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Favipiravir, a broad-spectrum RNA-dependent RNA polymerase inhibitor, inhibits the replication of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) at significantly lower concentrations than the plasma trough
levels achieved by the dosage adopted for influenza treatment and exhibits efficacy against coronavirus disease
2019 (COVID-19) pneumonia. Although high doses of favipiravir are required due to themolecule being a purine
analog, its conversion into the active form in infected cells with active viral RNA synthesis enhances the antiviral
specificity and selectivity as a chain terminator with lethalmutagenesis. Another characteristic feature is the lack
of generation of favipiravir-resistant virus. COVID-19 pneumonia is caused by strong cell-mediated immunity
against virus-infected cells, and the inflammatory response induced by adaptive immunity continues to peak
for 3 to 5 days despite antiviral treatment. This has also been observed in herpes zoster (HZ) and cytomegalovirus
(CMV) pneumonia. Inflammation due to an immune response may mask the effectiveness of favipiravir against
COVID-19 pneumonia. Favipiravir significantly shortened the recovery time in patients with mild COVID-19
pneumonia by 3 days with the start of treatment by the 5th day of symptom onset. Since both CMV and
COVID-19 pneumonia are caused by adaptive immunity and prevention of cytomegalovirus pneumonia is the
standard treatment due to difficulties in treating refractory CMV pneumonia, COVID-19 pneumonia should be
preventedwith early treatment aswell. In the present study,we have comprehensively reviewed the optimal an-
tiviral therapy for COVID-19 based on clinical trials of favipiravir for the treatment of COVID-19 pneumonia and
the concurrently established therapies for other viral infections, particularly HZ and CMV pneumonia. Optimally,
antivirals should be administered immediately after COVID-19 diagnosis, similar to that after influenza diagnosis,
to prevent COVID-19 pneumonia and complications resulting from microangiopathy.

© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

The Coronavirus family affects the human respiratory system. The
family includes severe acute respiratory syndrome (SARS) coronavirus,
Middle East respiratory syndrome coronavirus, and the seventh novel
coronavirus, which have caused a pandemic of severe pneumonia sim-
ilar to SARS pneumonia (WHO, 2020c). The causative virus has been
named “severe acute respiratory syndrome coronavirus 2” (SARS-CoV-
2) (ICTV, 2020) and the disease has been termed “coronavirus disease
2019” (COVID-19) (WHO, 2020b).

Immediately after the outbreak, Chinese researchers scanned more
than 70,000 drugs or compounds through rigorous in silico simulations
and in vitro enzyme activity tests and identified 5,000 potentially effec-
tive drug candidates. These drugs were then examined at the cellular
level against the common coronavirus infection, and approximately
100 drugs were selected for further investigation. Among these drugs,
chloroquine, favipiravir, and remdesivirwere selected for testing in clin-
ical trials (China, N. H. C. O. T. P. S. R. O, 2020; Wang et al., 2020).
Favipiravir has been developed as an anti-influenza drug in collabora-
tion with Toyama Chemical Co., Ltd., Japan (Furuta et al., 2002; Shiraki
& Daikoku, 2020) and has been shown to be therapeutically effective
against COVID-19 pneumonia in several clinical trials (Cai et al., 2020;
Ivashchenko et al., 2021; Shinkai et al., 2021).

Wehave previously reviewed the efficacy of favipiravir against influ-
enza and Ebola virus infection (Shiraki & Daikoku, 2020). Favipiravir is
expected to play an important role as a therapeutic drug against
COVID-19. Shiraki, who co-developed favipiravir, started his virology
and antiviral research studies under the guidance of Professor
Takahashi, who developed the Oka varicella vaccine (Takahashi,
Otsuka, Okuno, Asano, & Yazaki, 1974). Varicella skin tests have been
developed to evaluate adaptive cell-mediated immunity (CMI) against
herpes zoster (HZ) (Shiraki, Yamanishi, & Takahashi, 1984; Takahashi
et al., 2003). Shiraki has conducted research on anti-herpes drugs such
as acyclovir, famciclovir, ganciclovir, sorivudine, and amenamevir and
analyzed their therapeutic efficacy in HZ (Shiraki, 2017, 2018; Shiraki
& Daikoku, 2020). Both HZ and COVID-19 pneumonia show inflamma-
tion caused by adaptive CMI mediated by CD4 and CD8 lymphocytes
and cytokines (Ackermann et al., 2020; Morizane, Suzuki, Tsuji, Oono,
& Iwatsuki, 2005; Song et al., 2020). In this composite review, we have
primarily focused on the successful antiviral treatment including HZ
and cytomegalovirus (CMV) pneumonia and clinical studies on
favipiravir for the treatment of COVID-19 pneumonia. We have
proposed the optimal antiviral treatment, including favipiravir, to
prevent COVID-19 pneumonia, microangiopathy and neurological
complications.
2. Development and pharmacological actions of favipiravir

2.1. Development of favipiravir as an anti-RNA drug for life-threatening
RNA viral infections

In the joint development of a new antiviral agent between the
Shiraki laboratory and Toyama Chemical Co., Ltd. since 1992, approxi-
mately 30,000 compounds were synthesized. Favipiravir (6-fluoro-3-
hydroxy-2-pyrazinecarboxamide) was selected for its potent anti-
influenza activity in tissue culture screenings at the Toyama Chemical
Co., Ltd. The Shiraki laboratory investigated the efficacy of favipiravir
2

in influenza-infected mice and ferrets in our Biosafety level 3 facility
(Furuta et al., 2002). The control group diedwithin 5 days of nasal infec-
tion with high-dose influenza virus, oseltamivir treatment extended
survival by 3 days, and favipiravir treatment resulted in survival of all
mice (Takahashi et al., 2003). Thus, the efficacy of favipiravir in animal
experiments served as the basis for clinical trials of the drug against sea-
sonal influenza.

The efficacy of favipiravir against seasonal influenza was established
through clinical trials in the United States and Japan. Based on these re-
sults, favipiravir was approved for the treatment of novel or re-
emerging influenza in Japan in 2014. Moreover, favipiravir has proven
to be effective for the treatment of patients with severe fever with
thrombocytopenia syndrome and Ebola virus infection (Bai et al.,
2016; Sissoko et al., 2016; Suemori et al., 2021). Favipiravir offers
broad-spectrumanti-RNAvirus activity, and its effectiveness in both an-
imal and human trials has been shown in the literature (Delang,
Abdelnabi, & Neyts, 2018; Furuta et al., 2009; Furuta et al., 2013;
Shiraki & Daikoku, 2020).

Favipiravir is a purine analog without ribose, unlike antiviral nucle-
oside analogs, and requires amidophosphoribosyltransferase action for
the addition of phosphoribosylpyrophosphate to exhibit antiviral
RNA-dependent RNA polymerase (RdRp) activity in its triphosphate
form (Craig 3rd & Eakin, 2000). Therefore, the dose of favipiravir re-
quired is higher than that of other antiviral nucleoside analogs.
Favipiravir is specifically taken up and activated in RNA virus-infected
cells with abundant RNA synthesis, which increases the specificity of
anti-RNA virus activity of favipiravir.

When the effect of favipiravir on RNA synthesis was analyzed bio-
chemically, chain termination was detected and short RNA strands
were formed in primer extension assays (Jin et al., 2013, Sangawa
et al., 2013, Naydenova et al., 2021, Shannon et al., 2020). Favipiravir-
4-ribofuranosyl-5′-triphosphate (FTP) is weakly incorporated into the
replicating strand, and suppressed completion of RNA replication even
when a high concentration of ribonucleotide triphosphates (rNTPs) is
added (Naydenova et al., 2021).
2.2. Lack of generation of favipiravir-resistant virus

A previous review discussed the lack of generation of favipiravir-
resistant viruses (Shiraki & Daikoku, 2020). Briefly, influenza virus and
poliovirus were propagated in increasing concentrations of favipiravir
for 1 month; however, favipiravir-resistant virus could not be isolated
despite the presence of amino acid variations in the RdRp maintaining
its enzyme activity and the susceptibility to favipiravir. This is unusual
because the probability of generating favipiravir-resistant viruses
under these conditions is high. Thus, favipiravir-resistant viruses have
not become dominant among the entire virus population grown in the
presence of favipiravir (Daikoku et al., 2018; Daikoku, Yoshida, Okuda,
& Shiraki, 2014; Goldhill et al., 2018; Goldhill et al., 2021). Fifty-seven
paired influenza viruses isolated from patients before and after
favipiravir administration showed no change in susceptibility to
favipiravir in a phase 3 clinical trial of seasonal influenza (Takashita
et al., 2016). In contrast, acyclovir-resistant viruses have become domi-
nant among the entire virus population grown in thepresence of acyclo-
vir in herpesvirus infections in vitro and in vivo (Akahoshi et al., 2017;
Daikoku et al., 2018; Ida et al., 1999; Shiraki, Ogino, Yamanishi, &
Takahashi, 1983).



Table 1
Summary of toxicity of favipiravir and antiviral drugs for early rat embryogenesis.

