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Abstract

The high concentration of the world’s species in tropical forests endows these systems with particular importance for
retaining global biodiversity, yet it also presents significant challenges for ecology and conservation science. The vast
number of rare and yet to be discovered species restricts the applicability of species-level modelling for tropical forests,
while the capacity of community classification approaches to identify priorities for conservation and management is also
limited. Here we assessed the degree to which macroecological modelling can overcome shortfalls in our knowledge of
biodiversity in tropical forests and help identify priority areas for their conservation and management. We used 527 plant
community survey plots in the Australian Wet Tropics to generate models and predictions of species richness,
compositional dissimilarity, and community composition for all the 4,313 vascular plant species recorded across the region
(.1.3 million communities (grid cells)). We then applied these predictions to identify areas of tropical forest likely to contain
the greatest concentration of species, rare species, endemic species and primitive angiosperm families. Synthesising these
alternative attributes of diversity into a single index of conservation value, we identified two areas within the Australian wet
tropics that should be a high priority for future conservation actions: the Atherton Tablelands and Daintree rainforest. Our
findings demonstrate the value of macroecological modelling in identifying priority areas for conservation and
management actions within highly diverse systems, such as tropical forests.
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Introduction

Tropical rainforests contain more than 60% of all known

species, despite covering only 7% of the earth’s surface [1,2]. The

concentration of diversity in tropical forests endows these

ecosystems with particular importance for retaining global

biodiversity, yet also presents significant challenges for ecology

and conservation science. Understanding patterns in tropical forest

diversity and subsequently identifying priorities for conservation is

severely hampered by the vast numbers of species present, many of

which are rare (or yet to be discovered) and for most of which we

have little information regarding their attributes or current

distributions [3,4]. The combination of high diversity and major

shortfalls in our knowledge of tropical forest biodiversity limits the

applicability of commonly applied species-level modelling ap-

proaches [5] in improving our understanding of current patterns

in diversity.

As a consequence of the challenges faced in understanding

diversity in tropical forests, ecologists have often relied upon

community-level approaches to improve our knowledge of these

systems. This trend is typified in the Australian Wet Tropics, the

largest area of tropical rainforest in Australia [6]. Here, a long

history of ecological research has applied and refined structural

and compositional classification of tropical plant diversity into

forest ‘‘types’’, ‘‘categories’’, or ‘‘regional ecosystems’’ [7–12].

Across the entire Australian Wet Tropics, these forest categories

have been mapped at a fine spatial resolution [12,13], and

subsequently related to underlying environmental variables

[14,15].

In the Australian Wet Tropics, simplifying the significant plant

diversity into forest categories has enabled valuable research which

has greatly improved our knowledge of these systems. For

example, a number of studies have applied correlative modelling

to project the distribution of different forest categories back in

time, using reconstructed climate conditions, identifying possible

rainforest refugia at the last glacial maximum [14,16–18]. Other

research has projected the future distribution of forest categories

under alternative scenarios of climate change, to identify the likely

threat posed by global warming for these tropical forests [19,20].

Projections for the Australian Wet Tropics under both past and

future climates in general show dramatic reductions in the spatial

extent of most tropical rainforest categories as precipitation

decreases [16].

Despite the insights provided, there are limits in the utility of a

community classification approach to understand patterns and

identify conservation priorities within diverse tropical forests. A

community-level classification approach inherently ignores any

variation in diversity within a community category, whilst

assuming significant and uniform changes in diversity between

categories [21]. Applying community-level categorical data to
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identify conservation and management priorities could therefore

be heavily influenced by the number of categories applied, the

relative differences between categories and the basis for the

categorisation (e.g. structural v.s. compositional).

In moving beyond community classification approaches,

macroecological modelling offers significant potential to both

overcome shortfalls in our knowledge of biodiversity in tropical

forests, while providing new insight into core patterns of diversity.

Specifically, models of species richness (a-diversity) and pairwise

compositional dissimilarity (b-diversity) can provide unique

insight, by relating community diversity in a continuous manner

to underlying environmental gradients [22,23]. Models of species

richness and compositional dissimilarity already have demonstrat-

ed utility in improving our understanding of current diversity

patterns within tropical forests [24,25]. These models of core

elements of diversity can also be combined in a new approach

(DynamicFOAM), that predicts the composition of every commu-

nity (i.e. grid cell) over a region, even where available knowledge is

limited [26]. Application of these continuous macroecological

modelling approaches provides significant potential to improve

both our knowledge of the key drivers of tropical forest diversity

and our capacity to identify priorities for conservation within these

diverse systems.

