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Abstract

Computational prediction of interactions between drugs and their target proteins is of great importance for drug discovery
and design. The difficulties of developing computational methods for the prediction of such potential interactions lie in the
rarity of known drug-protein interactions and no experimentally verified negative drug-target interaction sample.
Furthermore, target proteins need also to be predicted for some new drugs without any known target interaction
information. In this paper, a semi-supervised learning method NetCBP is presented to address this problem by using labeled
and unlabeled interaction information. Assuming coherent interactions between the drugs ranked by their relevance to a
query drug, and the target proteins ranked by their relevance to the hidden target proteins of the query drug, we formulate
a learning framework maximizing the rank coherence with respect to the known drug-target interactions. When applied to
four classes of important drug-target interaction networks, our method improves previous methods in terms of cross-
validation and some strongly predicted interactions are confirmed by the publicly accessible drug target databases, which
indicates the usefulness of our method. Finally, a comprehensive prediction of drug–target interactions enables us to
suggest many new potential drug–target interactions for further studies.
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Introduction

Drug discovery is an expensive and time-consuming process. Each

year, only around 20 new drugs known as New Molecular Entities

(NMEs) are approved by US Food and Drug Administration

(FDA) (http://www.fda.gov/Drugs/DevelopmentApprovalProcess/

HowDrugsareDevelopedandApproved/DrugandBiologicApproval

Reports/default.htm). Meanwhile, the updated database of Super-

Target [1] curates 196 000 drug compounds (including approved

drugs). As the paradigm of ’one gene, one drug, one disease’ has

been challenged, the concept of polypharmacology has been

proposed for those drugs acting on multiple targets rather than one

target [2,3]. Such polypharmacological features enable us to find

their new uses, namely drug repositioning [4], and to understand

drug side effects. Therefore, the identification of drug-target

interactions is critical in drug discovery.

As experimental approaches for potential drug-target interac-

tions remain challenging [5,6], computational prediction methods

are needed to solve this problem. To date, a variety of in silico

methods have been developed to predict interactions between

drugs and their targets.

The conventional computational methods can be categorized

into ligand-based approach [7], receptor-based approach [8] and

literature text mining approach [9]. However, all the three

techniques have their limitations. The performance of the ligand-

based approaches depends on the number of known ligands for a

target protein of interest. The receptor-based approaches like

docking cannot be applied to targets whose three-dimensional (3D)

structures are unknown. The text mining approaches suffer from

the problem of redundancy in the compound/gene names in the

literature [9].

More recently, several statistical methods have been developed

to infer potential drug-target interactions under the assumption

that similar ligands are likely to interact with similar proteins. The

prediction is conducted by integrating some biological informa-

tion, such as drug chemical structures, target protein sequences

and currently known compound-protein interactions. Yamanishi

et al. [10] first characterized four classes of drug-target interaction

networks and introduced a supervised method to infer unknown

drug–target interactions by integrating chemical space and

genomic space into a unified space called ‘pharmacological space’.

Bleakley and Yamanishi [11] used bipartite local models (BLM) to

infer unknown drug-target interactions. Yamanishi et al. [12]

further investigated the relationship between the chemical space,

the pharmacological space and the topology of drug-target

interaction networks, and developed a method to predict unknown

drug-target interactions from chemical, genomic and pharmaco-

logical data on a large scale. Gönen [13] devised a novel Bayesian

formulation that combined dimensionality reduction, matrix

factorization and binary classification for predicting drug-target

interactions. The above supervised methods considered the

unknown drug-target interactions as negative samples, which
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would largely influence the prediction accuracy. Xia et al. [14]

proposed a semi-supervised learning method, NetLapRLS, to

predict drug-protein interactions by using labeled and unlabeled

information. Chen et al. [15] developed an inference method,

NRWRH, by random walk on heterogeneous network, including

protein-protein similarity network, drug-drug similarity network,

and known drug-target interaction networks. Based on complex

network theory, Cheng et al. [16] proposed a network-based

inference method, NBI, for drug-target interaction prediction,

which only utilized known drug-target interaction information.