Group Dose
(mg/kg/day)

Rat/Human
AUC ratio$

Mortality of embryo/fetus Anomaly of fetus

Mean pre-implantation
loss rate (%)

Mean number of
surviving fetuses

Mean number of
premature deaths

Mean post-implantation
loss rate (%)

Rate of fetuses with
abnormalities (%)

External malformation

Vehicle
control

0 N/A 13.8 11.8 1.1 8.4 0

Favipiravir
10 0.12 4.0 13.6 0.6 4.3 0
30 0.37 5.7 6.8* 7.9** 55.5** 0

Ribavirin
30 0.14 10.0 8.8 4.4* 36.1* 14.7*
100 0.41 7.2 0.6** 12.6** 95.0** 62.5

Valacyclovir
100 1.1 9.7 13.4 0.3 2.1 0
200 2.3 6.9 14.5 0.8 5.1 0.9
400 4.9 5.9 9.4 6.1* 39.3* 2.0

Administration period: 0–7 days gestation (until implantation).
Caesarean section on the 20th day of gestation to observe the endometrium and foetation.
$, Human AUC was based on the following dose: favipiravir, 1600 mg × 2/day (loading dose for influenza patients); ribavirin, 400 mg × 2/day (dose for 60–80 kg patients); valacyclovir,
1000 mg × 3/day (dose for zoster patients).
Statistically significant difference from the vehicle control: *p < 0.05; **p < 0.01.
The table is provided with permission by Fujifilm Toyama Chemical Co., Ltd. (Toyama-Chemical-Co.-Ltd, 2014).
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2.3. Favipiravir suppresses production of tumor necrosis factor-α in
influenza virus-infected cells and mice

Viral RNA produced in influenza-infected cells is recognized by Toll-
like receptor (TLR)-3 or TLR-7/8, which induces various cytokines, such
as interleukin (IL)-1 and 6, tumor necrosis factor (TNF)-α, and inter-
ferons (IFNs) (Guillot et al., 2005; Kurokawa, Brown, Kagawa, &
Shiraki, 2003; Poux et al., 2019). These cytokines and IFNs are responsi-
ble for inducing influenza symptoms (Kurokawa, Imakita, Kumeda, &
Shiraki, 1996). Favipiravir has been shown to significantly suppress
the production of TNF-α in influenza virus-infected cells andmice com-
pared to oseltamivir (Tanaka et al., 2017). TNF-α is induced and dimin-
ished first among cytokines in macrophage-like P388D1 cells and
animals (Kurokawa et al., 2003). Further, reduction of viral RNA synthe-
sis by favipiravir terminates TLR-mediated TNF-α production first
among various cytokines.

2.4. Embryotoxicity of viral RdRp inhibitors, ribavirin and favipiravir

Since early embryonic deaths and teratogenicity have been observed
in viral RdRp inhibitor animal studies, favipiravir and ribavirin should
Table 2
Summary of embryo-fetal developmental toxicity of favipiravir and antiviral drugs.

Group Dose
(mg/kg/day)

Rat/Human
AUC ratio$

Mortality of embryo/fetus

Mean number of live
fetuses

Post-implantation
loss (%)

Vehicle
control

0 N/A 12.6 5.5

Favipiravir 30 0.37 13.8 7.2
60 0.87 − −

100 1.6 12.9 3.8
Ribavirin 3 0.014 13.7 2.1

10 0.041 11.5 21.3
Valacyclovir 200 2.3 14.1 3.1

400 4.9 10.4* 29.3**

Administration period: 7 to 17 days of gestation (organogenesis period).
Caesarean section on the 20th day of gestation to observe the endometrium and foetation.
$, Human AUC was based on the following dose: favipiravir, 1600 mg × 2/day (loading dose fo
1000 mg × 3/day (dose for zoster patients).
−, numerical data were not presented since the dose of 60 mg/kg was applied in another stud
Statistically significant difference from the vehicle control: *p < 0.05; **p < 0.01.
The table is provided with permission by Fujifilm Toyama Chemical Co., Ltd. (Toyama-Chemic
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not be administered to pregnant or possibly pregnantwomen. Ribavirin
has anti-RNA viral activity and has been used for the treatment of
parainfluenza virus infections (Sidwell et al., 1975), respiratory syncy-
tial virus infection (Krilov, 2002), and chronic hepatitis C (Awad et al.,
2010). The Ribavirin Pregnancy Registry has prospectively reported
464 pregnant women exposed to ribavirin, and preliminary findings
do not suggest clear signs of human teratogenicity (Sinclair et al., 2017).

Ribavirin induced congenital abnormalities of the limbs, ribs, eyes,
and central nervous system as well as fetal death when administered
to pregnant hamsters (Kilham & Ferm, 1977). Ribavirin inhibits both
DNA and RNA synthesis and has an increased risk of causingmalforma-
tion in fetuses compared to cytosine arabinoside (Kochhar, 1990).

Shiraki and Toyama Chemical Co. Ltd. compared early embryo le-
thality and teratogenicity in animals treated with antivirals. Ribavirin
inhibits both RNA andDNA synthesis, whereas favipiravir selectively in-
hibits RNA synthesis. Toxicity studieswere performed based on the area
under the curve (AUC) in the “early embryogenesis” and “embryo-fetal
development” tests. Favipiravir and ribavirin increased post-
implantation mortality and reduced the number of living embryo/fe-
tuses at lower rat/human AUC ratios (Table 1). Ribavirin showed fetal
anomalies at lower rat/human AUC ratios (Table 2).
Anomaly of fetus

Rate of fetuses with abnormalities (%)

External
malformation

Visceral
malformation

Skeletal
malformation

Skeletal variation

0 1.7 0 6.0

0 4.1 0 6.8
− − − Supernumerary of lumber

vertebra
2.2 18.8 4.4 32.1
0 8.0 0 36.7**
3.3 31.8** 29.5** 85.1**
0 12.3 0 19.6
2.5 29.3** 0 57.7**

r influenza patients); ribavirin, 400 mg × 2/day (dose for 60–80 kg patients); valacyclovir,

y.

al-Co.-Ltd, 2014).



Table 3
Statistical comparisons of semen parameters change from baseline.

Semen parameter Test days Least squares mean Differencea 95% confidence interval
for difference

Favipiravir Placebo

Sperm concentration (106/mL)
60 10.26 (57) 17.91 (55) −7.65 −41.83 26.53
90 47.38 (57) 28.03 (54) 19.35 −14.93 53.63

Sperm motility (%)
60 −1.72 (57) −1.13 (55) −0.59 −4.02 2.84
90 −2.65 (57) −3.12 (54) 0.48 −2.97 3.92

Normal sperm morphology (%)
60 −0.44 (57) −0.26 (55) −0.17 −1.17 0.83
90 −1.86 (57) −1.89 (54) 0.02 −0.98 1.03

Total sperm count (106/mL)
60 −14.83 (57) −46.96 (55) 32.13 −73.19 137.44
90 44.61 (57) 36.76 (54) 7.85 −97.75 113.44

Total motile sperm count (106/mL)
60 −18.18 (57) −49.32 (55) 31.15 −55.55 117.84
90 35.67 (57) 7.07 (54) 28.60 −58.31 115.52

Total sperm count = sperm count in semen sample + sperm count in first post-ejaculate urine sample
Dosage and administration: 1200 mg twice daily on the 1st day, 800 mg twice daily on the 2nd to 5th days
The test days is the number of days after the end of administration
Number of subjects in parentheses
The table is provided with permission by Fujifilm Toyama Chemical Co., Ltd. (Toyama-Chemical-Co.-Ltd, 2014).

a Difference in Least Squares Mean (Favipiravir−Placebo)

Table 4.
Adverse events associated with favipiravir in Fujita Health University (Doi, et al., 2020)

Total number of patients 2970 100%
Number of patients with adverse events 826 28.5%
Number of adverse events 1005
Hyperuricemia / increased uric acid level 524 17.6%
Liver dysfunction / elevation of hepatic enzymes 240 8.1%
Rash/ toxicoderma 56 1.9%
Renal dysfunction / increased creatinine level 25 0.8%
Diarrhea / loose stool 20 0.7%
Fever 19 0.6%
Vomiting / nausea 16 0.5%
Gout 9 0.3%
Rhabdomyolysis / increased CK value 5 0.2%
Hyperkalemia 5 0.2%
Bradycardia 4 0.1%
Itching 4 0.1%
Leukopenia 4 0.1%
Abnormal coagulation test 4 0.1%
Thrombocytopenia 3 0.1%
Anorexia 3 0.1%
Exacerbation of pneumonia 3 0.1%
Dizzy 2 0.1%
Lymphocytopenia 2 0.1%
Exacerbation of the underlying disease 2 0.1%
Hypernatremia 2 0.1%
Hyperbilirubinemia 2 0.1%
Thromboembolism 2 0.1%
Seizures 2 0.1%
High blood sugar 2 0.1%
Malaise 2 0.1%
Abdominal pain / epigastric discomfort 2 0.1%
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2.5. Possible mechanism of RdRp inhibitors on impaired early
embryogenesis

In contrast to valacyclovir, favipiravir and ribavirin were more toxic
in early embryogenesis than in the embryo–fetal development stage
(Tables 1 and 2). Since telomerase reverse transcriptase (TERT) expres-
sion is a characteristic event during early embryogenesis, the possibility
of TERT-mediated disorders has been examined in the literatures.

Telomeres protect the ends of chromosomes with repetitive se-
quences and shorten the lagging strand by 50–150 bases during each
cell division until termination by gradual loss of telomeric sequences,
called senescence (Hayflick & Moorhead, 1961; Olovnikov, 1973).
TERT extends telomeres in fertilized eggs to early embryos (at the
time of implantation) to restore the telomere length consumed during
development (Ozturk, Sozen, & Demir, 2014; Turner, Wong, Rai, &
Hartshorne, 2010). TERT exhibits RdRp activity and produces small
interfering RNA, resulting in RNA silencing (Maida et al., 2009).
MicroRNAs function as post-translational developmental regulators
from gametogenesis to embryogenesis (Bernstein, Caudy, Hammond,
& Hannon, 2001; Salas-Huetos et al., 2019). Although there are no ex-
perimental data on the interaction between anti-RdRp agents and
TERT, we hypothesized that favipiravir and ribavirin impair miRNA
function through TERT RdRp activity during embryogenesis, resulting
in embryotoxicity and teratogenicity. Contraception is indicated during
and up to 14 days for favipiravir and 6months for ribavirin after the end
of treatment.

