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Abstract
One of the most exciting advances in life science research is the development of 3D cell culture systems to obtain complex 
structures called organoids and spheroids. These 3D cultures closely mimic in vivo conditions, where cells can grow and 
interact with their surroundings. This allows us to better study the spatio-temporal dynamics of organogenesis and organ 
function. Furthermore, physiologically relevant organoids cultures can be used for basic research, medical research, and drug 
discovery. Although most of the research thus far focuses on the development of heart, liver, kidney, and brain organoids, to 
name a few, most recently, these structures were obtained using dental stem cells to study in vitro tooth regeneration. This 
review aims to present the most up-to-date research showing how dental stem cells can be grown on specific biomaterials 
to induce their differentiation in 3D. The possibility of combining engineering and biology principles to replicate and/or 
increase tissue function has been an emerging and exciting field in medicine. The use of this methodology in dentistry has 
already yielded many interesting results paving the way for the improvement of dental care and successful therapies.
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Introduction

Regenerative medicine is a branch of medicine that focuses 
on repairing, replacing, or regenerating injured, diseased, or 
dysfunctional tissues. Current technologies in regenerative 
medicine rely extensively on advances in stem cell biology.

Stem cells (SCs) are undifferentiated cells capable of 
self-renewal and differentiation into more specialized cells. 

Based on their differentiation potential, SCs can be classified 
as totipotent, pluripotent, or multipotent [1]. Totipotent SCs 
can differentiate into both embryonic and extraembryonic 
tissues [2]. Pluripotent SCs (PSCs) can differentiate into the 
three embryonic germ layers – endoderm, mesoderm, and 
ectoderm [3]. Multipotent SCs, including the still debated 
mesenchymal SCs (MSCs), can differentiate into a limited 
number of specialized cells [4].

Because of their ability to self-renew and maintain their pluri-
potency given proper culture conditions, human PSCs have been 
a major focus of interest for studying tissue regeneration, mod-
eling disease, and understanding tissue development [5]. PSCs 
called embryonic stem (ES) cells were initially derived from 
the inner cell mass of pre-implantation blastocysts [3, 6] and 
fetuses [7]. In the early years of this millennium, Kucia and col-
laborators identified, in mouse bone marrow [8] and human cord 
blood [9], a population of rare and very small cells positive for 
pluripotent markers and able to differentiate towards the three 
germ layers. They called them Very Small Embryonic-Like stem 
cells (VSELs). Since then, several groups have identified these 
cells in different adult tissues in both mice and humans [10], and 
although their existence is still debated and they are often called 
with different names (MAPCs, MUSE, and MIAMI cells) [11, 
12], they represent an intriguing source of cells endowed with 
pluripotent features in the field of stem cell biology.
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Another type of PSCs, induced pluripotent stem (iPS) 
cells, can be generated by reprogramming somatic cells by 
expressing four transcription factors – Oct3/4, Sox2, Myc, 
and Klf4 [13, 14].

However, the use of PSCs in clinical applications has 
been challenged by ethical concerns, potential immuno-
genicity and tumorigenicity, and epigenomic instability 
[15–17]. Thus, during the past couple of decades, MSCs 
have become promising candidates for regenerative medi-
cine and tissue engineering applications.

MSCs can be easily harvested, potentially from autolo-
gous grafts, and are ethically uncontroversial while also 
maintaining the ability to differentiate into osteocytes 
(bone), chondrocytes (cartilage), and adipocytes (fat) contin-
gent on their exposure to particular factors in their microen-
vironment [18]. MSCs regulate tissue homeostasis through 
their secretome and replenish the cellular components of 
their niche [19]. From their initial discovery in the bone 
marrow, MSCs have been successfully isolated from most 
adult tissues, opening new avenues of research and develop-
ment of therapeutic technologies [20–22]. Some MSCs of 
particular interest in regenerative medicine are derived from 
various dental tissues. These dental MSC populations are 
heterogeneous: some share similar mesenchymal properties 
with bone marrow MSCs while others have a restricted dif-
ferentiation potency [23, 24]. Dental MSCs are important 
for tooth homeostasis and repair (MSCs of the periodontal 
ligament), as well as for dentine repair (dental pulp MSCs). 
Dental MSCs have recently been used in several clinical tri-
als, mainly for restoring the tooth pulp, bone regeneration, 
and periodontitis treatment [25].

Although in vitro culture and transplantation of dental 
SCs into animal models has helped us identify various den-
tal SCs populations and their replicative and differentiation 
potential, we need better in vitro methods to replicate in situ 
processes of human organ formation. While murine tooth 
development has been studied extensively, little is known 
about the spatiotemporal cues of human odontogenesis. A 
better understanding of such processes would allow for the 
development of targeted regenerative therapies.

