, these results suggest that NLRP3 is involved in the immune response
and myofiber alteration in IIMs.

2.2.7. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by
progressive muscle weakness and atrophy, ultimately leading to death within approxi-
mately 2 to 5 years. The exact pathogenesis of ALS is still unknown. However, inflammation
has been shown to be a prominent pathological finding in ALS patients [157] and a few
studies suggest that the NLRP3 inflammasome might have a pivotal role in ALS. Indeed,
the activation of the NLRP3 inflammasome has been observed, in brain, spinal cord and
in the skeletal muscle of SOD1G93A mice, a transgenic mouse model of ALS expressing
a mutant form of human Superoxide Dismutase 1 (SOD1), [158,159], as well as in those
of sporadic ALS (sALS) patients [160–162]. NLRP3 mRNA levels were also significantly
elevated in the white blood cells of sALS patients, compared to healthy controls [12]. In ad-
dition, mRNA levels of ASC, caspase 1 and IL-1β were increased at the asymptomatic
stage in skeletal muscles of SOD1G93A mice [12,162], whereas their respective protein
expression was still normal. However, in the later stage of the disease, increased protein
levels of inflammasome components were observed [12]. Therefore, a link between NLRP3
inflammasome activation and ALS disease progression is thought to exist.

This early involvement of muscle revised our preconceived idea, in which muscle
alterations are only the consequence of motoneuron destruction. Regarding the current data,
skeletal muscle is increasingly considered as an active player in ALS pathogenesis. Indeed,
as explained before, skeletal muscle expresses different PRRs, allowing a muscle specific
response to environmental factors [83,163]. Moreover, primary muscle cells may release
IL-1β after treatment with LPS and ATP confirming its primary role in inflammasome
activation [30,80]. Muscle inflammation might then activate a retrograde signaling, leading
to motoneuron death [164–166].

Interestingly, the NLRP3 inflammasome may play a dual role in ALS pathogenesis.
Indeed, at an early stage of the disease, the NLRP3 inflammasome may exert positive
effects. Thus, a positive correlation was observed between Nlrp3 mRNA levels in skeletal
muscle and lifespan in SOD1G93A mice [12]. This might be partially explained by the fact
that NLRP3, independently from its role in inflammasome, can act as a transcription factor
in Th2 lymphocytes, promoting the expression of IL-4 [167], a cytokine responsible for
muscle growth and regeneration [168]. The positive effect of NLRP3 on mouse lifespan
was confirmed, as mice that did not receive MCC950, a selective inhibitor of NLRP3, lived
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longer [12]. These paradoxical results display the early role of the NLRP3 inflammasome,
which is to clear noxious protein aggregates, a characteristic feature of ALS [169].

Taken together, these results suggest the two faced action of the NLRP3 inflammasome
in ALS: where, at the early stage of the disease, it plays a beneficial role by clearing noxious
aggregates, while, when the disease progresses, the chronic NLRP3 stimulations by an
excess of damage signals, such as mutant proteins SOD1 and TDP-43, change its positive
effect into a harmful action leading to myofiber damage and, ultimately, to motoneuron
degeneration [169,170].

3. Therapeutic Perspective Targeting NLRP3

The NLRP3 inflammasome unequivocally plays a key pathological role in the develop-
ment and progression of several skeletal muscle disorders. As a result, treatments targeting
the NLRP3/caspase-1/IL-1β axis are expected to improve our drug arsenal to combat
muscle diseases with an excessive and deleterious inflammatory component.

Therapies could potentially act either directly on NLRP3 protein (direct inhibitors) or
interact with the upstream or downstream NLRP3 signaling pathways (indirect inhibitors).

3.1. NLRP3 Direct Inhibitors

We will review some direct inhibitors typically tested in inflammatory diseases and
emphasize the ones already tested on muscle related disorders. These inhibitors are
summarized in Table 1.

3.1.1. Inflammatory Disorders

As mentioned, many specific NLRP3 inhibitors have been described in a plethora of
inflammatory diseases in the past years, such as Glitazone (Cy-09), 3,4-methylenedioxy-
beta-nitrostyrene (MNS), MCC950, Dapansutrile (OLT1177), Tranilast, and Oridonin. All of
these inhibitors either target NLRP3 ATPase activity [130,171–174] and/or specifically block
NLRP3 oligomerization [175,176]. INF39 and β-OHB also act directly on the NLRP3 protein,
however their exact mechanism of action is still unknown [132,177]. Finally, ZYIL1, a new
oral small molecule, has been shown to prevent NLRP3 induced ASC oligomerization.
Moreover, a phase I clinical trial in healthy human volunteers is currently ongoing with
this molecule (ClinicalTrials.gov Identifier: NCT04972188).

3.1.2. Skeletal Muscle Disorders

Among these direct inhibitors, three molecules have recently displayed promising
results in skeletal muscle.