2.6. Effect of favipiravir and ribavirin on spermatogenesis

The effects of favipiravir on sperm disorders were not observed in
the favipiravir or placebo group in clinical trials (Table 3). Testicular tox-
icity in monkeys was not observed even at 6.3 and 1.2 times the maxi-
mum human exposure for 2 and 6 weeks, respectively (PMDA, 2014;
Toyama-Chemical-Co.-Ltd, 2014). In contrast to ribavirin, favipiravir
did not impair human spermatogenesis (Hofer et al., 2010). Abstinence
should be practiced during and 10 to14 days after administration to
avoid the effects of residual drugs in the semen on early embryogenesis.

2.7. Adverse reactions in clinical studies

The major side effects of favipiravir included increased blood uric
acid in 24 (4.79%) patients and diarrhea in 24 (4.79%) patients in a clin-
ical study involving 501 patients with influenza (Fujifim, 2019). In an
observational study, favipiravir was administered to 2970 patients
with COVID-19 pneumonia, and the adverse reactions are shown in
4

Table 4 (Doi, et al., 2020). The major adverse reactions were elevated
uric acid levels in 17.6% (524/2970) patients and liver dysfunction in
8.1% (240/2970) patients. However, liver dysfunction might be a result
of COVID-19 itself because the incidence rate of liver dysfunction did not
differ between the favipiravir and control groups (Cai et al., 2020; Chen
et al., 2020; Singh, Barkate, Patil, Rangwala, & Pendse, 2020).

3. Innate and adaptive immunity against viral infection and
anti-viral therapies

3.1. Effect of antivirals on infected cells and the fate of infected cells

Understanding the mechanism of immune response and onset of
major symptoms of common viral infections has led to the development
of an appropriate treatment strategy for COVID-19. Viral progeny are re-
leasedwithin 10–12hof SARS-CoV-2, influenza virus, andherpes simplex
virus (HSV) infection and 14 h of varicella–zoster virus (VZV) infection
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(Bar-On, Flamholz, Phillips, & Milo, 2020; Harcourt et al., 2020; Shiraki &
Daikoku, 2020; K. Shiraki et al., 2020). Acyclovir inhibit viral replication,
but infected cells in the late phase continue to express synthesized viral
antigens, regardless of antiviral agents (K. Shiraki et al., 2020).

Fig. 1 shows the susceptibility of VZV-infected cells to acyclovir
(A) and the cluster (plaque) of infected cells (B) in the cultured cells.
Fig. 1A shows the change in susceptibility of VZV-infected cells to acy-
clovir from 0 to 18 h after infection. The half-maximal effective concen-
tration (EC50) of infected cells is below Cmax (red dashed line) of oral
valacyclovir in newly infected cells (0–4 h), but it is above Cmax after
>9 h after infection. The infected cells (yellow) surrounding the
plaque are susceptible to acyclovir (Fig. 1B). However, the infected
cells (brown) in the center completed viral DNA synthesis within 12 h
and, therefore, are resistant to acyclovir with high EC50 values and are
not eliminated. These cells continue to produce viral proteins and
particles (Fig. 1A and B) and are the target of immune responses and
augment inflammation after initiation of antiviral therapy until they
become apparently normal.

VZV and HSV cause eruptions and vesicles on the skin through adap-
tive CMI; however, the skin becomes apparently normal over time with
no erosions or ulcers due to extensive cell necrosis. Despite showing
strong cytolytic activity in cell cultures, VZV-infected cells became appar-
ently normal morphology with losing antigen expression but retaining
viral DNA by antigenic modulation (Joseph & Oldstone, 1975; Shiraki
et al., 2011). Erythema multiforme occurs 1–3 weeks after recovery of
HSV skin lesions, and HSV DNA is detected in the cells of erythema mul-
tiforme lesions (Miura, Smith, Burnett, & Aurelian, 1992). The infected
cells in HSV lesions are converted to apparently normal cells, leaving
HSV genome in the cells until development of erythema multiforme. Na-
sopharyngeal epithelial cells are infected with influenza virus, but they
Fig. 1. Susceptibility of infected cells to antiviral agent and plaque distribution of infected cells
Change in susceptibility of infected cells to acyclovir from 0 to 18 h after infection and schema
susceptible (beige), and resistant (brown) to antivirals. A. The susceptibility of varicella-zoster
fection, and the increase in their EC50 values at each time point was expressed with respec
observed to be acyclovir-susceptible until 4–6 h of infection when viral DNA synthesis began,
resistant (brown) at a concentration above the Cmax of oral valacyclovir. B. VZV infection spre
plaque while infecting the next cell in 14 h. The infected cells in the periphery of the plaque
shown in yellow colour in the panel A. However, the cells in the center were resistant to
susceptibility in the plaque is shown by acyclovir-resistant cells in the center (brown), less s
the periphery, depending on the time lapse after infection. The authors obtained permission fr
Infected cells in the center died in culture, but they do not cause tissue loss or defects due to d
infected cells colored in yellow in the periphery will not produce viral proteins, and those color
particles until they reverse to apparently normal cells regardless of the presence of acyclovi
inflammation.
Coronavirus-infected cells produce cytokines, such as interleukin (IL)-1, IL-6, IL-8, and tu
inflammation in coronavirus disease 2019 (COVID-19) pneumonia (Deinhardt-Emmer et al., 2
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neither die nor generate erosion in the nasopharyngeal mucosa and re-
vert to normal epithelial cells during recovery.

VZV, HSV, and influenza virus-infected cells die in culture, but they
survive without leaving skin or mucous membrane defects, returning
to apparently normal cells in the skin and mucosa. The infected cells
with antigen expression after peak of virus production become targets
of adaptive CMI and stimulate the immune system for a few days until
they revert to normal cells without viral antigen expression.

3.2. Role of innate immunity and adaptive immunity in viral infection

In HSV and VZV infection, the prodromal stage before the onset
of skin lesions is formed by innate immunity, and skin lesions are
formed by antigen specific adaptive CMI (Morizane et al., 2005). The
Langerhans cells, which play a central role in the innate immunity of
the skin, are impaired by ultraviolet light sunburn, which in turn im-
pairs innate immunity (Aberer, Schuler, Stingl, Honigsmann, & Wolff,
1981). Impairment of innate immunity by sunburn enables viral spread
and replication in the prodromal phase, and adaptive CMI against HSV
and VZV results in broader, denser, and more severe skin lesions called
“photodistribution” (Fig. 2) (Gilchrest & Baden, 1974). Innate immunity
suppresses viral replication and spread in the prodrome. Adaptive CMI
generates eruptions and vesicles on areas of HSV and VZV replication,
known as delayed-type hypersensitivity (DTH), through T cell re-
sponses, including CD4 and CD8 lymphocytes (Morizane et al., 2005).
Severely immunocompromised patients, such as children with leuke-
mia who lack CMI, either have a longer incubation period of 3–4
weeks or do not present with skin rashes throughout the course of var-
icella, indicating that skin lesions are caused by adaptive CMI. VZV
spreads more widely in immunocompromised patients and some
.
tic illustration of the plaque consisting of infected cells that are susceptible (yellow), less
virus (VZV)-infected cells to acyclovir was assessed at 0, 3, 6, 9, 12, 15, and 18 h after in-
t to considering 1 at 0 h after infection (K Shiraki et al., 2020). VZV-infected cells were
and then the EC50 values gradually increased from a level of being susceptible (yellow) to
ad from the initially infected cells in the center to the periphery, and these cells form the
consisted of cells immediately after the infection and were susceptible to acyclovir, as
acyclovir due to the time lapse after infection, as shown in brown colour. Acyclovir
usceptible infected cells (beige) in the middle, and susceptible infected cells (yellow) in
om the Antiviral Research to reuse this figure (Shiraki et al., 2020).
eath and reverse to apparently normal cells in the skin of patients with herpes zoster. The
ed beige and brown in the center are resistant to acyclovir and produce viral proteins and
r. These beige and brown-colored infected cells are the major targets of CMI that causes

mor necrosis factor (TNF)-α via the Toll-like receptor (TLR) pathway for augmenting
021; Funk et al., 2012).
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Fig. 2. Importance of innate immunity visualized by photodistribution of herpetic skin lesion and varicella. A:Mechanism of Photodistribution. Red arrows indicate the photodistribution.
Innate immunity is impaired and suppressed, leading to enhanced viral growth and spread, which resulted in widespread and high-density skin lesions in the sunburned skin than in the
shaded skin as shown in the photographs. Sunburn impairs the function of the Langerhans cells, thereby impairing innate immunity, which allows the replication and spread of viral in-
fection in the prodrome of herpes simplex virus (HSV) infection and varicella. Sunburn causes broader, denser, and severer skin lesions in the sunburned area (photodistribution) than in
the shaded area. The extent of viral lesions is determined by viral replicated area before the induction of adaptive immunity and innate immunity plays a critical role by suppressing viral
spread and the broadness and density of viral skin lesions in the prodrome, as indicated byphotodistribution in thephotographsofHSV infection andvaricella. B: Photodistribution byHSV.
A young woman (20–29 years old) developed vesicles that were densely distributed in the anterior cervical area after sun exposure two days ago. C: Photodistribution by varicella-zoster
virus (VZV). An 8-year-old girl was diagnosed with varicella with fever and vesicles three days after sea bathing. The skin covered by the suspender of the swimsuit in the upper back and
the swimsuit in the lower back was protected from sunburn and had mild distribution density of eruptions of varicella. In contrast, sunburn impaired the innate immunity leading to en-
hanced viral growth and spread and causedhigher density and severer eruptions of varicella in the sunburned skin than in the shaded skin. Thephotographs are providedbyDr. Yasumoto.
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older people than in healthy patients due to the longer incubation pe-
riod, resulting in a wide range of severe HZ manifestations (Dworkin,
et al., 2007). Photodistribution shows the significance of suppressing
viral spread and growth by innate immunity in the prodrome, and the
severity of skin lesions is determined by the extent of viral infection be-
fore the onset of adaptive CMI.