This review outlines the discoveries in the oral stem cell 
field, focusing on the latest advances in biological research, 
such as the formation of organoids and spheroids and their 
possible contribution to the advancement of translational 
medicine.

Overview of Different Types of Dental Stem 
Cells

Since the initial identification of dental stem cells in the 
early 2000s, recent advances in cell and molecular-based 
dentistry have led to promising developments in dental 

therapies aiming at repairing, replacing, and regenerating 
dental tissues. Moreover, new methods have been developed 
to study human tooth organogenesis.

Primary teeth start to form in the developing embryo 
between 6 and 8 weeks of gestation and originate from the 
interaction between the oral ectodermal epithelium and neu-
ral crest-derived mesenchyme [26–28]. This epithelial-mes-
enchymal interaction also controls the final differentiation of 
odontoblasts and ameloblasts during tooth generation [29, 
30]. During odontogenesis, dental mesenchymal stem cells 
derive from peripheral nerve-associated glia and produce 
pulp cells and odontoblasts. Evidence of this embryonic 
origin was demonstrated in the mouse embryo in an elegant 
study published in 2014. The authors traced peripheral glia 
with a multi-color confetti mouse reporter to show that glia-
derived cells contribute to dental mesenchymal stem cells 
during tooth organogenesis [31].

Teeth are one of the most accessible and least invasive 
sources of stem cells, and five subpopulations of dental 
and oral SCs have been identified (Table 1): dental pulp 
SCs (DPSCs) [32, 33] (Fig. 1), SCs from human exfoliated 
deciduous teeth (SHEDs) [34], periodontal ligament SCs 
(PDLSCs) [35], dental follicle progenitor SCs (DFPCs) [36], 
and SCs from apical papilla (SCAPs) [37, 38]. Although dis-
tinct, these populations have typical characteristics of MSCs: 
self-renewal capabilities and the ability to differentiate into 
at least three different lineages (Fig. 2) [39].

Dental Pulp Stem Cells (DPSCs) and Stem Cells 
from Human Exfoliated Deciduous Teeth (SHED)

DPSCs are isolated from the dental pulp, extracted from 
teeth removed during routine dental procedures. DPSCs have 
a high proliferative capacity, differentiate into odontoblasts, 
osteoblasts, adipocytes, and chondrocytes in vitro, and can 
generate dentin and pulp-like tissues upon transplantation 
into immunodeficient mice [40–45]. When isolated from 
the dental pulp of exfoliated deciduous teeth, these cells are 
referred to as SHEDs. Similar to DPSCs, SHEDs can dif-
ferentiate into many lineages in vitro and generate dentin 
and pulp-like tissues upon transplantation in mice. How-
ever, they show a significantly higher proliferation rate than 
DPSCs [34, 39, 45]. Of the various dental stem cell popula-
tions, both stem cell populations isolated from dental pulp 
- DPSCs and SHEDs - have been the primary source of cells 
used in periodontal clinical trials to regenerate dental pulp as 
well as bone and periodontal tissue [25, 46–48].

Moreover, due to their origin from the neural crest and 
their mesenchymal phenotype, DPSCs have been exten-
sively studied for their potential uses beyond dentistry [49]. 
For example, DPSCs isolated from deciduous teeth can be 
differentiated in vitro into mature neurons or glial cells to 
replace dead neurons or injured peripheral nerves, form 
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myelin, or provide support and protection for nerve cells 
after transplantation into the central nervous system [50, 51]. 
Evidence in studies using rats as animal models showed that 
DPSC grafts induce the survival of damaged motor neurons 
after spinal cord injury [52]. Other studies showed that the 
neurotrophic factors secreted by these cells influence the 
survival of dopaminergic neurons in both Alzheimer’s and 
Parkinson’s models [52, 53]. DPSCs have also been used 

as a therapeutic to repair myocardial infarction in nude rats 
where they reduced infarct size likely due to the secretion of 
proangiogenic and antiapoptotic factors [54]. Several in vitro 
studies have also described their ability to differentiate into 
hepatocyte-like cells [55] able to treat liver disease [56, 57], 
to differentiate into islet-like cell aggregates to treat diabetes 
[58], and to differentiate into cornea epithelium and stromal 
cells [59].

Periodontal Ligament Stem Cells (PDLCSs)

PDLSCs are isolated from the perivascular wall of the peri-
odontal ligament, which can be harvested from the roots of 
extracted teeth. PDLSC transplants in immunocompromised 
mice formed cementum/periodontal ligament (PDL)-like 
structures that supported periodontal tissue repair [60–62]. 
Unlike DPSCs, PDLSCs have only been used in clinical tri-
als to regenerate their corresponding tissue [25].