MCC950 is an extremely potent inhibitor of NLRP3, by binding the NLRP3 NACHT
domain thereby blocking ATP hydrolysis [173]. MCC950 was shown to rescue neonatal
lethality in a mouse model of NLRP3 activating mutation, while the targeted blockade
of IL-1β alone was unable to do so. This compound was also active in ex vivo samples
from patients with a similar gain of function mutations [178,179]. Moreover, MCC950 was
shown to improve blood flow and capillary density in mice, confirming the importance of
NLRP3 in ischemic muscle diseases [124]. In addition, in a mouse model of VCP myopathy,
MCC950 increased mice physical performances and significantly reduced NLRP3, caspase 1,
IL-1β and IL-18 expression [79]. Preliminary results of MCC950 tested on the pathogenesis
of DMD look very promising, and also show an improvement in muscle performance
and a protection against muscle inflammation [146]. Therefore, MCC950 could present a
promising therapeutic option for many muscle disorders.

The above mentioned β-OHB exerts protective muscular anticatabolic effects in volun-
teers submitted to LPS [132], while OLT1177 reduces systemic and muscle inflammation in
LPS challenged mice [130]. A phase II clinical trial is currently ongoing for the treatment of
moderate COVID-19 with OLT1177 (ClinicalTrials.gov Identifier: NCT04540120, accessed
on 12 October 2021).

ClinicalTrials.gov
ClinicalTrials.gov
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Table 1. Direct NLRP3 inhibitors, their mechanisms of action and involvement in diseases.

Agent Target Site Inhibitory Effect Tested
on SM Diseases Clinical Trials References

Cy-09

NLRP3
NACHT
Domain

NLRP3 ATPase activity

− Gout, T2D, CAPS − [172]

MCC950 +
Multiple sclerosis, CAPS,

Ischemia, CLI, VCP,
DMD

− [60,79,173]

MNS − Inflammatory
diseases − [171]

OLT1177 + Arthritis, CAPS,
Gout

Arthritis, Phase
IICovid19,

Phase II
[130]

Oridonin

NLRP3
oligomerization

− T2D, gout - [176]

Tranilast − Gout, T2D, CAPS CAPS, Phase II [175]

β-OHB

Unknown

+/* ALS ALS, Phase II [97,132]

ZYIL1 − − Phase I No
publication

INF39 NLRP3 ATPase activity
and oligomerization − Inflammatory bowel

disease − [177]

β-OHB: β-hydroxybutyrate; ALS: amyotrophic lateral sclerosis; CAPS: cryopyrin associated periodic syndrome; Cy-09: glitazone Cy-09;
DMD: Duchenne muscular dystrophy; MNS: 3,4-methylenedioxy-beta-nitrostyrene; NLRP3: NOD like receptor family, pyrin domain
containing 3; OLT1177: Dapansutrile; SM: skeletal muscle; T2D: type 2 diabetes; VCP: valosin-containing protein; +: validated; − absence;
* Not directly demonstrated.

3.2. NLRP3 Indirect Inhibitors

We will focus herein merely on indirect inhibitors tested in skeletal muscle.

3.2.1. NLRP3 Upstream Inhibitors in Skeletal Muscle

Several drugs and molecules have been described as inhibitors of inflammasomes by
acting upstream of NLRP3 oligomerization (Table 2).

Among them, two compounds target the P2X7/K+ channel activation pathway: bright
blue G (BBG) [60,180,181] and Glyburide (a sulfonylurea currently used in T2D) [60,182],
both displaying a restoration of muscle strength in IIM mouse models.

NF-κB mediators have shown interesting results in skeletal muscle inflammatory
models. As previously explained, triptolide prevented muscle atrophy in LPS challenged
mice [129], carbenoxolone was able to decrease metabolic abnormalities, such as liver
and muscle steatosis, in HFD-mice [100], while melatonin showed an interesting anti-
inflammatory effect and preserved the normal muscular structure and activity in a sar-
copenic mouse model [116–118,183]. Curcumin was shown to decrease ROS levels and
proinflammatory cytokines in C2C12 muscle cells submitted to palmitate induced inflam-
mation [184], and to improve the dystrophic phenotype in mdx mice [145]. Several other
molecules, such as adiponectin, AICAR, metformin, and resveratrol, were also found to
mitigate some pathological features of DMD in cell cultures and animal models, mainly
by activating AMPK signaling thus inhibiting NF-κB and reducing inflammasome activa-
tion [138,140–143].

In addition, ghrelin was shown to inhibit NLRP3 inflammasome activation, reduce
muscle pathology and enhance muscle performance [135]. Shikonin, a Chinese medicine in-
hibitor of pyruvate kinase M2 (PKM2), exhibited NLRP3 inhibitory activation and protected
from pyroptosis in muscle cells [150,185]. Finally, human volunteers under a high palmitate
diet (SFA) displayed high levels of NLRP3 mRNAs in their skeletal muscle biopsies, while
switching to an oleate rich diet (MUFA) reduced NLRP3 priming and activation [102].