Typical adaptive inflammation caused by DTH is known as a type IV
hypersensitivity reaction presenting as the positive tuberculin test, con-
tact dermatitis, and urushiol-induced dermatitis. Inflammation presents
as redness and swelling within 5–6 h in a limited area, increases in size
and peaks during 48–72 h, and takes a week to disappear. As inflamma-
tion due toDTHpeaks 3 days after contactwith the antigen, inflammation
in HZ exacerbates 3–5 days after onset due to continuous stimulation and
augmentation by infected cells and lasts for 3 weeks (Fig. 3).
4. Optimal timing of antiviral administration against various viral
infections

4.1. Optimal treatment of COVID-19 based on established antiviral thera-
pies for other viral infections

Fig. 4 shows the pathophysiology and timing of initiation of estab-
lished antiviral treatment for influenza, varicella and HZ, recurrent
6

herpes, and CMV pneumonia. Since innate immunity suppresses viral
growth and spread in the prodrome and determines the severity of in-
fection, the efficacy of antiviral therapy can be determined by the inhi-
bition of virus growth in the prodrome. Information on antiviral
therapies can help understand the optimal therapy for COVID-19.
4.2. Influenza infection

Vigorous replication of influenza virus induces cytokine production
mediated by TLR-3,−7, and− 8, which recognize viral RNA. The release
of these cytokines triggers inflammation in the upper respiratory tract,
resulting in influenza-specific symptoms such as fever, sore throat,
nasal discharge, andmyalgia, which appearwithin 1–2 days of infection
(Betakova, Kostrabova, Lachova, & Turianova, 2017; Y. Gu et al., 2019;
Kurokawa et al., 1996; Tsurita et al., 2001). Seasonal influenza has an in-
cubation period of 1–2 days, and the symptoms resolve after 3–7 days in
uncomplicated influenza (Carrat et al., 2008; Memoli et al., 2014). Pre-
existing immunity to seasonal influenza viruses is crucial to decrease
the susceptibility and severity of seasonal influenza (Doyle et al., 1994).

Influenza virus replicates in the nasopharyngeal epithelium. The in-
fected epithelial cells survive and continue to produce viral RNA and an-
tigens until they revert to healthy epithelial cells without epithelial
defects. Oseltamivir shortens the duration and severity of influenza



Fig. 3. Recovery process of inflammation and improvement of herpes zoster (HZ) lesions due to adaptive CMI after initiation of antiviral treatment. A 70-year-old male patient noticed a
rash on his left waist and consulted a dermatologist the next day. Early treatment with amenamevir, starting the next day after the appearance of the rash, prevented skin lesion enlarge-
ment and new lesion formation, and cured the lesions without vesiculation (abortive infection) (Kawashima et al., 2017; Shiraki, 2017). Panels A1 and A2 show a panoramic view and a
close view of HZ, respectively, on the first day of initiation of the anti-herpetic drug (amenamevir) therapy. During day 1–5, redness and swelling representing inflammation increased in
the center of the eruption, but day 3 onwards, the redness in the peripheral part of the erythema (red halo) gradually disappeared. Panel B shows that redness and swelling increased
around the lesions, indicating stimulation of the inflammatory response due to maturation and enhancement of the CMI to varicella-zoster virus (VZV) on the second day after treatment
comparedwith thefirst day. Panels C and D show the contrasting course of reduction in peripheral inflammation at the red halo areas, while increase at the center of lesions, with the peak
inflammatory response on day 5. Urushiol-induced dermatitis peaks on the third day of antigen contact via adaptive immunity. Since no new eruption appeared on day 4, antiviral treat-
ment blocked the formation of new lesions and prevented the spread of eruption and formation of vesicles. Redness and swelling representing inflammation exacerbated despite antiviral
treatment. Although antiviral drugs prevented the spread of infection, but do not directly reduce the level of inflammation, which makes it difficult to determine the therapeutic effect.
Despite effective antiviral treatment, the inflammation exacerbates for 3–5 days as a natural course of adaptive immunity. The photographs are provided by Dr. Toyama.
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symptoms, but the symptoms continue for 1 day after treatment
(Treanor et al., 2000). Inflammation in influenza is induced by influenza
virus-infected cells and cytokines and continues until the mucosal epi-
thelium reverts to normal.

Influenza is treated with anti-influenza drugs within 48 h of the
onset of the innate immune response, and the duration of treatment is
5 days. A single dose of baloxavir marboxil, laninamivir, and peramivir
is recommended for treatment of influenza (Fig. 4A) (CDC, 2021b).

4.3. Varicella and HZ

Varicella induces CMI against viral replication in the skin and inter-
nal organs during the 2-week incubation period and causes papules,
vesicles, and crusts due to adaptive CMI (Asano et al., 1993; Grose,
1981; Ku, Besser, Abendroth, Grose, & Arvin, 2005).

Treatment for varicella is initiated within 24 h of onset and con-
tinues for 5–7 days (Fig. 4B), and some eruptions do not progress to ve-
siculation (abortive infection). Seven-day acyclovir treatment during
the first half of the incubation period did not reduce the severity of
the disease, but rendered it to asymptomatic varicella during the second
half (Suga, Yoshikawa, Ozaki, & Asano, 1993). The second half included
the prodrome, as shown by photodistribution and efficient suppression
of viral growth by acyclovir, which made varicella asymptomatic. Anti-
viral therapy in the prodrome is the ideal strategy for the conversion of
varicella to asymptomatic disease.

Inflammatory lesions caused by adaptive CMI in moderate HZ im-
proves after 3 weeks. Anti-herpetic drugs such as acyclovir, famciclovir,
valacyclovir, and amenamevir are usedwithin 3 days of onset for 7 days
(Shiraki, 2017, 2018; Shiraki, Takemoto, & Daikoku, 2021). These thera-
peutics are very effective in preventing the appearance of new rashes
and the spread of existing rashes, but they cannot alleviate inflamma-
tion. Anti-herpetic drugs accelerate viral clearance, prevent new rash
formation, decreases pain, and cause disappearance of crusting. How-
ever, these drugs do not significantly accelerate rash healing (Balfour
Jr. et al., 1983; Kawashima et al., 2017). Inflammatory conditions of
7

skin lesions, indicated by redness, swelling, and vesiculation, worsen
during 3–5 days, regardless of initiation of anti-herpetic drug treatment,
indicating the ineffectiveness of antivirals in alleviating inflammation
(Fig. 3).

Although the combination of acyclovir and prednisolone accelerated
rash healing and pain reduction in HZ, it could not decrease the time
taken for the complete healing of conditions associated with more ad-
verse events (Wood et al., 1994). Anti-herpetic drugs in combination
with prednisolone are generally reserved for complicated HZ, such as
Ramsay Hunt syndrome, to alleviate inflammation (Albrecht, 2020).

Anti-inflammatory steroids reduce inflammation caused by
urushiol-induced or contact dermatitis without shortening the duration
of inflammation. Similarly, antiviral drugs against HZ prevent the ap-
pearance of new skin lesions and inhibit the progression to vesiculation
without reducing the duration or inflammation, even with the use of
prednisolone (Balfour Jr. et al., 1983; Wood et al., 1988).

4.4. Recurrent herpes

HSV causes recurrent orofacial and genital lesions that typically
occur within 1 week (Fig. 4C). Prodrugs offer simplified twice-a-day
dosing (Patel et al., 2015; Patel et al., 2017). Oral anti-herpetic drugs ini-
tiated within 24 h of onset and continued for a period of 5 days are ef-
fective in reducing the severity and duration of recurrent lesions by a
median of 1–2 days. Short-course therapies of 1–3 days have shown
similar efficacy. Initiation of treatment in the prodrome created by in-
nate immunity is effective in preventing the appearance of genital le-
sions in approximately one-third of patients. Thus, prodromal
treatment improves patient quality of life without vesiculation or ulcers
in the face or genitalia.

4.5. CMV pneumonia

CMV causes CMV pneumonia in immunocompromised hosts, partic-
ularly transplant recipients. Since CMV pneumonia is not observed in
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severely immunocompromised patients, it is caused by adaptive CMI
against virus-infected cells.

During the 1980s, ganciclovir was used for the treatment of refrac-
tory CMV pneumonia by transplant physicians; however, the drug of-
fered no immediate effect. During ganciclovir treatment for ≥3 weeks,
pneumonia was occasionally exacerbated even after treatment
8

initiation. Thus, CMV pneumonia treatmentwas changed to CMV pneu-
monia prophylactic treatment. Guidelines have been established to ini-
tiate prophylactic treatment with ganciclovir or letermovir, when CMV
DNAemia or antigenemia is observed (Chemaly et al., 2014; Ljungman
et al., 2019; Razonable & Humar, 2019). The introduction of these stan-
dard procedures eliminates the risk of refractory CMV pneumonia in
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transplant recipients (Fig. 4D). Prevention has become the standard
treatment for CMV pneumonia. This experience can be used for the
COVID-19 treatment strategy from treatment to prevention of COVID-
19 pneumonia and microangiopathy.

4.6. Comparison of antiviral therapy against influenza and HSV and VZV
skin lesions

Seasonal influenza causes symptoms such as fever because cytokines
and interferons, produced by innate immunity, suppress the growth of
the virus and aid in resolution of the infection (Fig. 4A). The overall in-
cidence of oseltamivir-resistant virus infection was 10 of 182 (5.5%)
and 9 of 50 (18%), in two previous studies, after five days of oseltamivir
treatment among children (Kiso et al., 2004; Whitley et al., 2001). The
emergence of baloxavir-resistant mutants occurred in 2.2% and 9.7% of
baloxavir recipients in phase 2 and phase 3 trials, respectively
(Hayden et al., 2018). Resistant viruses appear during antiviral therapy.
In contrast, no virus exhibited reduced susceptibility to favipiravir in 57
pairs of influenza viruses in phase 3 clinical trials (Takashita et al.,
2016). Virus secretion continues andmay be accompanied by pneumo-
nia in immunocompromised patients.