The common problem of the above three inference methods is

that they cannot be applied to drugs without any known target

information.

Taken together, the above mentioned methods for drug-target

interaction prediction have various limitations and the difficulties

of the prediction task lie in three aspects. Firstly, the known drug-

target interactions are rare. Secondly, negative samples are hard or

even impossible to select as there are no verified negative drug-

target interactions. Thirdly, prediction should also be made to new

drugs without any known target interaction information.

In this paper, a semi-supervised inference method NetCBP,

utilizing both the small amount of available labeled data and the

abundant unlabeled data together, has been proposed for drug-

target interaction prediction based on the assumption that similar

drugs often target similar proteins. We formulate the problem as a

drug query problem. By querying the networks (the drug similarity

network, the protein similarity network and the interaction

network) with a given drug, a user expects to retrieve a list of

target proteins with the highest predicted interactions with the

given drug. The idea is that, if drugs are ranked by their relevance

to the query drug, and proteins are ranked by their relevance to

the hidden target proteins of the query drug, the known

interactions between the most relevant drugs and proteins tend

to be over-represented compared with random cases. We

evaluated the method and existing methods with five-fold cross-

validations in four classes of important drug–target interactions

involving enzymes, ion channels, GPCRs and nuclear receptors.

Experiments demonstrated that our method can achieve better

performance. Furthermore, we discovered that some strongly

predicted drug-target interactions were reported by publicly

accessible databases. Finally, a comprehensive prediction of

drug–target interactions was made using our method, which

enables us to prioritize new potential drug–target interactions for

drug development.

Materials and Methods

Data Preparation
In this study, four different drug–target interaction networks

from humans, namely enzymes, ion channels, GPCRs and nuclear

receptors, provided by Yamanishi et al. [10] are downloaded at

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. Here be-

low we provide a brief description.

Chemical Data
Chemical structures of drug compounds are extracted from the

DRUG and COMPOUND sections in the KEGG LIGAND

database [17]. Yamanishi et al. [10] calculate the structural

similarities between drug compounds using SIMCOMP [18],

which represents drug compounds as graphs and calculates a

similarity score based on the size of the common substructures

between two graphs. Given two drug compounds di and dk,

chemical similarity between them is calculated based on the size of

the common substructures between the two compounds using a

graph alignment algorithm. The similarity matrix between all drug

compound pairs is denoted as D.

Genomic Data
Amino acid sequences of target proteins are extracted from the

KEGG GENES database [17]. Yamanishi et al. [10] calculate the

sequence similarities between target proteins using a normalized

version of Smith–Waterman score [19]. Given two target proteins

tj and tl, genomic similarity between them can be found as

P tj ,tl

� �
~SW tj ,tl

� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW tj ,tj

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW tl ,tlð Þ

p
, where SW(̇ ,̇) gives

the canonical Smith–Waterman score and the similarity matrix

between all target protein pairs is denoted as P.

Drug-protein Interaction Data
At the time of the paper [10] was written, Yamanishi et al.

[10] found 445, 210, 223, and 54 drugs targeting 664 enzymes,

204 ion channels, 95 GPCRs, and 26 nuclear receptors,

receptively, and the known interactions are 2926, 1476, 635

and 90. The set of known drug–target interactions is regarded

as ‘gold standard’ and is used to evaluate the performance of

our proposed method in the cross-validation experiments as in

the previous studies [10–16].

Method Description
We mainly consider the problem of predicting target proteins

for a new drug without any known target interaction information.

Problem Definition
We define the drug set as Drug = {d1, d2, …,dn} and the

target protein set as Protein = {p1, p2, …, pm}, the drug-target

interactions can be described as a bipartite DP graph G(Drug,
Protein, E), where E = {eij : diMDrug, pjMProtein}. A link is

drawn between di and pj when the drug di targets the protein pj.