Dental Follicle Progenitor Stem Cells (DFPCs) 
and Apical Papilla Stem Cells (SCAPs)

Dental follicle progenitor SCs are isolated from dental folli-
cle tissue surrounding the developing tooth. In vitro, DFPCs 
have osteogenic potential and can gain cementoblast features 
[36, 63]. Upon transplantation in rats, DFPCs produced a 
cement matrix with embedded cementoblast/osteocyte cells 
[64].

SCAPs are SCs derived from the apical papilla of imma-
ture permanent teeth. SCAPs have osteogenic/odontogenic 
differentiation potential in vitro, similar to DPSCs, but pro-
liferate at a significantly higher rate [65]. Upon transplan-
tation in immunodeficient mice, seeded SCAPs formed a 

Table 1  Dental stem cells positivity to mesenchymal, ESCs, neural markers and differentiation potentials. Adapted from [40]

Stem cell type Mesenchymal stem cell mark-
ers

ESCs markers Neural markers Differentiation potential

DPSC CD29, CD34, CD44, CD59, 
CD105, CD73, CD90, 
CD105, CD117, CD146, 
CD166, CD271, STRO-1, 
CD271, SOX-10,

NANOG, OCT4, SOX-2, 
SSEA-3, SSEA-4

NESTIN, VIMENTIN, SOX-2 Osteogenic, chondrogenic, 
adipogenic, myogenic, neu-
ral, β-pancreatic, endothelial

SHED CD44, CD105, CD73, CD90, 
CD146, STRO-1,

NANOG, OCT4, SSEA-3, 
SSEA-4,

NESTIN Osteogenic, chondrogenic, 
adipogenic, odontogenic, 
neural, myogenic, hepato-
cytes

PDLSC CD271, CD44, CD105, CD73, 
CD90, STRO-1

NANOG, OCT4, KLF4, 
SOX-2,

SLUG, NESTIN, NG2 Osteogenic, chondrogenic, 
adipogenic, neural, hepato-
cytes, β-pancreatic

DFPC CD29, CD44, CD105, 
NOTCH-1

NESTIN, βIII TUBULIN, 
GFAP

Odontogenic, osteogenic, 
adipogenic, neural

SCAP NOTCH-3, CD105, CD73, 
CD90, STRO-1, CD146, 
CD24, SURVIVIN

NANOG, OCT4, NESTIN, GFAP Odontogenic, osteogenic, 
chondrogenic, adipogenic, 
neural, hepatocytes

Fig. 1  Phase contrast image of human dental pulp mesenchymal stem 
cells obtained from periosteum disaggregation as described in [21]. 
Nuclei are stained with DAPI (blue), arrows point to some of the 
mesenchymal DPSCs. Magnification 60X, bar: 20 μm
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vascularized dental pulp-like tissue in the root canal space 
and differentiated into osteoblast-like cells capable of pro-
ducing dentin-like tissue [66].

Tooth Regeneration Strategies

The Role of Stem Cells

Replacement of a missing tooth is a routine procedure 
requiring the placement of a dental implant or bridge into 
the jawbone. If necessary, this procedure is preceded by a 
bone graft to repair or rebuild the patient’s jawbone. How-
ever, current implant-based strategies for tooth replacement 
fail to reproduce a natural root structure, potentially leading 
to the loss of supporting bone due to peri-implantitis (or 
inflammation of gum and bone around dental implants). To 
address implant failure, new strategies are being investigated 
to regenerate teeth in vitro using SCs, biomaterials, and spe-
cific 3D culture conditions able to mimic, as faithfully as 
possible, the niche in which dental stem cells usually reside.

Several approaches have been used and tested to regen-
erate teeth [67]; these approaches have focused on targeted 
regeneration of individual tooth components such as den-
tal pulp and dentin [for reviews see 68–70; for functional 

studies see 70–73], cementum [for reviews see 74, 75; for 
functional studies see 76–78], periodontium [for reviews see 
79, 80; for functional studies see 81–83], and enamel [for 
reviews see 84; for functional studies see 85–88]. However, 
combining these strategies does not guarantee the successful 
regeneration of a viable tooth. In the mouse, dental struc-
tures have been obtained upon transplantation of recombined 
embryonic oral epithelium and adult mesenchyme directly 
into the adult jawbone or under renal capsules [89] or by 
implanting embryonic rat molar cells into the maxilla of 
adult mice [90, 91]. Such studies suggest the possibility of 
using stem cells for the regeneration of an entire tooth.