In HSV and VZV infections, the virus rapidly proliferates and spreads
during prodrome, and the adaptive CMI forms skin lesions and resolves
(Fig. 4B and C). Antiviral drugs are administered for 5–7 days, starting
from the appearance of skin lesions in the late prodrome and beginning
of adaptive CMI. In immunocompromised patients, chronic skin lesions
with viral replication persist despite the use of antiviral drugs due to the
lack of sufficient CMI to eliminate the virus. Therefore, if skin lesions in a
patient with immunodeficiency do not improve after 2 weeks of antivi-
ral therapy due to persistent viral growth, the emergence of drug-
resistant strains should be considered (Shiraki et al., 2021). Since acy-
clovir and famciclovir require activation by thymidine kinase, the
spread of resistant viruses is limited inmixed infectionwithwild strains
and resistant viruses are not isolated during uncomplicated treatment,
in contrast to influenza (Okuda et al., 2004; Ozaki, Nishimura, Kajita,
Ida, & Shiraki, 1998). Although HSV isolates from genital lesions were
all susceptible to acyclovir, the frequency of guanosine-stringmutations
was significantly less frequent in isolates from patients naïve to acyclo-
vir than in those who experienced episodic or suppressive therapy,
when examined as viral clones (Daikoku et al., 2016). The virus strain
in chronic active viral lesions in immunocompromised hosts is replaced
with resistant strains, and lesions do not improve and gradually spread
during antiviral treatment. It has been reported that chronic lesions are
improved by antiviral drugs with different mechanisms of action
(Onaka, Shiraki, & Yonezawa, 2021; Shiraki et al., 2021).

4.7. Summary of antiviral treatment and optimal treatment for COVID-19

An optimal window to initiate antiviral therapy in influenza, vari-
cella, HZ, recurrent herpes, and CMV pneumonia has been established,
as shown in Fig. 4.When antiviral treatment is initiated in the prodrome
of the innate immunity phase of varicella, recurrent herpes, and CMV
Fig. 4.Antiviral therapy for various viral infections. A. Influenza (CDC, 2021a): Influenza is treate
or zanamivir) or once (baloxavir marboxil or laninamivir). Influenza infection is prevented by c
istration of oseltamivir or zanamivir. B. Varicella: Varicella is treated with anti-herpetic drug w
80%of infectionswithin the family. After exposure to varicella patients, individualswere prophy
and infectionwas confirmed by increase in antibody level (Suga et al., 1993). Prophylactic acycl
was effective in converting chickenpox infection to asymptomatic infection. C. Recurrent herpe
ration by a median of 1–2 days, making short course therapy with prodrugs sufficient. Treatm
lesions in the one-third of patients, avoiding the occurrence of unpleasant lesions and sympto
cludes daily administration of anti-herpes drugs. D. Cytomegalovirus (CMV) pneumonia in
2019): CMVpneumonia is prevented prophylactically using ganciclovir and letermovir or preem
of refractory CMV pneumonia experienced in the 1980s. CMV pneumonia is treatedwith gancic
monia: Current application of favipiravir is the treatment of COVID-19 pneumonia. As antiviral
suggests the treatment with favipiravir should be initiated immediately after the diagnosis of C
cations due to microangiopathy.
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pneumonia, treatment effectively prevents the onset of major symp-
toms.

Coronavirus infection induces IFNs, chemokines, and cytokines in
primary cultures of human alveolar epithelial cells and alveolar macro-
phages, similar to influenza (Deinhardt-Emmer et al., 2021; Funk et al.,
2012; Mazaleuskaya, Veltrop, Ikpeze, Martin-Garcia, & Navas-Martin,
2012). COVID-19 has an incubation period of 5 days for fever and
influenza-like symptoms; pneumonia occurs 4–5 days after disease
onset. COVID-19 pneumonia is caused by adaptive CMI, including CD4
and CD8 lymphocytes, with a strong inflammatory cytokine response
(Ackermann et al., 2020; Frisoni et al., 2021; Song et al., 2020). The
time interval after infection and infiltrated cellular response indicate
that COVID-19 pneumonia is caused by adaptive CMI, similar to the
major symptoms of HSV, VZV, and CMV infections.

The prodromal stage of innate immunity alleviates major symp-
toms; is a crucial stage that determines severity of infection, as shown
by photodistribution; and is the optimal time for antiviral therapy. Var-
icella can be prevented by initiating antiviral therapy in the prodrome,
and in recurrent herpes, antiviral drugs in the prodrome can prevent
the formation of blisters. CMV pneumonia can be prevented by prophy-
lactic or preemptive treatment.

In Ebola virus-infected mice, all mice who received favipiravir treat-
ment from 6 days after infection survived, but thosewho received treat-
ment from 8 days after infection died (Oestereich et al., 2014). A 2-day
delay is fatal for lethal infections. Favipiravir successfully prevented
Ebola virus transmissionwhen administered immediately after percuta-
neous needlestick exposure (Jacobs et al., 2015). The use of anti-human
immunodeficiency virus drugs and hepatitis B immunoglobulins imme-
diately after percutaneous exposure to human immunodeficiency virus
and hepatitis B virus, respectively, is a standard practice to prevent in-
fection (Marrazzo et al., 2014; Puro et al., 2005).

Antiviral therapy for COVID-19 should start with fever caused by in-
nate immunity and blocks the viral spread and damage to the epithelial
cells, the airway, endothelial cells, and nerve cells for smell and taste, in-
dicating that optimal COVID-19 therapy is prevention of pneumonia
and microangiopathy and not treatment of pneumonia, as shown in
Fig. 5.

5. Clinical aspect of COVID-19 and pneumonia

5.1. Clinical characteristics of COVID-19

SARS-CoV-2, an enveloped positive-sense RNA virus, infects cells via
the angiotensin-converting enzyme 2 receptor, and the viral spike pro-
tein is a key target for viral neutralization (P. Zhou et al., 2020). The in-
cubation period of SARS-CoV-2 is approximately 2–14 days, and the
median incubation period is 4–6 days, with 5%–10% of individuals de-
veloping symptoms after ≥14 days of exposure (Backer, Klinkenberg,
& Wallinga, 2020; Bi et al., 2020; Li et al., 2020). Presymptomatic trans-
mission of SARS-CoV-2 occurs 1–3 days before onset (Cheng et al., 2020;
Wei et al., 2020;WHO, 2020a). The presence of underlying diseases, in-
cluding hypertension, diabetes mellitus, cardiovascular diseases,
dwithin 48h of the onsetwith anti-influenza drugs administered forfive days (oseltamivir
hemoprophylaxis of single dose of baloxavir marboxil or laninamivir, or once daily admin-
ithin 24 h of the onset. Varicella is highly contagious, and is responsible for approximately
lactically treatedwith acyclovir during thefirst and secondhalves of the incubation period,
ovir administration during the second half of the incubation period including the prodrome
s (Patel et al., 2015; Patel et al., 2017): Episodic treatment shortens the disease course du-
ent during the prodromal stage leads to an abortive infection that does not cause herpetic
ms that stay for a week. Suppressive therapy suppresses the recurrence of herpes and in-
transplant recipients (Chemaly et al., 2014; Ljungman et al., 2019; Razonable & Humar,
ptively using ganciclovir as a standard treatment, thus successfully avoiding the treatment
lovir for at least threeweeks, occasionally leaving sequelae of infection. E. COVID-19 pneu-
treatment shown in A to D, particularly CMV pneumonia in transplant recipients, strongly
OVID-19 infection to avoid development of refractory COVID-19 pneumonia and compli-



Fig. 5. Optimal treatment for COVID-19. Antiviral treatment should be started in the pro-
dromal phase,which is producedby innate immunity, fever, or influenza like symptoms to
block the spread of the virus into the respiratory tract, endothelium, and neurons, result-
ing in preventing pneumonia and other complications.

Table 5
Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19 pneumo-
nia.

COVID-19
patients

Influenza
patients

Comparisona

CD3-positive T cells b 26.2 ± 13.1 14.8 ± 10.8
CD4-positive T cells 13.6 ± 6.0 5.8 ± 2.5 P = 0.004
CD8-positive T cells 5.3 ± 4.3 11.6 ± 4.9 P = 0.008
Neutrophils (CD15 positive) 0.4 ± 0.5 4.8 ± 5.2 P = 0.002
Lung weight (control 1045 ± 91 g) 1681 ± 49 2404 ± 560 P = 0.04
Alveolar capillary microthrombi 159 ± 73 16 ± 16 P = 0.002

Table is created from the report (Ackermann et al., 2020).
a Comparison between COVID-19 and influenza patients.
b Number in 20 fields of examination per patient (n = 7).
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chronic pulmonary diseases, obesity, and malignancy, and age > 60
years has been identified as risk factors for severe illness (ChinaCDC, T.
N. C. P. E. R. E. T., CCDC, 2020; Stokes et al., 2020).

Fever and cough are the most common symptoms in hospitalized
patients. Loss of smell and taste was observed in 1754 (73.1%) and
1136 (60.5%) patients, respectively, among 2013 European patients
(Lechien et al., 2020). Fever, cough, loss of smell and taste, and malaise
are the initial symptoms associated with COVID-19. The relatively high
frequency of anosmia and ageusia may help distinguish COVID-19 from
other acute febrile illnesses.

