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ABSTRACT The Waldron lab for computational biostatistics bridges the areas of
cancer genomics and microbiome studies for public health, developing methods to
exploit publicly available data resources and to integrate -omics studies.
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The rapidly developing field of human microbiome studies will benefit from adapt-
ing the statistical and computational methods of more mature areas of high-

dimensional data analysis and from ongoing use of the growing catalog of publicly
available microbiome data. This perspective discusses methods and resources for
robust identification of differentially abundant microbes and predictive models of
microbiome-linked health outcomes. I summarize lessons from high-dimensional data
analysis for cancer genomics and efforts by my lab to leverage and adapt the Biocon-
ductor project for analysis and comprehension of high-throughput genomic data (1) to
bring value-added published data, meta-analysis, and methods for multiomic data
analysis to the microbiome community.

COMPARATIVE ANALYSIS AND META-ANALYSIS FOR DIFFERENTIAL
ABUNDANCE

Differential abundance analysis is probably the most common objective of micro-
biome profiling studies and genomics studies in general. The objective is to identify
microbial taxa, anywhere on the tree of life, that are over- or underabundant in some
condition relative to a reference condition. These conditions can be observed or
experimentally determined. The most commonly used methods for differential abun-
dance analysis are LEfSe (2) and a variety of tools based on log linear regression models
with negative binomial (3) or zero-inflated Gaussian error models (4). Regression
approaches involve a false-discovery rate estimation to correct for multiple-hypothesis
testing. Log linear modeling approaches build on a large body of statistical and
computational work and provide several practical advantages. First, regression ap-
proaches eliminate the need for rarefaction, a process that has been described as
“inadmissable” for the identification of differentially abundant taxa (5) because it
throws away potentially useful data, the extra reads from samples with greater se-
quencing depth. Second, they adapt empirical Bayesian methods developed to reduce
false-positive results in microarray differential expression analysis by “borrowing” in-
formation across taxa on how taxa are distributed across samples. Finally, they accom-
modate multivariate models that can be used for causal inference, such as to control for
confounding effects or to test hypotheses of the microbiome as a mediator between
environmental exposure and health outcomes. Regression modeling, now the almost
exclusive choice for differential expression analysis of RNA sequencing data, is also well
suited to metatranscriptomic differential abundance analysis.
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These efforts can be enhanced by the standardization and reuse of published data
for meta-analysis, comparative analysis, and method development. Thus, my lab de-
veloped the curatedMetagenomicData database (6) in collaboration with the labora-
tories of Nicola Segata (MetaPhlAn2 [7] and other methods for metagenomics), Curtis
Huttenhower (developers of the bioBakery [8] and many methods therein), and Martin
Morgan (head of the Bioconductor project [1]). This database provides more than 6,000
human-associated shotgun metagenomic profiles, uniformly processed from raw se-
quencing data to provide taxonomic abundance (7) and metabolic functional potential
(9). Samples are primarily from stool specimens but include the Human Microbiome
Project and other data sets sampling from other human body sites. We developed a
fully automated, cloud-based pipeline to facilitate ongoing addition and updating of
the database as new metagenomes and reference genomes become available and to
encourage community contributions and even creation of alternative and competing
databases.

MULTIOMIC INVESTIGATION OF THE MICROBIOME

Metagenomic studies, as in other areas of genomics, increasingly incorporate mul-
tiple assays in an experiment. My lab recently published MultiAssayExperiment (10),
software for the integration of multiomics experiments in Bioconductor. MultiAssayEx-
periment has enabled coordinated representation and manipulation of multiple -omics
data types for 11,000 patients and 33 cancers studied as part of the Cancer Genome
Atlas. A more complete picture of host-microbiome relationships may also be devel-
oped by collecting multiple -omics data types, and I have been involved in studies
including metatranscriptomics (11) and host gene expression (12) in addition to
taxonomic and functional microbiome abundance data. To overcome the complexity of
reproducible data analysis and interpretation of such experiments, I am working with
other Bioconductor microbiome package developers to create a common standard for
representing microbiome data. This standard will provide compatibility with MultiAs-
sayExperiment and with recent advances based on HDF5 and Google BigTable for
on-disk data and remote representation of very large data. This will, for example, allow
curatedMetagenomicData (6) to represent taxonomic, gene family, and metabolic
functional profiles for more than 6,000 samples as a single Bioconductor object that
users can interact with in almost the same way as they currently do with microbiome
(4, 13) or gene expression data from a single study, even on a standard laptop.

PREDICTIVE MODELING/MACHINE LEARNING

Prediction of health outcomes is a complementary objective to differential abun-
dance analysis. Although similar models are sometimes used for these different objec-
tives, the objective of making accurate predictions motivates different methods for
model development and assessment. A mainstream approach to prediction modeling
in high-dimensional data is to apply multivariate penalized regression, or machine
learning methods such as Support Vector Machine, in conjunction with cross-validation
to assess prediction accuracy. These approaches have been quickly adopted for pre-
diction of health status from microbiome data. Colleagues and I have previously shown
in meta-analyses of cancer transcriptomes that such approaches are prone to overop-
timistic estimation of prediction accuracy (14). There are numerous possible reasons for
such overoptimism. The data used to develop prediction models are by necessity
retrospective, meaning they are predicting the past and not the future. “Information
leakage” in data set through incorrect cross-validation, “reverse causality” effects of
treatment on the microbiome, batch effects introduced by knowledge of outcomes, for
example by sequencing cases together and then sequencing controls in another batch.
Most studies do not collect statistically random samples, and therefore, the samples are
not representative of the population.

Even with these challenges, it is sometimes still possible to develop accurate models
of disease state and outcome from high-dimensional data. Colleagues and I showed
that systematic leave-one-data set-in cross-study validation (15) of independent pub-
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licly available data sets provides a more realistic picture of generalizable prediction
accuracy and that heterogeneous studies can be used to train robust prediction models
through leave-one-data set-out cross-study validation (16). We have also shown the
value of these approaches for metagenomic prediction problems (17). In systematic
cross-study validation of gene expression-based models of cancer patient prognosis,
we have shown even simple and suboptimal machine learning algorithms to be
competitive with complex, theoretically optimal methods (18). Standardized databases
like curatedMetagenomicData (6) and our in-development HMP16SData package
(http://bioconductor.org/packages/HMP16SData/) will facilitate future work to find the
limits of accuracy for disease prediction from all available microbiome profiles.

FUTURE OUTLOOK

Discoveries that are replicable across independent experiments are more likely to be
valid and useful than those seen only in a single data set. My research aims to harness
publicly available microbiome data through curation, integration and standardization,
novel reanalysis, and methodological development. I aim to ensure that studies of the
human microbiome benefit from concurrent methodological development in other
areas of genomics and from the growing body of publicly available microbiome data.
These benefits include more reliable identification of differentially abundant microbial
species, strains, and community structure and the development of disease prediction
models that hold up to independent validation across populations. I see the Biocon-
ductor project as providing a unique opportunity for the microbiome community to
leverage more than 15 years of development of statistical methods for -omics data and
to integrate microbiome data with other types of high-throughput data. As such, I plan
to continue developing the Bioconductor platform to the needs of the microbiome
community, through the development of databases, promotion of standards for data
representation, and development of needed methods for data manipulation and
analysis.
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