These pioneering studies lead the way to developing strat-
egies to obtain a tooth in vitro by mimicking the in vivo 
environment. For example, the interaction between mesen-
chymal and embryonic epithelial cells in vitro can induce the 
formation of a primordial tooth, which, upon transplantation 
into the adult oral cavity, can develop into a mature tooth 
[92]. Another study described a method to replace missing 
teeth using a patient’s autologous gum cells first isolated and 
expanded in vitro and then combined with murine embry-
onic tooth mesenchyme stem cells to induce tooth formation 
[24]. Signals released by the mesenchymal stem cells trig-
gered the differentiation of epithelial cells into appropriate 

Fig. 2  Differentiation potentials 
of dental stem cells (created 
with BioRe nder. com)
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specialized epithelial derivatives to induce the formation of 
complete teeth. Tissue-engineered teeth, like natural ones, 
can also be produced by inducing an odontogenic response 
in non-dental stem cells such as embryonic stem cells, neu-
ral and bone marrow-derived cells through exposure to the 
appropriate oral epithelial signals in culture [89].

Another approach for tooth regeneration uses iPS technol-
ogy. Otsu and collaborators were able to differentiate mouse 
iPS cells into neural crest-like cells and eventually into 
odontogenic mesenchymal cells [93]. Similarly, a few years 
later, they collected and reprogrammed a patient’s somatic 
cells towards the ectodermal epithelial and neural crest-
derived mesenchymal lineage. The recombination of these 
cell types followed by subsequent transplantation into the 
mouth demonstrated the possibility of forming a tooth germ 
and functional final tooth [94]. Interestingly, Cai and col-
leagues showed that integration-free human urine-induced 
pluripotent stem cells could regenerate patient-specific den-
tal tissues and teeth thanks to a two-steps methodology in 
which cells were first differentiated towards the epithelial 
phenotype and then re-combined with embryonic dental 
mesenchyme. The authors could get tooth-like structures 
after only three weeks in culture [95]. As obtaining and 
maintaining dental stem epithelial cells can be difficult, Kim 
and collaborators recently overcame this problem by differ-
entiating human ES and human iPS cells into epithelial-like 
stem cells, thanks to direct interaction with Hertwig’s epi-
thelial root sheath/epithelial rests of Malassez cell line [96].

Although many parameters must be considered to regen-
erate a functional tooth, the methodology that involves the 
use of iPS cells seems to be the most promising one. These 
cells have optimal proliferation capacity and more poten-
tial in autologous transplantation than other cell types. If 
combined with biomaterials and different kinds of scaffolds, 
iPSCs could induce and support better dental development. 
Furthermore, the use of transwell membrane co-culture of 
dental epithelial and mesenchyme cells has proved to be a 
valuable methodology to effectively differentiate iPSCs in 
dental cells, as shown in 2019 [97].

The Role of Scaffolds and Biomaterials

Tissue engineering, a discipline that combines principles 
of engineering and biology to restore and/or improve tissue 
function, has been an emerging and exciting field in den-
tistry. Tooth tissue engineering has the potential to over-
come the limitations pertaining to two-dimensional (2D) 
SCs culture because it relies on the combination of three 
key elements – cells, scaffold, and the biological environ-
ment (regulatory signals) – for proper tissue regeneration. 
Initially, two tissue-engineering methodologies were used 
to regenerate a tooth. The first one involved the dissocia-
tion of tooth germ that can be seeded onto a tooth-shaped 

scaffold supporting tooth formation and is then transplanted 
to generate multiple complex tooth-like structures. The sec-
ond approach relied on the interaction between epithelial and 
mesenchymal SCs obtained from primordial tooth germs or 
other sources, which induced tooth growth in culture [98].

Scaffolds and biomaterials are important factors sup-
porting tissue regeneration. They must mimic, in vitro, the 
physiological environment necessary for cellular growth, 
expansion, and differentiation [99, 100]. Scaffolds must 
be biocompatible, ensure adequate diffusion of nutrients, 
and have porous structures that allow cell penetration. They 
should also prevent the production of non-toxic molecules 
and chronic inflammatory responses while delivering neces-
sary regulatory signals in a controlled way to promote heal-
ing. Finally, scaffolds should be biodegradable, allowing 
their replacement by regenerated tissues [98, 101].

Over the years, many biodegradable and biocompatible 
biomaterials have been optimized to support the regen-
erative process. Biomaterials can be natural or synthetic. 
Natural biomaterials – such as natural polymers (collagen, 
laminin, elastin, chitosan, silk, platelet-rich plasma, bone 
sialoprotein, to name a few) – usually have low toxicity, are 
eco-friendly, and are cheaper than synthetic biomaterials. 
They are preferred for cell adhesion, cell-responsive degra-
dation, proper cell signaling, and rapid degradation without 
immune rejection [98–101]. Tooth tissue engineering also 
uses synthetic materials – such as hydroxyapatite, polylactic 
acid, polyglycolic acid, polycaprolactone, and poly lactic-co-
glycolic acid – which are often more flexible and elastic than 
natural ones. However, synthetic biomaterials are often not 
as conducive to recellularization and remodeling as natural 
ones. Thus, composite materials such as gelatin-chondroi-
tin-hyaluronan tri-copolymer and polycaprolactone-gelatin-
hydroxyapatite tri-copolymer are now preferred [98, 101].