COVID-19 causes cardiovascular and nervous system complications
and coagulation abnormalities in addition to pneumonia (Bhatnagar
et al., 2021). Autopsy findings in fatal COVID-19 have revealedwide dis-
semination of the virus in the brain, heart, kidneys, and other organs, in-
dicating that SARS-CoV-2 causes infection outside the pulmonary
system (Bhatnagar et al., 2021; Puelles et al., 2020). Arrhythmias and
other cardiovascular symptoms are associated with electrocardio-
graphic abnormalities, myocarditis, ischemia, and cardiomyopathy
(Abrams et al., 2020; Madjid, Safavi-Naeini, Solomon, & Vardeny,
2020). The most frequent neurological manifestations in a previous
study were myalgia (44.8%), headache (37.7%), encephalopathy
(31.8%), dizziness (29.7%), dysgeusia (15.9%), and anosmia (11.4%)
(Liotta et al., 2020). Nervous system symptoms in patients with severe
infection results in acute cerebrovascular diseases, impaired conscious-
ness, and skeletal muscle injury (Mao et al., 2020). Thromboembolic
complications cause pulmonary embolism during pneumonia and
stroke in patients with underlying diseases (S. X. Gu et al., 2021;
Merkler et al., 2020). Thus, COVID-19 may lead to systemic complica-
tions involving the pulmonary, cardiovascular, and nervous systems as
well as sensory disorders (Ellul et al., 2020; Rogers et al., 2020; Zubair
et al., 2020).

5.2. Clinical characteristics of COVID-19 in children

Most children infected with SARS-CoV-2 consistently present a
milder course and have better outcomes than adults worldwide. During
the initial 3 months of the pandemic (between January and March
2020), 44 COVID-19-related deaths were reported in 42,846 confirmed
cases in children aged 0–19 years (0–14 in the USA) were reported
(Bhopal, Bagaria, & Bhopal, 2020). COVID-19 is generally less severe in
children than adults in seven countries collectively (the USA, the UK,
Italy, Germany, Spain, France, and Korea) (Bialek et al., 2020; Dong
et al., 2020; Viner et al., 2021). Moreover, the incidence rate of clinical
symptoms of fever, cough, or shortness of breath during COVID-19
10
was lower in children than in adults (73% vs. 93%). Further, the rates
of hospitalization and ICU admission was estimated to be 5.7%–20%
and 0.58%–2.0%, respectively (Bialek, et al., 2020). Concomitant medical
issues ranging from rash to severe Kawasaki-like disease have been spo-
radically reported in Western countries, but there are few such reports
in Eastern countries (Verdoni et al., 2020). COVID-19 is milder in chil-
dren than in adults, and although the reason is unclear, the expression
and function of the angiotensin-converting enzyme 2 and immune re-
sponse are speculated to play important roles (Bunyavanich, Do, &
Vicencio, 2020; Felsenstein & Hedrich, 2020; Williams et al., 2020).

5.3. Clinical features of COVID-19 and pneumonia

COVID-19 pneumonia appears after 4–6 days and dyspnea on day 8
of onset caused by adaptive CMI (Ackermann et al., 2020; Frisoni et al.,
2021; Huang et al., 2020; Song et al., 2020). The pathological pattern
of lung injury in COVID-19 pneumonia appears to be similar to that in
SARS or Middle East respiratory syndrome pneumonia (Xu et al.,
2020). The lungs of patients with COVID-19 have distinctive vascular
features of severe endothelial injury associated with the presence of in-
tracellular SARS-CoV-2. Pulmonary histopathology indicated diffuse al-
veolar damage associated with stronger perivascular T-cell infiltration
and prevalent thrombosis with microangiopathy and vascular angio-
genesis. These pathological features that are characteristic of COVID-
19 are inconsistent with those of equally severe influenza virus infec-
tions and cause interstitial pneumonia and microangiopathy (Table 5)
(Ackermann et al., 2020; Bhatnagar et al., 2021). T-cell infiltration is
more prevalent in COVID-19 pneumonia than in influenza pneumonia,
indicating the involvement of a more potent CMI that causes inflamma-
tion. Increased levels of IL-6, IL-10, and C-X-C motif chemokine ligand
10; lymphopenia (decreased CD4+ and CD8+ T cells); and decreased
IFN-γ expression (in CD4+ T cells) are also associated with severe
COVID-19 (Laing et al., 2020; Pedersen & Ho, 2020; Song et al., 2020).
Microangiopathy and extensive inflammation in the alveolus cause
the impaired pulmonary epithelial function of gas exchange and alveo-
lar capillary thrombosis, and lower oxygen levels to a greater extent
than imaging findings of pneumonia. Anti-IL-6 antibody and dexameth-
asone are effective in suppressing severe inflammation and exacerba-
tion of COVID-19 pneumonia (The REMAP-CAP Investigators, 2021;
The WHO Rapid Evidence Appraisal for COVID-19 Therapies Working
Group, 2020).

5.4. Asymptomatic pneumonia

COVID-19 spread on the Diamond Princess cruise ship in Tokyo Bay,
and infection and clinical symptoms were confirmed for polymerase
chain reaction (PCR)-positive individuals at the time of disembarkation
(Tabata et al., 2020). Among 104 PCR-positive patients, 33 (32%) were
asymptomatic and 71 (68%) were symptomatic, including 43 (41%) with
mild and28 (27%)with severe symptoms at the endof the observationpe-
riod (Inui et al., 2020; Tabata et al., 2020). Asymptomatic pneumonia cases
showed a greater proportion of ground-glass opacity to consolidation
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(83%), while symptomatic cases more frequently showed a greater pro-
portion of consolidation to ground-glass opacity (41%). Fig. 6 shows a pul-
monary image of a 73-year-old patient with asymptomatic pneumonia.
Pneumonia and alveolar microangiopathy in some patients may progress
inconspicuously without dyspnea despite underlying hypoxia at PaO2 <
60 mmHg and PaCO2 > 39mmHg (range, 41–49 mmHg), a condition re-
ferred to as “Happy hypoxia,” resulting in poor prognosis (Couzin-Frankel,
2020; Tobin, Laghi, & Jubran, 2020).

5.5. Variant infection

The emergence and rapid spread of SARS-CoV-2 variants of the spike
protein is a grave concern for COVID-19 vaccine efficacy, with some var-
iants being more infectious and contagious than earlier forms of the
virus (CDC, 2021d; Rambaut et al., 2020, 2021; WHO, 2021c). Variants
are divided into three categories—variants of interest, variants of con-
cern (VOC), and variants of high consequence (CDC, 2021d; WHO,
2021c). VOCs show an increase in transmissibility, more severe disease,
significant reduction in neutralization by antibodies generated during
previous infection or vaccination, and reduced efficacy of vaccines
(CDC, 2021a; Hacisuleyman et al., 2021; WHO, 2021b).

The variants have adapted to humans, acquired tropism to the air-
way epithelium, and spread faster and broader in the airway than the
prototype (Bhatnagar et al., 2021; Hou et al., 2020; Laporte et al.,
2021; Volz et al., 2021). Since the variants spread broader in the respira-
tory tract than the prototype during the incubation period of pneumo-
nia from infection, the range of pneumonia expands broader in the
variant-infected area in the respiratory tract than in the prototype-
infected area. As mentioned in Section 3.2., pneumonia caused by vari-
ants is first found in a limited area, and inflammation spreads in the in-
fected area of the lung in 3–5 days, resulting in severe pneumonia. VZV
infection in immunocompromised individuals spreads widely with a
Fig. 6. Chest CT images of a 73-year-old asymptomatic woman with COVID 19 pneumonia. (a)
smooth interlobular septal thickening are shown in the left (arrowhead) and right upper lobe
(arrow). (b, c) Diffuse ground-glass (reticular) opacities with consolidation with bronchiectasi
thors obtained permission from the Radiology: Cardiothoracic Imaging to reuse this figure (Inu
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long incubation period before CMI and causes widespread severe le-
sions and pneumonia, as described in Section 3.2, and variants spread
widely even in healthy individuals.

6. Therapeutic activity of favipiravir for the treatment of COVID-19

6.1. Pharmacological basis of favipiravir efficacy in COVID-19

The dosage regimen of favipiravir is twice-daily oral administration
of 1600mgonday 1, followedby600mg for 4 days in adults tomaintain
favipiravir blood concentration between 240 and 380 μM for influenza
treatment (PMDA, 2014). A similar regimen is recommended for pa-
tients with severe fever with thrombocytopenia syndrome, with a load-
ing dose of 1800 mg twice a day on day 1, followed by 800 mg twice a
day for 7–14 days (Suemori et al., 2021).

Coronaviruses have the largest genome, with approximately 30 kb,
among all RNA viruses, and SARS coronavirus has an enzyme with
proofreading function (Smith, Blanc, Surdel, Vignuzzi, & Denison,
2013). The susceptibility of SARS-CoV-2 to favipiravir is indicated by
an EC50 of 61.88 μM (Wang et al., 2020), an EC50 of 110 μM (Zhou
et al., 2021), and 118.3 μM in case of cytopathic effect at viral
multiplicity of infection of 0.002 and 207.1 μM in the viral replication
inhibition assay, respectively (Shannon et al., 2020). These values are
lower than the trough value of favipiravir in influenza (Fig. 7), and the
maintenance of anti-SARS-CoV-2 concentration suggests its efficacy in
COVID-19. Direct inhibition of SARS-CoV-2 replication in endothelial
cells prevents microangiopathy in the nervous, cardiovascular, and pul-
monary systems (Ackermann et al., 2020; Aid et al., 2020; Bhatnagar
et al., 2021; S. X. Gu et al., 2021; Thacker et al., 2021). The advantage
of drug repositioning is the availability of information on the drug's ef-
ficacy, side effects, and pharmacokinetics. Based on the results of
in vitro studies, the efficacy of favipiravir has been demonstrated in
Axial CT images presenting focal peripheral ground-glass opacities with intralobular and
s (arrows). The right upper lobe lesions are accompanied by subpleural curvilinear lines
s and bronchial wall thickening are demonstrated in the left and right lower lobes. The au-
i et al., 2020).
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hamsters infected with SARS-CoV-2 and in human clinical trials (Cai
et al., 2020; Kaptein et al., 2020; Shinkai et al., 2021).