Although indirect inhibitors are able to suppress NLRP3 inflammasome activation,
high doses are nonetheless required. Thus, these indirect inhibitors seem less sensitive
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and effective than direct ones. In addition, the mechanisms of action for some of these
molecules can be tissue specific, making them less impressive in diseases where multiple
organs and tissues are affected. Therefore, directly targeting NLRP3 probably represents
the best therapeutic approach for muscle diseases with an inflammatory component.

Table 2. List of indirect inhibitors acting upstream of NLRP3 priming in skeletal muscle.

Agent Mechanism of Action Effect Relevant Clinical Trial References

Adiponectin

Activation of AMPK
signaling pathway

Reduction in NF-κB
activity leading to
downregulation of

NLRP3 and
proinflammatory

cytokine expression

− [80,138]

AICAR − [143]

Resveratrol
CHFC, Phase II

Metabolic Syndrome,
Phase II

[142]

Oleic acid (MUFA) − [102]

Metformin
Activation of AMPK pathway and

inhibition of TLR4
signaling pathway

Commercialised for
T2D, Phase III [140]

BBG
Inhibition of P2X7R pathway/K+

outflow

−
[60]

Glyburide Commercialised
for T2D

Carbenoxolone Decreased phosphorylation of
IκBα

− [100]

Triptolide − [129]

Curcumin Decreased phosphorylation of
IKKα-IKKβ

T2D, Phase IV [145,184]

Ghrelin Inhibition of JAK2-STAT3 and p38
MAPK signaling pathway − [135]

Melatonin
Induction of SIRT1 deacetylase

activity through RORα-dependent
mechanisms

− [115,183]

Shikonin Inhibition of PKM2

Downregulation of
NLRP3 and

proinflammatory
cytokine expression by
unknown mechanism

− [150]

AICAR: 5-Aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; BBG: bright blue G; CHFC: congestive
heart failure chronic; IκBα: nuclear factor of kappa light polypeptide gene enhancer in β-cells inhibitor, α; IKK: inhibitory-κB kinase; JAK2:
Janus kinase 2; MAPK: mitogen activated protein kinases; MUFA: mono unsaturated fatty acids; NLRP3: NOD like receptor family, pyrin
domain containing 3; P2X7R: ATP gated cation channel receptor; PKM2: pyruvate kinase isozyme M2; NF-κB: nuclear factor-κB; SIRT1:
sirtuin 1; STAT3: signal transducer and activator of transcription 3; T2D: type 2 diabetes; TLR4: toll-like receptor 4; TNFα: tumor necrosis
factor α; − absence.

3.2.2. NLRP3 Downstream Inhibitors in Skeletal Muscle

Other drugs and molecules could act downstream of the NLRP3 inflammasome to
inhibit pyroptosis and/or inflammation.

Disulfiram, as previously explained, acts by blocking gasdermin D pore formation and
shows a reduction in inflammatory cytokines level in a mouse model of sepsis associated
with a longer survival rate. [133].

Anti-IL-1β therapies were the first to be tested in humans and showed efficacy in
several inflammatory diseases. However, their effects in metabolic disorders were less
impressive [186,187]. Moreover, the use of canakinumab, a human monoclonal antibody
targeted at IL-1β, was also associated with increased susceptibility to infection [188].

Anti-IL-18 therapies are currently in development for different inflammatory diseases.
Tadekinig Alfa, a recombinant human IL-18 binding protein, is being tested in adult onset
Still’s disease and in NLRC4 related macrophage activation syndrome (inflammatory dis-
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eases associated with high plasma IL-18 levels) (ClinicalTrials.gov Identifier: NCT02398435,
NCT03113760). In addition, GSK1070806, a humanized antibody targeting IL-18, is cur-
rently being tested in a phase 1 trial for atopic dermatitis (ClinicalTrials.gov Identifier:
NCT04975438). To our knowledge, these medications have not yet been tested on skeletal
muscle related disorders.

It is also important to note that IL-1β or IL-18 specific sequestration by a pharmacolog-
ical approach do not prevent pyroptosis [10,13], thereby limiting their effectiveness to only
one side of the inflammasome activation downstream effects. Therefore, the development
of new therapeutics directly targeting the NLRP3 inflammasome is much needed.

4. Conclusions

In summary, the NLRP3 inflammasome displays a primary protective function in
the muscle by clearing noxious substances. However, its excessive activation has been
identified to play a key pathological role in the development and progression of several
skeletal muscle diseases.

Our continuous understanding of physiological and pathological processes of inflam-
mation is leading to the development of novel therapeutic approaches that target the NLRP3
inflammasome and that are showing promising results for several pathological conditions.

Finally, the existence of NLRP3 inhibitors entering the pipelines of human clinical
trials for several inflammatory diseases, will surely pave the way for future trials for muscle
related diseases with an inflammatory component.
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