The correct “niche” reconstitution to allow cells to prolif-
erate and differentiate within a given scaffold implies inte-
grating both the cells and the scaffold with suitable growth 
factors. These should favor, promote, and support tooth 
morphogenesis. The members of the transforming, epider-
mal, fibroblast, and insulin growth factor families, along 
with bone morphogenetic and WNT proteins, are the most 
widely used because they promote cell migration, prolifera-
tion, and differentiation. These regulatory signals support 
the development of the tissue-engineering tooth beyond 
odontogenesis [98].

Thanks to the continued development of new biomaterials 
for scaffolding and the increasing knowledge of the signals 
defining the dental niche, tissue engineering has made great 
strides in dentistry. For example, it was recently shown that 
a thermosensitive injectable hydrogel containing graphene 
oxide and chitosan represents an ideal scaffold for the growth 
of DPSCs by inducing the expression of factors specific for 
osteogenic differentiation, like Runt-related transcription 
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factor 2 and osteocalcin [102]. Another research showed 
how DPSCs involved in dentin regeneration increase their 
odontogenic potential when cultured in chitosan scaffolds 
enriched with calcium-aluminate and 1α,25-dihydroxy vita-
min D3 and how the composition, porosity, and organiza-
tion in interconnected pore networks better supported this 
process [103]. The osteogenic potential of DPSCs was also 
evaluated in a porous composite scaffold based on chitosan-
gelatin and nanohydroxyapatite enriched with fibrin glue and 
platelet-rich plasma. This particular “reconstructed niche” 
allowed the proliferation and differentiation of stem cells 
and induced the increased expression of markers specific 
for bone formation during the first weeks in culture [104]. 
Human platelet lysate was also used to evaluate the pro-
liferation capacity of both SCAPs and PDLSCs on a syn-
thetic scaffold fabricated from poly ‘lactic-co-glycolic’ acid. 
Human platelet lysate, whose effects are comparable to those 
obtained from the use of fetal bovine serum, represents a 
valid alternative for inducing dental stem cells to differen-
tiate towards osteogenic lineages [105]. The dentin-pulp-
enamel tissue complexes of the human tooth were mimicked 
by injecting different stem cells (i.e., human bone marrow 
stem cells, fat cells, and gingival epithelial cells) into a scaf-
fold made of hydroxyapatite. This study demonstrates how 
these conditions can support and induce the early stages of 
tooth development [106].

Biomaterials are of enormous help in inducing cell 
growth and differentiation, as the studies cited above show. 
However, a relatively new field, bioprinting, is emerging to 
address the need to reconstruct complex 3D structures. Spe-
cific biomaterials such as those mentioned above and living 
cells become the ink needed to print scaffolds and structures 
on which cells are seeded. This technology is also applied 
to dentistry and a recent study demonstrated that DPSCs 
grown on a scaffold obtained with different biomaterials and 
printed with the 3D bioprinter show high cell viability and 
osteogenic differentiation as well as mineralization compa-
rable to more canonical cell culture [107–109].

These advancements will play an essential role in creating 
a supportive microenvironment to preserve tissue function 
upon implantation properly. In addition, such advances in 
tooth tissue engineering offer a promising future for den-
tal care and a better understanding of the biology of tooth 
formation.

Spheroids and Organoids: New Perspectives 
in Dentistry

In the last decade, stem cell biology has made tremendous 
progress in the study and development of –oids (gastruloids, 
spheroids, organoids) from the in vitro three-dimensional 
(3D) culture of SCs to mimic the physiological properties 

and tissue architecture of embryonic stages, tissues and 
organs [110, 111].

Gastruloids obtained from ESCs offer a sophisticated 
model to study animal and human embryological develop-
ment and diseases. Spheroids, developed in the 1970s [112] 
to study the effect of radiotherapy on tumor cells, are also 
used to induce embryoid bodies formation from PSCs and 
culture MSCs in 3D. While organoids, formed by self-organ-
izing stem cells, differentiate towards lineages specific to 
the tissue/organ of interest [113]. They can be defined as 
3D multicellular structures grown in vitro but able to mimic 
some of the complexity of the corresponding organ in vivo. 
Organoids can be grown from two types of cells, PSCs 
(ES and iPS) and SCs from adult organs. Their formation 
requires the use of biomaterials (i.e., hydrogels, Matrigel) 
and specific growth factors to direct cell differentiation 
towards the cell types that constitute the mimicked organ 
[114]. This allows studying both normal and pathological 
conditions, testing treatments, and evaluating the action of 
drugs and/or toxic compounds [114].