Favipiravir and acyclovir, which are competitive inhibitors of guano-
sine triphosphate, have been assessed using the plaque reduction assay
because the yield reduction assay is not suitable for competitive inhibi-
tors of nucleosides. Multiplicity of infection at 0.001 and > 1 plaque-
forming unit per cell is used in the plaque reduction assay and the
yield reduction assay, respectively. Since the ratio of the guanosine an-
alog to viral RNA/DNA should theoretically have similar inhibitory ratios
between the two assays to show similar antiviral activity, approxi-
mately 100–1000-fold higher concentrations of favipiravir or acyclovir
are required in the yield reduction assay than in the plaque reduction
assay (Shiraki et al., 1992; Sleeman et al., 2010; Yajima et al., 2017).
Choy et al. did not observe any inhibitory effects of 100 μM favipiravir
on SARS-CoV-2 in a yield reduction assay, but they have discussed the
suitability of assaying the nucleoside analogs in their assay method
(Choy et al., 2020). Ohashi et al. (National Institute of Infectious Dis-
eases, Japan) examined a series of favipiravir concentrations up to 64
μMand reported that favipiravir up to 64 μMshowed negligible antiviral
activity against SARS-CoV-2 in the yield reduction assay (Ohashi et al.,
2021), but the concentrations used were below the trough level of
favipiravir from pharmacokinetic studies; thus, the efficacy of
favipiravir as a repurposed drug could not be adequately explored.

The EC50 values of remdesivir, lopinavir, chloroquine, umifenovir,
berberine, cyclosporine A, and molnupiravir against SARS-CoV-2 have
been reported to be 0.77–0.99, 5.2, 1.13–1.38, 3.5, 10.6, 3, and 3.4 μM, re-
spectively (Cox,Wolf, & Plemper, 2021; Pizzorno et al., 2020;Wang et al.,
2020). Although the EC50 of favipiravir is higher than that of other
repurposed drugs because of the nucleoside precursor, favipiravir is
expected to show efficacy at the same dose as that in Ebola virus
infection (Bai et al., 2016; Jacobs et al., 2015; Sissoko et al., 2016).

6.2. Structural and sequencing analysis for favipiravir action

We have reported the structural and sequencing analysis of poliovi-
rus and revealed that favipiravir binds to the active site of its RNA
Fig. 7. Pharmacological basis of favipiravir against SARS-CoV-2 and its therapeutic efficacy again
after its first administration at the dosage used for influenza treatment (Avigan Tablets 200 m
indicate the favipiravir concentrations at three times the EC50, EC90, and maximal concentra
Japan, respectively (Ohashi, et al., 2021; Wang et al., 2020). The plasma concentrations of fa
day, suggesting the therapeutic potential of favipiravir against COVID-19 infection. 1800 mg/8
days. 1600 mg/600 mg BID: loading dose of 1600 mg twice a day followed by 600 mg twice a
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polymerase and the lack of generation of favipiravir-resistant mutants
(Daikoku et al., 2018). RNA synthesized in the presence of favipiravir
is elongated and favipiravir causes mutation in viral genome in
favipiravir-treated cells despite chain termination in various viruses
(Arias, Thorne, & Goodfellow, 2014; Baranovich et al., 2013; Delang
et al., 2014; Goldhill et al., 2019; Shannon et al., 2020; Vanderlinden
et al., 2016). A similar study has investigated the interaction between
favipiravir and SARS-CoV-2 (Naydenova et al., 2021; Peng et al., 2021;
Shannon et al., 2020).

Structural studies have revealed the structure of the nsp12-nsp7-
nsp8 core polymerase complex of SARS-CoV-2 with FTP. They have
shown that the nonproductive binding mode of FTP to the catalytic
site of SARS-CoV-2 RdRp and little covalent incorporation, making a co-
valent bondagewith the adjacent nucleotide, into the replicating strand
result in an inefficient rate of incorporation in primer extension assays,
and short RNA is produced due to chain termination (Naydenova et al.,
2021; Peng et al., 2021).When the effect of favipiravir on RNA synthesis
was analyzed biochemically in various viruses, chain termination was
detected and short RNA strandswere formed in primer extension assays
(Jin et al., 2013, Sangawa et al., 2013, Naydenova et al., 2021, Shannon
et al., 2020). FTP is inefficiently incorporated into the replicating strand
in primer extension assays, and suppressed completion of RNA replica-
tion even when excess concentrations of rNTPs to FTP is added due to
the activity of chain termination (Naydenova et al., 2021).

Peng et al. also reported FTP binding in the pre-catalytic states of the
SARS-CoV-2 core polymerase complex. Furthermore, based on RNA se-
quence analysis, chain termination and possible lethal mutagenesis
was observed (Peng et al., 2021; Zhao & Zhong, 2021). The RNA synthe-
sis leaked from chain termination continues to elongate and accumulate
mismatchedmutations in the synthesized viral genome in infected cells.

Favipiravir demonstrated antiviral activity with an EC50 of 110 μM,
no cell toxicity, and undetectable mutagenic effect on the SARS-CoV-2
genome at the highest concentrations tested (300 μM) and β-d-N4-
hydroxycytidine, a metabolite of molnupiravir, showed the EC50 of 0.3
μM and the increased mutation rate in a dose-dependent manner
between 0.3 and 10 μM (S. Zhou et al., 2021). The authors observed
st COVID-19 infection. Figure shows the time course of plasma concentration of favipiravir
g, Report on the Deliberation Results, Japan, PMDA, 2014). Solid, dashed, and dotted lines
tion examined by Ohashi et al. at the National Institute of Infectious Diseases (NIID) of
vipiravir were higher than the EC90 and 3 × EC50 values for SARS-CoV-2 throughout the
00 mg BID: loading dose of 1800 mg twice a day followed by 800 mg twice a day for six
day for six days.
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Fig. 8. Avigan® (favipiravir) inhibited 6 cycles of viral replication and reduced time to re-
covery by 2.8 days in a randomized, placebo-controlled, single-blind comparative study.
The primary endpoint was defined as the time to negative RT-PCR assay report and allevi-
ation of symptoms (body temperature, oxygen saturation, and chest images). Themedian
time to alleviation of this primary composite endpoint was 11.9 days in the favipiravir
group and 14.7 days in the placebo group, which demonstrates a statistically significant
difference (P = 0.0136)(Shinkai et al., 2021). The COVID-19 pneumonia is caused by
viral proliferation and adaptive immunity, as shown in the clinical course of herpes zoster
treated with anti-herpetic agent in Fig. 3. Reduction of time to recovery by 2.8 days indi-
cates a shortened viral replication phase by 6 cycles. Favipiravir showed sufficient efficacy
against COVID-19 pneumonia as an antiviral drug. The authors obtained permission from
the Japan Medical Journal to use, modify and translate the figure into English (Shiraki &
Kobayashi, 2020).
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mutations in the hypoxanthine phosphoribosyltransferase gene after 32
days of treatment with β-d-N4-hydroxycytidine and favipiravir in the
CHO-K1 cells.

6.3. Clinical trials and case reports of favipiravir for COVID-19

In an open-label non-randomized control study, patients were
assigned to either the favipiravir and IFN-α inhalation group (n = 35)
or lopinavir/ritonavir and IFN-α inhalation group (n = 45) (Cai et al.,
2020). A significantly shorter viral clearance time was observed in the
favipiravir group (day 4) than in the lopinavir/ritonavir group (day 11,
P < 0.001). The incidence improvement rate according to the chest
image was not significant on day 9; however, it significantly increased
by day 14, with 91.43% in the favipiravir group and 62.22% in the
lopinavir/ritonavir group (P = 0.004).

An interim report of an adaptive multicenter, open-label, random-
ized, phase II/III clinical trial of favipiravir (Avifavir®) versus the stan-
dard of care (SOC) in hospitalized patients with moderate COVID-19
pneumonia has been reported (Ivashchenko et al., 2021). Viral clear-
ance was achieved in 25/40 (62.5%) patients treated with favipiravir
and in 6/20 (30.0%) patients treated with the SOC (P = 0.018) on day
5. The median time to body temperature normalization (<37 °C) was
2 days in the favipiravir group and 4 days in the SOC group (P =
0.007). By day 15, chest CT findings improved in 36/40 (90.0%) patients
treated with favipiravir and 16/20 (80.0%) patients with SOC (P =
0.283).

6.4. Favipiravir blocks virus growth for 6 cycles and shortens recovery time
by 2.8 days

In a randomized, placebo-controlled, single-blind comparative study
conducted in Japan, the time to viral clearance and symptom relief
(body temperature, oxygen saturation, and chest image) was examined
in 156 patients with non-severe COVID-19 pneumonia (Shinkai et al.,
2021). Favipiravir significantly shortened the time to symptom relief
from 14.7 days for placebo to 11.9 days (P=0.0136); the adjusted haz-
ard ratio was 1.593 (95% confidence interval 1.024–2.479). As shown in
Fig. 8, COVID-19, unlike HZ, is a 3-week illness that combines 5–6 days
of viral replication, followed by an inflammation period, due to adaptive
immunity of approximately 2 weeks. The shortened time to symptom
relief by 2.8 days with favipiravir treatment is defined by shortening
of the viral replication period; since one cycle of viral replication is ap-
proximately 10 h, shortening of 2.8 days corresponds to the inhibition
of 6 viral replication cycles (Shiraki & Kobayashi, 2020). Therefore,
favipiravir is expected to show a similar therapeutic potential in
COVID-19 to that of an anti-herpetic drug in HZ.