The DP bipartite network can be presented by an n6m adjacent

matrix {aij}, where aij = 1 if di and pj is linked, while all other

unknown drug-target pairs are labeled as 0 to indicate they are

going to be predicted. We define D (n*n), P (m*m), and a
(n*m) as the adjacency matrix of the chemical structure similarity

network, the sequence similarity network, and the drug-target

interaction network, respectively. We query the networks with a

drug to retrieve a target protein (or several proteins) predicted to

interact with the query drug.

Network-Consistency-based Prediction Method (NetCBP)
Under the assumption that similar drugs often target similar

proteins, NetCBP integrates the chemical structure similarity

data, the sequence similarity data and the drug-target interac-

tion data. The idea of network consistency has been successfully

used to predict gene-phenotype associations in [20]. The solid

foundation for the algorithm can be traced back to [21]. Similar

to [20], we formulate a graph query problem for drug and

target protein interaction discovery. The query drug is

represented by a binary vector d = [d1, d2, …, dn]T denoting

the drug membership against the drug set, i.e. each di = 1 if

drug i is the query drug, otherwise di = 0. Similarly, the list of

target protein is given by another binary vector p = [p1, p2,
…, pm]T and protein j is a target protein if pj = 1, otherwise

pj = 0.

To make full use of global network topological information, we

compute the global relevance score between the query drug d and

all the drugs based on the graph Laplacian of the drug structure

similarity network D(n*n). We first normalize D as

Drug-Target Interaction Prediction
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D~D( : ,i)=sum(D( : ,i)), where i is the column number of D. A

vector �dd of graph Laplacian scores is derived from:

min
d

X
i,j

Di,j(di{dj)
2z

1{a

a

X
i

(di{di)
2 ð1Þ

In Equation (1), the first term is a smoothness penalty, which

forces connected drugs to receive similar scores, and the second

term ensures the consistency with the query drug. Parame-

teraM(0,1) balances the contributions from the two penalties. The

close solution to Equation (1) is

d~ 1{að Þ I{aD
� �{1

d ð2Þ

Similarly, the target sequence similarity network P is normal-

ized as P~P( : ,k)=sum(P( : ,k)), where k is the column number

of P. Graph Laplacian scores can be derived to measure the

relevance between the proteins and the target protein p with

optimization of

min p

X

k,l

Pk,l(pk{pl)
2z

1{b

b

X
k

(pk{pk)2 ð3Þ

with the close solution

p~(1{b) I{bP
� �{1

p ð4Þ

where �PP is the normalized P and parameter b[(0,1).

Our method uses consistency in networks to measure whether

the query drug d and a target protein p show coherent

interaction with the known drug-target interactions. Specifically,

given the graph Laplacian scores �dd , which ranks the drugs by

their relevance to the query drug d, and the graph Laplacian

scores �pp, which ranks the proteins by their relevance to the

hidden target protein p, NetCBP measures whether the

interactions given by a are connecting drugs and proteins with

similar scores in �dd and �pp. We simply go through each protein

and compute a Pearson correlation coefficient score against the

query drug d for each case.

NetCBPcorr d,p,a
� �

~corr aT d,p
� �

or NetCBPcorr d,p,a
� �

~corr a p,d
� � ð5Þ

Finally, the protein(s) with the highest score(s) is chosen as the

target protein(s). In Equation (4), there are two options and the one

with a better prediction performance is selected.

Results

In order to illustrate the effectiveness of our proposed method,

we first compare NetCBP to other methods with five-fold cross-

validation, and then present the results of two experimental

scenarios: (i) predicting interactions for new drug compounds and

(ii) predicting unknown interactions of the given network.