The interesting and surprising use of -oids technology 
occurs in dentistry. In 2007, scientists were able to form a 
tooth germ organoid using a combination of dental epithe-
lium and mesenchyme cells obtained from mandibular tooth 
germs at the cap stage of mouse post-implanted embryos. 
The use of a biomaterial (i.e., collagen) allowed the authors 
to obtain a tooth germ-like structure capable of forming a 
bioengineered tooth upon transplantation [115].

Several groups obtained dental spheroids a few years ago 
using dental epithelial cells and MSCs in mouse and human 
models [116, 117]. In 2011, Berahim and colleagues grew 
spheroids from human periodontal ligament fibroblasts and 
then transplanted them onto membranes enriched with col-
lagen and polyglycolic acid. They were able to demonstrate 
the ability of these cells to grow, proliferate and migrate 
in 3D [116]. A few years later, Natsiou and collaborators 
developed a technique to form the so-called “dentospheres” 
using dental epithelial SCs from the cervical loop area of the 
mouse incisor [118]. The 3D culture of the cells using two 
different media enriched by growth factors allowed the for-
mation of spheroids of varying morphology and size. Their 
results defined the stemness and plasticity of dental SCs and 
their ability to be manipulated in these conditions.

Spheroids represent an intriguing tool to determine opti-
mal culture conditions and biomaterials to induce 3D organi-
zation of dental SCs. In 2021, RAMAN spectroscopy was 
used to find the factors responsible for stem cell differentia-
tion in spheroids formed by aggregation of human DPSCs. 
This research showed that the differentiation and acquisi-
tion of the 3D structure is mainly related to the diffusion of 
nutrients, morphogens, and growth factors within the culture 
medium [119].
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Desirable culture conditions may also be achieved by co-
culture of different types of tissues and/or cells. In 2020, 
Sano and collaborators co-cultured spheroids of human 
PDLCSs with vascular endothelial cells to induce periodon-
tal tissue regeneration. They showed that the treatment with 
co-cultured spheroids led to new cementum formation after 
one or two months after transplantation. Also, the expres-
sion of stemness, vascular endothelial growth factors, and 
osteogenesis markers increased compared to the same cells 
grown in monolayer [120]. In 2017, Ono and collaborators 
obtained a bioengineered tooth in the canine model, physi-
ologically similar to a normal tooth. The authors demon-
strated that combining epithelial tissue with mesenchymal 
tissue or mesenchyme cells, or epithelial cells and mesen-
chyme tissue yields better tooth formation than combining 
epithelial and mesenchyme cells. The combination and cul-
ture of these cells and tissues formed a tooth germ organoid 
that, transplanted in the canine mandible, developed into a 
bioengineered tooth characterized by enamel, dentin, and 
pulp tissue several weeks later [121].

A bio-engineered tooth was also obtained in Sus scrofa. 
Pigs are helpful animal models for studying human diseases, 
xenotransplantation, and tooth formation due to the simi-
larities shared with humans. Wang and collaborators com-
bined isolated epithelial and mesenchymal cells that formed 
a tooth organoid after transplantation in mouse sub renal 
capsules and jawbone, which later developed into a large-
size tooth [122].

Jeong and colleagues recently developed dentin-pulp-
like organoids by cultivating human DPSCs with Matrigel 
using appropriate differentiation media. After harvesting and 
characterization, these organoids were dissociated and suc-
cessfully reorganized into more dentin pulp-like organoids. 
These revealed characteristics of both SCs and differenti-
ated odontoblast-like cells, thus representing a good starting 
point for future use of these structures in human dentistry 
[123].

Organoids have been established for the salivary gland, 
lingual epithelium, and taste buds and show similar charac-
teristics to those of the corresponding organs [124]. Salivary 
gland organoids can be obtained with two methodologies. 
The first induces PSCs to differentiate towards oral ecto-
derm in a 3D culture enriched with several growth factors 
and cytokines to promote the salivary gland morphogenesis 
[125]. The second requires the incubation of salivary gland 
progenitors in 3D scaffolds to promote the formation of the 
gland structure thanks to several growth factors [126, 127]. 
Salivary organoids have also been obtained thanks to mag-
netic 3D bioprinting using DPSCs and neural crest-derived 
mesenchymal stem cells as “ink” [128]. This technique 
involves using magnetic nanoparticles tagged to the cells to 
print 3D spheroids able to induce the formation of salivary 

gland epithelium. Transplantation into ex vivo models was 
useful to study salivary gland morphogenesis and growth.