6.5. A multi-center open-label post-marketing clinical study in 940 patients
with COVID-19 confirming the efficacy of Avifavir® (favipiravir)

A multicenter, open-label post-marketing clinical study on the effi-
cacy of favipiravir was conducted in 940 hospitalized patients with
moderate-to-severe and severe COVID-19, including 470 patients in
the favipiravir and standard of supportive care (control) groups
(Corritori et al., 2021; Viriom-Inc, 2021). The median duration of onset
was 4.9 days for the favipiravir group and 4.7 days for the control
group. The median time to virus elimination in the favipiravir and con-
trol groups was 8 and 12 days, respectively (P < 0.001). The median
time to clinical improvement in the favipiravir and control groups was
12 and 15 days, respectively (P < 0.001), with a significantly greater
number of patients showing clinical improvement in the favipiravir
group than in the control group at 7 days (P = 0.0248) and 14 days (P
<0.001). The favipiravir group showed statistically significant improve-
ment compared to the control group, with 33% faster virological re-
sponse, 20% shorter time to normalization of clinical symptoms, and
31% lower mortality rate.
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6.6. Summary of clinical studies on efficacy of favipiravir for COVID-19
pneumonia

Many clinical studies on favipiravir treatment for COVID-19 pneu-
monia have been conducted after the onset of pneumonia, but not be-
fore the onset of pneumonia, and this is not an optimal time for
initiating treatment for viral infections, as mentioned in Section 4. Ac-
cording to clinical studies, favipiravir administration within 4 days of
onset is more desirable than after 4 days of onset (Fujii et al., 2021;
Hassanipour et al., 2021), but clinical trials initiating treatment approx-
imately 5 days after onset still showed efficacy in patients with COVID-
19 pneumonia (Cai et al., 2020; Ivashchenko et al., 2021; Shinkai et al.,
2021). Due to the similarities between COVID-19 pneumonia and HZ
in viral replication and inflammatory patterns, antiviral treatment in-
hibits viral RNA/DNA synthesis, but it does not improve immune-
induced inflammation of pneumonia and skin lesions. Although
favipiravir has been shown to be effective in the treatment of pneumo-
nia, experience in treating CMV pneumonia indicates the need to initi-
ate treatment early or at least when pneumonia can be prevented.

6.7. Early antiviral treatment for prevention of pneumonia and microangi-
opathy as an optimal treatment for COVID-19

COVID-19 causes influenza-like symptoms due to innate immunity,
and pneumonia is caused by adaptive CMI. As discussed in Section 4, an-
tiviral treatment should be initiated at the optimal window during the
prodromal phase of influenza-like fever, where innate immunity sup-
presses the growth and spread of viral infections. The optimal treatment
of COVID-19with favipiravir requires early treatment immediately after
diagnosis, similar to that in acute viral infections of influenza and vari-
cella.

Kidney transplant recipients and patients with chronic renal disease
are at a high risk of developing critical COVID-19 due to chronic immu-
nosuppression and comorbidities (Cravedi et al., 2020; Gansevoort &
Hilbrands, 2020). A solid organ transplant recipientwith chronic kidney
disease tested positive on the PCR test on day 2 of fever, and oxygen sat-
uration decreased onday 3 alongwith high fever, lymphocytopenia, and
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a high C-reactive protein level. After initiating favipiravir treatment on
day 3, oxygen saturation recovered on day 4, the fever disappeared on
day 5, and the PCR test result was negative on day 6 (Sakai et al.,
2020). A high-risk patient was diagnosed with COVID-19 shortly after
the onset of fever, and favipiravir treatment improved symptoms, sim-
ilar to that in influenza, and severe pneumonia and complications
were avoided.

In Japan, the Japanese Association for Infectious Diseases issued the
provisional guidelines in February and May 2020 governing the use of
antiviral drugs, stating that “antivirals are to be initiated in patients
only after the appearance of hypoxia and the requirement for oxygen
supplementation is present”without showing the rationale for starting
antiviral therapy after progression of pneumonia (The Japanese Associ-
ation for Infectious Diseases, 2020). The Ministry of Health, Labor and
Welfare referred to the provisional guidelines for the use of antiviral
agents including favipiravir, and limited favipiravir to inpatients. Since
this policy does not seem to reflect the opinions of experts in viral infec-
tions and antiviral therapies, the Japanese Society of Clinical Virology
recommended that antiviral agents including favipiravir should be
used immediately after onset, similar to that in influenza treatment
(The Japanese Society of Clinical Virology, 2020), since antiviral therapy
after progression to pneumonia is too late as an effective antiviral ther-
apy.

The Novel Coronavirus Expert Meeting in Japan restricted PCR tests
in patients with 4 days of fever until May 2020, and the PCR test system
was established nationwide and became available at an early stage of
onset in June. In June 2020, Shiraki proposed to Fujifilm Corporation
to conduct clinical trials to prevent COVID-19 pneumonia and microan-
giopathy by early treatment with favipiravir within 3 days of onset. In
April 2021, Fujifilm Toyama Chemical Co., Ltd. announced a new clinical
trial of early treatment with favipiravir within 3 days of onset
(jRCT2041210004).

New COVID-19 therapeutic drugs have been developed, and clinical
trials have been conducted at the optimal timing in the early stage of in-
fection before pneumonia as shown in Fig. 5. Molnupiravir, an anti-viral
RdRp drug, has exhibited anti-SARS CoV-2 activity in vitro and in vivo,
and oral molnupiravir within 5 days of onset has been shown to reduce
the risk of hospitalization or death by approximately 50% compared to
the placebo in patients with mild or moderate COVID-19 in a phase 3
study (Fischer et al., 2021; Merck, and Co., I, 2021; Rosenke et al.,
2021; Wahl et al., 2021).

AT527, an anti-viral RdRpdrug, has exhibited anti-SARS CoV-2 activ-
ity both in vitro and in vivo (Good et al., 2021), and clinical trials have
been conducted in patients with onset ≤5 days (NCT04709835 and
jRCT2031210070).

Moreover, 3CL protease (MPro), a cysteine endoprotease, cleaves co-
ronavirus polyprotein into active viral proteins, resulting in the forma-
tion of infectious viruses. Masitinib is a 3CL protease inhibitor that
inhibits the processing of polyprotein and replication of SARS CoV-2
in vitro and in vivo (Drayman et al., 2021), and its clinical trial has
been conducted in patients with symptomatic mild-to-moderate
COVID-19 with onset ≤5 days (NCT05047783,). A clinical trial of the
3CL protease inhibitor S-217622 developed in Japan has been con-
ducted in patients with symptomatic mild-to-moderate COVID-19
with onset ≤5 days (jRCT2031210350).

PF-07321332/Ritonavir (PAXLOVID®) has shown 89% efficacy by
administration 1–3 days after onset (NCT04960202) (Pfizer Inc, 2021).
Ritonavir is an antiretroviral drug and may help the increase and main-
tain PF-07321332 concentrations in patients by inhibiting the cyto-
chrome P-450 CYP3A4 enzyme, which degrades the second protease
inhibitor, PF-07321332 (Zeldin & Petruschke, 2004).

7. Need for antiviral therapy even after the spreadof COVID-19 vaccines

The efficacy of COVID-19 vaccines has been reported in 95% vaccine
recipients, whereas 5% have been reported to have mild infection (FDA,
14
2020a, 2020b). Promotion of COVID-19 vaccines will end the acute
phase of the COVID-19 pandemic (CDC, 2021c; WHO, 2021a). The neu-
tralizing antibody titer achieved by COVID-19 vaccines is higher than
that in convalescent patients, and booster immunization is planned to
maintain the antibody titer (Anderson et al., 2020). However, COVID-
19 vaccines induce neutralizing antibodies and CMI to the spike protein,
but they cannot produce mucosal antibodies that are important for in-
fection protection. Therefore, breakthrough infection is unavoidable be-
cause mucosal infection cannot be prevented. However, if the vaccine
recipients retain a sufficient level of antibody titer, the resultant infec-
tion is subclinical or mild. Some breakthrough infections cause symp-
tomatic or mild-to-severe infections, possibly depending on the
neutralizing antibody titer to the infecting variant. Thus, the emergence
and rapid spread of SARS-CoV-2 variants is concerning in terms of
COVID-19 vaccine efficacy.

Antiviral therapy is not necessary if the infection causes subclinical
infection, where viral propagation is ultimately limited to the upper re-
spiratory tract. However, if symptoms, such as fever, are associatedwith
upper respiratory tract infection, there is a possibility that the infection
may spread outside of the upper respiratory tract and cause pneumonia,
microvascular injury, neurological disorder, and sequelae. These infec-
tions need to be treated with antivirals early after to prevent spreading
of the infection and worsening of the disease and sequelae in vacci-
nated, re-infected, and variant-infected persons.

8. Conclusions and future perspectives

Favipiravir needs to be administered at a high therapeutic dose due
to it being a purine and not a nucleoside analogue, but its conversion to
the active form in infected cells with active RNA synthesis enhances the
specificity and selectivity of antiviral action. Favipiravir has shown
promising therapeutic efficacy against COVID-19 pneumonia. This re-
view describes the optimal time for antiviral COVID-19 treatment
based on the experiences of antiviral therapy for influenza, varicella,
HZ, recurrent herpes, and CMV pneumonia and many clinical studies
on favipiravir for the treatment of COVID-19pneumonia. Current antivi-
ral therapy, initiating from the prodromal stage by innate immunity, is
essential for the prevention and alleviation of themain symptoms of in-
fection. As the major symptoms of viral infections are caused by adap-
tive CMI, immunosuppressants and anti-cytokine antibodies are more
effective than antiviral drugs in alleviating major inflammatory symp-
toms.

The most efficacious treatment of COVID-19 pneumonia was found
to be similar to the treatment strategy for CMV pneumonia, i.e., preven-
tion instead of treatment. Clinical trials for COVID-19 treatment have
shown that antiviral therapy should be initiated within 3 days after
symptom onset and during the prodromal stage to achieve maximum
effectiveness—this is similar to other viral infection as stated in
Section 4.

Regardless of the widespread use of vaccines, antiviral therapy for
COVID-19 is required in case of vaccine failure, reinfection, or variant in-
fection. Optimal treatment with antiviral agents, including favipiravir,
should be initiated within 3 days of onset to prevent COVID-19 pneu-
monia, microangiopathy, and neurological complications without any
sequelae, as shown in Fig. 5.
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