Performance Evaluations and Comparison with Other
Methods

To show the comparative performance of NetCBP in predicting

interactions for new drugs, we perform five-fold cross-validation

experiments on the four benchmark datasets for all methods. For

each dataset, drug compounds are randomly split into five subsets

of roughly equal size. Each subset is then used in turn as the test set

and training is performed on the remaining four subsets. This

procedure is repeated five times. This experimental procedure was

also applied in [12] and [13]. We exactly follow the procedure in

order to have comparable results.

Table 1 gives the average AUC (area under the receiver

operating curve) values for DBSI [16], the method presented by

Yanamishi et al. [12], KBMF2K [13] and our method NetCBP.

The results produced by the best parameters (a = 0.2,b = 0.2) were

reported in NetCBP. Compared with NBSI, our method receives

higher average AUC values on all four datasets. Our method

significantly improves the results on the class of nuclear receptors

by ,9%. It should be noted that the two methods TBSI and NBI

presented in [16] cannot be applied to a new drug without known

target interaction information.

Compared with the supervised method presented by Yanamishi

et al. [12] and the supervised method KBMF2K [13], our method

achieves higher average AUC values on most the datasets. Our

method improves the two supervised methods in another two

aspects. One is that a huge number of samples will pose significant

computational complexity to the two supervised methods [13].

Even though, KBMF2K shows improvements in time complexity,

its time complexity is (RN3
d zRN3

t zR3)(Nd and Nt represent the

numbers of drug compounds and target proteins. R Gives the

dimensionality of the projected subspace.) [13]. Our method has

lower time complexity and its time complexity is(N3
d zN3

t ). The

other improvement is that our method does not use negative drug-

protein interactions. Currently, experimentally verified negative

drug-protein interactions are not available. Therefore, the use of

these unconfirmed negative pairs may bring noise to the

experiments.

In all, we can observe that NetCBP has obtained an excellent

performance, which reveals that it can recovery verified drug-

target interactions and hence has the potential to uncover

potential drug-target interactions.

Predicting Interactions for New Drug Compounds
In this experimental scenario, each drug in the four datasets was

supposed to be a new drug. It was taken in turn as test dataset, and

the remaining was used as the training dataset. We went through

each protein and computed a Pearson correlation coefficient score

against the ‘new’ drug. A high Pearson correlation coefficient score

Table 1. Prediction performances of DBSI [16], Yamanishi
et al. (2010) [12], KBMF2K [13] and our method on the four
benchmark datasets in terms of average AUC values.

Dataset DBSI
Yamanishi
et al. (2010) KBMF2K NetCBP

enzymes 0.8075 0.821 0.832 0.8251

ion channels 0.8029 0.692 0.799 0.8034

GPCRs 0.8022 0.811 0.857 0.8235

nuclear
receptors

0.7578 0.814 0.824 0.8394

doi:10.1371/journal.pone.0062975.t001

Drug-Target Interaction Prediction
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indicated a high possibility of a drug-target interaction. We rank

the interaction pairs between a new drug and its target proteins

with respect to their prediction scores. Take drug D00067 in the

nuclear receptor dataset as an example. We consider the drug as a

new drug and remove all its target interactions. The whole 26

potential targets are ranked according to our method. Two

proteins-hsa:2099 (Estrogen receptor) and hsa:2100 (Estrogen

receptor beta), both of which play crucial roles in many cancer

types such as breast cancer [22] and prostate cancer [23].-are

considered to be the most possible targets (rank 1 and rank 2,

respectively) for the drug. We manually check and discover that

the target hsa:2099 (Estrogen receptor) is in the benchmark

datasets and the target hsa:2100 (Estrogen receptor beta) is

confirmed by the database of KEGG [24]. The same things

happen to drug D00312 and drug D00554 in the nuclear receptor

dataset. The full lists of predicted ranks can be seen from

Supplementary material (Material S1 for enzymes, Material S2 for

ion channels, Material S3 for GPCRs and Material S4 for nuclear

receptors).