Lingual organoids have been obtained by cultivating 
lingual stem cells in Matrigel with specific cytokines and 
growth factors. This setup generated rugged round-shaped 
organoids with a reticulated cell arrangement and round-
shaped organoids with concentric cell arrangements [129, 
130]. The latter had a morphology typical of filiform papil-
lae found in the tongue. The authors of these studies were 
able to transplant these organoids into recipient mouse 
tongues and follow their maturation in both normal and 
pathological conditions.

Taste bud organoids can be obtained from taste bud stem 
cells or circumvallate papillae in a 3D culture enriched with 
several factors able to support and induce their formation, 
maintaining phenotypic characteristics similar to native tis-
sue [131].

Overall, dental spheroids and organoids present an 
excellent opportunity for the advancement of oral biology 
research as well as dental practices. These 3D cultures pro-
vide an accessible system for modeling human organogen-
esis, modeling diseases, and regenerative medicine. They 
allow complex interactions between cells, the flow of signal-
ing molecules and nutrients, and self-organization (specific 
to organoids) to help scientists model and understand dental 
physiology. Spheroids and organoids can emulate in vivo 
conditions more closely than 2D cultures [116, 132, 133] 
and provide a better and more accessible understanding of 
human odontogenesis than animal models. 3D cultures sup-
port cell-cell and cell-microenvironment interactions that 
play a fundamental role in regulating cell proliferation, 
migration, and differentiation. They also promote the devel-
opment and physiology of a particular pathology, which 
presents some limitations if studied with the traditional 2D 
culture. An exciting discipline applied to -oids is mechano-
biology, which studies the roles of mechanical forces dur-
ing cell migration, cell differentiation, cell adhesion to sub-
strates and, for example, extravasation of cancer cells [134]. 
Some known mechanotransducers are the two transcriptional 
regulators, YAP and TAZ, which sense mechanical cure 
within cells (and during cell-environment interactions) and 
respond to them in a cell-specific manner [135]. For exam-
ple, YAP and TAZ induce transient stem cell proliferation 
when intestinal organoids grow on a hydrogel scaffold with 
defined stiffness and composition. If the organoid increases 
in size, YAP and TAZ are disabled, cells lose their stemness, 
and the organoid undergoes apoptosis and necrosis. How-
ever, when the hydrogel composition is more plastic, stem 
cells are preserved, and the activity of YAP/TAZ is localized 
in a specific area of the organoid resembling the intestinal 
crypts [136, 137]. Very recently, it was demonstrated that 
the use of a scaffold composed of hyaluronan induced the 
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differentiation of human DPSCs towards the osteogenic line-
age thanks to the activation of the YAP/TAZ pathway [138].

The 3D cell spatial organization studies could also help 
assemble patient-specific organoids composed of patients’ 
cells to develop and study dental anomalies or diseases.

For example, organoids have been used to study oral 
tumors [139] to capture and maintain the original tumor’s 
composition. Patient-derived organoids for disease mode-
ling also provide an opportunity for personalized medicine. 
Finally, organoids can be derived from small amounts of a 
patient’s cells, which would then expand and differentiate 
in vitro, thus providing autologous sources of dental stem 
cells for transplantation and regeneration of damaged tis-
sues. Although oral spheroid and organoid technologies 
have developed significantly in the past decade, these 3D 
structures still lack many features necessary for organ func-
tion [140]. Therefore, it is unknown how faithful they are in 
representing in vivo dental structures or whether they could 
replace original oral components upon transplantation.

Despite needing further improvements, organoid tech-
nologies represent an important prospect for personalized 
medicine based on patients’ specific needs.

Discussion

Organoids represent one of the most futuristic cellular mod-
els for biomedical research. They can reproduce the archi-
tecture and complexity of various organs and tissues. Also, 
they can be implemented for multiple uses, such as in vitro 
testing of therapies before administration, modeling onco-
logical and rare genetic diseases, regenerative medicine, and 
transplantation procedures.

Many pioneering studies lead the way in forming and 
using these 3D structures. For example, at the beginning 
of this millennium, developmental biologist Yoshiki Sasai 
and his team proposed that ES cells might be able to self-
organize into 3D structures that resemble small functional 
organs in response to appropriate culture conditions. They 
obtained a 3D little brain, optic cup, neocortex, cerebellum, 
hippocampus, adenohypophysis, ventral telencephalon, and 
pituitary gland [141]. These results have paved the way for 
further advances in this field, as demonstrated by recent 
research on recording oscillatory waves from brain orga-
noids [142].

Human organoids were obtained during the following 
years for intestine, kidney, pancreas, liver, brain, and ret-
ina [143], opening innovative approaches for developing 
new drugs, toxicological assays, and therapeutic oppor-
tunities. The possibility of using organoids to study neo-
plastic transformation and tumor formation in a petri dish 
[144] and using patient cells to obtain patient-specific 

organoids to recreate diseases in vitro are undoubtedly 
significant [145]. For example, the production of patient-
specific intestinal organoids obtained from culturing cells 
on specific biomaterials allowed scientists to develop 
drugs to treat cystic fibrosis, thus improving patients’ 
symptoms and quality of life [146, 147]. Organoid tech-
nology is also employed to treat deafness, an increasingly 
widespread pathology that affects all demographics. The 
3D cultures of SCs from the cochlea allowed the identi-
fication of molecules capable of stimulating the expan-
sion of endogenous SCs [148], which can then be induced 
to differentiate into sensory hair cells [149]. A similar 
approach involving the use of hydrogel and in silico selec-
tion of new molecules capable of stimulating endogenous 
SCs led to another success: the identification of prosta-
glandin E2 as a natural modulator of the inflammatory 
process capable of stimulating the expansion of skeletal 
muscle SCs in  vitro and muscle regeneration in  vivo 
[150]. This means that there is a population of quiescent 
SCs that decreases with age in skeletal muscles. Their 
stimulation resumes expansion leading to rejuvenation 
of muscle function. This is of particular importance for 
counteracting the muscular weaknesses associated with 
old age and many other morbidities.

One of the most recent and undoubtedly interesting 
advances regards how organoids technology can be used 
to study SARS-CoV-2 infections in human cells. This can 
model how the virus infects various cell types and can aid 
in developing a vaccine capable of stopping the virus’s 
progression [151].

Due to their potential, the human cell atlas scientific 
community is working on an atlas of organoids to pro-
vide the necessary tools to improve current protocols and 
validate existing ones [152]. Sophisticated techniques 
such as spatial profiling and single-cell sequencing will 
be used to achieve this goal. Spatial profiling will allow 
the characterization of the organoids in their 3D structure. 
At the same time, single-cell sequencing will define both 
the cellular composition and the genes expressed by each 
organoid cell. Intestine and brain organoids will be the first 
to be implemented because a fair number of protocols are 
already available although the goal is to extend the project 
to all other organs as well. Organoids can become crucial 
for the study of pathology and regeneration of oral and 
maxillofacial tissue and precision therapies targeting oral 
cancers. Moreover, hopes for the future lie in the possibil-
ity of their use to investigate the etiology of rare and/or 
heritable diseases whose origin is often associated with 
dental anomalies. An example is the congenital ectoder-
mal dysplasia characterized by anomalies in ectodermal 
derivatives such as teeth, nails, sweat and salivary glands, 
hair, cranio-facial structure, and other body parts [153].
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Hype and Hopes of Organoids/Spheroids 
Research

As already stressed, studying these 3D structures opens 
many perspectives for the translational medicine of the 
future. Although the mechanism used by stem cells to 
reproduce in vitro what they would typically do in vivo 
is now quite clear, the way stem cells self-assemble into 
organoids/spheroids is still under investigation. This 
aspect still represents a weak point of this technology. 
Until the mechanisms of these systems can be completely 
controlled, there will be a limitation in regard to experi-
mental reproducibility, which is an essential condition for 
their use, for example, in developing new drugs, toxico-
logical and therapeutic assays. Thus, it will be necessary 
to improve the culture techniques by choosing suitable 
biomaterials and scaffolds that guarantee the symmetrical 
and three-dimensional structure maintenance, the modula-
tion of adequate morphogens, and the delivery of nutrients 
and growth factors. Basic biology research is proceeding 
very fast in this field and, beyond promises that can create 
false expectations, in a few years, we will be able to have 
complete control even of this fascinating aspect of biol-
ogy: the assembly of cells in structures which, thanks to 
the cell-cell, cell-environment, cell-substances interactions 
that promote and maintain growth, allow us to recapitulate 
the development of an organ or embryonic development.

Faced with the considerable potential of spheroid/
organoid research, it is necessary to consider the ethical 
implication of this technology, as it often requires the use 
of ES and fetal cells for research. It will also be neces-
sary to discuss the ethics of gaining informed consent to 
create patient-specific organoids and their preservation 
[110, 154]. The latest innovations promise to revolutionize 
regenerative medicine by overcoming the current biologi-
cal obstacles (the long timeline to get validated therapies is 
not always due to bureaucratic problems) and developing 
several therapies. To date, most of the SC-based therapies 
have not yet obtained approval, and there are hundreds of 
clinical trials registered to await marketing approval by the 
US Food and Drug Administration. The organoids tech-
nology, along with gene editing and genetic reprogram-
ming, promises to revolutionize biomedical research in the 
upcoming years. In addition, it will significantly improve 
therapies for clinical conditions with unmet clinical needs.
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