When our method is applied to the benchmark dataset of

enzymes, in about half of the predicted drugs (209 out of 445) the

true solutions are contained within their top 1 scoring target

proteins. In more than 60% of cases (274 out of 445) the true

solutions are contained within their top 5 scoring target proteins.

In more than 65% of cases (291 out of 445) the true solutions are

contained within their top 10 scoring target proteins. Furthermore,

we confirmed that 7 high-ranking (within top five, not reported in

the benchmark datasets) interactions in the enzyme dataset

(Table 2) are now annotated in at least one drug-target database,

such as SuperTarget [1], KEGG [24], DrugBank [25] and

ChEMBL [26].

When our method is applied to the benchmark dataset of ion

channels, in about a quarter of the predicted drugs (50 out of 210)

the true solutions are contained within their top 1 scoring target

proteins. In about 40% of cases (83 out of 210) the true solutions

are contained within their top 5 scoring target proteins. In more

than 54% of cases (114 out of 210) the true solutions are contained

within their top 10 scoring target proteins. Furthermore, we

confirmed that 13 high-ranking (within top five, not reported in

the benchmark datasets) interactions in the ion channel dataset

(Table 3) are now annotated in at least one of the above four drug-

target databases [1,24–26].

When our method is applied to the benchmark dataset of

GPCRs, in more than 44% of the predicted drugs (99 out of 223)

the true solutions are contained within their top 1 scoring target

proteins. In 69% of cases (154 out of 223) the true solutions are

contained within their top 5 scoring target proteins. In about 75%

of cases (167 out of 223) the true solutions are contained within

their top 10 scoring target proteins. Furthermore, we confirmed

that 25 high-ranking (within top five, not reported in the

Table 2. The newly confirmed drug-target interactions strongly predicted by NetCBP in the dataset of enzymes.

Drug ID Target ID Rank in the drug’s potential target proteins Source

D00035 hsa:1636 1 SuperTarget

D00097 hsa:5743 2 ChEMBL, DrugBank

D00418 hsa:5742 1 DrugBank

D00448 hsa:5742 2 KEGG

D00542 hsa:1571 3 ChEMBL, DrugBank, KEGG

D00569 hsa:5742 3 DrugBank

D05458 hsa:4128 1 DrugBank

doi:10.1371/journal.pone.0062975.t002

Table 3. The newly confirmed drug-target interactions strongly predicted by NetCBP in the dataset of ion channels.

Drug ID Target ID Rank in the drug’s potential target proteins Source

D00110 hsa:6328 2 KEGG

D00252 hsa:6323 4 KEGG

D00303 hsa:6323 4 KEGG

D00438 hsa:779 3 KEGG

D00512 hsa:6323 5 KEGG, DrugBank

D00533 hsa:6328 2 KEGG

D00537 hsa:6331 1 KEGG

D00538 hsa:6331 1 KEGG, DrugBank

D00552 hsa:6331 1 KEGG

D00553 hsa:6328 2 KEGG

D00733 hsa:6328 2 KEGG

D05077 hsa:6328 2 KEGG

D06172 hsa:6328 2 KEGG

doi:10.1371/journal.pone.0062975.t003

Drug-Target Interaction Prediction
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benchmark datasets) interactions in the GPCR dataset (Table 4)

are now annotated in at least one of the above four drug-target

databases [1,24–26].

When our method is applied to the benchmark dataset of

nuclear receptors, in half of the predicted drugs (28 out of 54) the

true solutions are contained within their top 1 scoring target

proteins. In more than two-third of cases (37 out of 54) the true

solutions are contained within their top 5 scoring target proteins.

In more than 87% of cases (47 out of 54) the true solutions are

contained within their top 10 scoring target proteins. Furthermore,

we confirmed that 11 high-ranking (within top five, not reported in

the benchmark datasets) interactions in the nuclear receptor

Table 4. The newly confirmed drug-target interactions strongly predicted by NetCBP in the dataset of GPCRs.

Drug ID Target ID Rank in the drug’s potential target proteins Source

D00079 hsa:5731 2 DrugBank

D00095 hsa:155 3 KEGG, SuperTarget

D00270 hsa:3358 5 KEGG

D00283 hsa:1814 4 ChEMBL, DrugBank

D00371 hsa:135 1 KEGG, DrugBank

D00415 hsa:3355 3 SuperTarget, DrugBank

D00419 hsa:5731 3 KEGG

D00442 hsa:6755 2 KEGG, DrugBank

D00498 hsa:4986 1 KEGG, DrugBank

D00604 hsa:148 4 ChEMBL

D00715 hsa:1129 2 KEGG

D00837 hsa:4985 4 DrugBank

D01103 hsa:1129 2 KEGG

D01386 hsa:153 1 KEGG

D01891 hsa:5732 2 KEGG

D02250 hsa:6751 1 KEGG

D02340 hsa:1812 3 DrugBank

D02349 hsa:154 1 KEGG

D02357 hsa:3358 2 KEGG, DrugBank

D02358 hsa:154 1 ChEMBL, DrugBank

D02725 hsa:5732 4 KEGG

D03490 hsa:155 3 KEGG

D04375 hsa:151 2 KEGG

D04625 hsa:154 1 KEGG

D05113 hsa:4986 1 DrugBank

doi:10.1371/journal.pone.0062975.t004

Table 5. The newly confirmed drug-target interactions strongly predicted by NetCBP in the dataset of nuclear receptors.

Drug ID Target ID Rank in the drug’s potential target proteins Source

D00067 hsa:2100 2 KEGG

D00182 has:2099 2 ChEMBL

D00312 hsa:2100 2 KEGG

D00348 hsa:5915 3 ChEMBL

D00348 hsa:5916 5 ChEMBL

D00348 hsa:6258 4 ChEMBL

D00443 hsa:367 5 SuperTarget

D00554 has:2100 2 KEGG

D00690 has:2908 1 KEGG

D00898 has:2100 4 KEGG

D00962 hsa:2100 5 KEGG

doi:10.1371/journal.pone.0062975.t005

Drug-Target Interaction Prediction
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dataset (Table 5) are now annotated in at least one of the above

four drug-target databases [1,24–26].

A Case Study
To illustrate the prediction performance of our method NetCBP

on drugs, a case study about the drug clozapine (CLZ) was

conducted. CLZ is considered one of the most effective therapeutic

treatments for schizophrenia [27]. A clinical study demonstrated

the necessity of moving CLZ from a 3rd line drug to a 1st line drug

based on its overall benefit/risk ratio [27]. Therefore the

identification of its targets could be of great importance.

We consider the drug as a new drug and its target interactions

need to be predicted. The whole 664 potential targets in the class

of enzymes are ranked according to our method. The five

experimentally verified targets-hsa:1544 (Cytochrome P450 1A2),

hsa:1557 (Cytochrome P450 2C19), hsa:1565 (Cytochrome P450

2D6), hsa:1576 (Cytochrome P450 3A4) and hsa:22954 (E3

ubiquitin-protein ligase TRIM32)-are ranked 25, 83, 4, 3, and 251

respectively, which means three out of the five targets are

contained in the top 5% of the 664 potential targets. Meanwhile,

we expect the prediction performance of our method could be

improved by integrating more experimentally confirmed drug-

target interactions.

Comprehensive Prediction for the Given Network
After confirming the usefulness of our method, we conduct a

comprehensive prediction of unknown interactions between all

possible drugs and proteins on the four benchmark datasets. In the

inference process for these predictions, we train NetCBP with all

the known interactions. We rank the non-interacting pairs with

respect to their interaction scores and extract the top 100

predicted interactions. The full lists of predicted interactions can

be seen from Supplementary material (Material S5 for enzymes,

Material S6 for ion channels, Material S7 for GPCRs and

Material S8 for nuclear receptors).

We report the top three predicted interactions for each dataset.

Table 6 lists the top three predicted interactions for each dataset.

We manually check these predicted interactions from the latest

online versions of SuperTarget [1], KEGG [24], DrugBank [25]

and ChEMBL [26] databases. We confirm that 5 out of the 12

predictions are now annotated in at least one of these databases.

We take these as strong evidence to support the practical

application of our approach. Note that the predicted interactions

that are not reported yet may also exist in reality.

Discussion

In this manuscript, four important classes of drug-target

interaction networks, including enzymes, ion channels, GPCRs

and nuclear receptors, are studied. Compared with a small

amount of experimentally verified drug-target interactions, there

exist a large number of unknown drug-target interactions.

Therefore, semi-supervised learning methods are very useful in

addressing this problem of predicting target interactions for new

drugs. Based on the foundations of previous research [20,21], we

presented a semi-supervised method named NetCBP for predict-

ing drug-target interactions. Our method focuses on improving

detection of drug-target interactions by integrating the drug

similarity network and the target similarity network to better

summarize sparse interactions for a global comparison of all

possible drug-target interactions.

We use four benchmark datasets provided by Yamanishi et al.

[10] to demonstrate the performance of our proposed method.

Compared with DBSI [16], which uses only drug similarity

information for drug-target interaction prediction, our method

shows better prediction performance in all four benchmark

datasets, especially in the class of nuclear receptors which has the

fewest known drug-target interactions. It shows that integrating

the drug similarity network and the target similarity network

works better than only utilizing the drug similarity network in

drug-target interaction prediction. Even compared with the two

supervised learning methods presented in [12] and [13], our

method shows superior prediction performance in most the

classes of drugs. The two supervised learning methods [12,13]

have two drawbacks. Our method can overcome the two

drawbacks. Meanwhile some strongly predicted drug-target

interactions by our method are reported by the publicly available

databases, which indicates the power of our method in realistic

applications.

Despite the encouraging improvement, our method depends

heavily on similarity values, Target similarity values received by

Smith-Waterman scores heavily depend on the substitution

matrix used [19]. From a technical viewpoint, the performance

of our method could be improved by using more accurate

similarity information designed for drugs and target proteins.

Data incompleteness is another big issue for such prediction

problem. Thus, the performance of our method could be

further improved by integrating more verified drug-target

interactions.

Supporting Information

Material S1 The ranks of interactions between each
drug and its potential target proteins in the class of
Enzyme.

(XLSX)

Table 6. The top three predicted interactions on the four benchmark datasets.

Dataset Drug ID Target ID Rank Source Dataset Drug ID Target ID Rank Source

enzymes D01441 hsa:1017 1 SuperTarget ion channels D01768 hsa:6331 1

D00043 hsa:1990 2 D06172 hsa:6328 2 KEGG

D01441 hsa:1018 3 D00553 hsa:6328 3 KEGG

GPCRs D03966 hsa:2914 1 SuperTarget nuclear
receptors

D00094 hsa:3174 1

D03966 hsa:2917 2 SuperTarget D00094 hsa:9971 2

D00283 hsa:886 3 D00094 hsa:6095 3

doi:10.1371/journal.pone.0062975.t006
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Material S2 The ranks of interactions between each drug
and its potential target proteins in the class of Ion channel.
(XLSX)

Material S3 The ranks of interactions between each
drug and its potential target proteins in the class of
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(XLSX)

Material S4 The ranks of interactions between each
drug and its potential target proteins in the class of
Nuclear receptor.
(XLSX)

Material S5 The predicted results with the top 100
highest scores in the class of Enzyme.
(XLSX)

Material S6 The predicted results with the top 100
highest scores in the class of Ion channel.
(XLSX)

Material S7 The predicted results with the top 100
highest scores in the class of GPCR.

(XLSX)

Material S8 The predicted results with the top 100
highest scores in the class of Nuclear receptor.

(XLSX)
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