Here we apply macroecological modelling to identify priority

areas for conservation and management of plant diversity within

the Australian Wet Tropics. We develop models of species richness

and compositional dissimilarity for the 4,313 vascular plant

species, then apply the DynamicFOAM algorithm [26] to predict

the composition of every community (grid cell) across the region

(.1.3 million communities). We analyse these macroecological

predictions in a number of novel ways to identify areas of high

importance for conservation and management within these diverse

tropical forests.

Materials and Methods

Spatial Information
Our study region (Fig. 1) was defined as the spatial domain

including the Wet Tropics Bioregion in Queensland, Australia

(from IBRA, 2012), and a 100 km buffer around it (approximately

14u399S to 20u249S and 143u549E to 147u309E). This region

comprises an area of 87,365 km2, of which 95.2% is natural

vegetation (as classified by Queensland Land Use Mapping, 1999),

while the area protected for conservation is 17.6% of the study

region and 44.2% of the Wet Tropics Bioregion (as defined by

CAPAD, 2010). Our analyses were carried out on a 250 m

resolution spatial grid over this region, as defined by the Australian

GEODATA 9 Second Digital Elevation Model – V3.

Biological Data
Plant community survey data over the study region were

obtained from two sources: the Queensland Herbarium’s COR-

VEG survey data [27], and; plant community surveys conducted

by CSIRO. The methods applied by the Queensland Herbarium

in surveying plant community composition are described in detail

in Neldner et al. [27], and involved identifying all vascular plant

species within a 10650 m survey plot. In total, 517 Queensland

Herbarium survey plots occurred within the study region,

however, many of these plots contained species which were only

identified to family or genus level, which is inappropriate for

accurately quantifying species richness and compositional dissim-

ilarity. We therefore removed those 298 survey plots where more

than 10% of taxa that were not identified to the species level.

There were no obvious spatial biases in the locations of the survey

plots removed (Fig. S1). For the remaining 219 Queensland

Herbarium survey plots, those taxa not identified to species level

were removed from the analysis. This equated to an average of

1.97 records (range: 1–7) removed across 136 sites containing

unidentified taxa. Again, there was no obvious spatial bias in the

proportion of records removed from the retained Queensland

Herbarium plots, though there was a slight trend for plots with

more records to contain a larger proportion of unidentified taxa

(Fig. S2).

Plant community surveys conducted by CSIRO between 2004

and 2012 followed a similar methodology to the Queensland

Herbarium surveys, but were located in areas that would

complement the Queensland Herbarium surveys, and were

comprised of 20650 m plots [28]. Survey data were obtained by

CSIRO for 308 sites, and as with the Queensland Herbarium

data, we removed those taxa not identified to species level. Almost

all taxa in the CSIRO surveys were identified to species level (or to

recognised HISPID names where specifies are yet to be formally

described), therefore no sites needed to be removed due to coarse

taxonomic identification.

Combining community surveys from the Queensland Herbar-

ium and CSIRO gave a total of 527 community survey plots used

to generate models of vascular plant species richness and

compositional dissimilarity (Fig. 1). We standardised taxonomic

nomenclature across these two data sets to be consistent with the

Australian Plant Name Index. For both the Queensland Herbar-

ium and CSIRO plant community surveys, we removed all non-

native species, as defined by the Census of the Queensland Flora

[29] and the Australian Plant Name Index. The analyses we

present are therefore relevant to native plant biodiversity only.

For application of the DynamicFOAM procedure (see below), we

supplemented the community survey data described above with

104,831 plant species occurrence records, obtained from the Atlas

of Living Australia on May 16, 2012. All plant occurrence records

obtained were recent (recorded since 1990), spatially accurate (,

300 m uncertainty), and consistent with the taxonomic nomen-

clature applied for the plant community survey data. For the

DynamicFOAM procedure, we also included the records of the

identified species from the 298 Queensland Herbarium survey

plots that were excluded from the community modelling analyses.

Environmental Data
For the correlative modelling of plant community species

richness and compositional dissimilarity, we utilised complete

spatial environmental data across the study region. We applied the

250 m digital elevation model of the study region in ANUCLIM

[30] to obtain climate data (precipitation, evaporation, tempera-

ture, radiation (adjusted for slope & aspect)) and bioclimatic

variables (plant growth indices) across the spatial grid (averages for

the period 1976 to 2005). We also applied a range of spatial

geological (mean geological age, weathering index) and soil (depth,

nutrients, bulk density, water holding capacity) data layers,

obtained from various sources [31–34].

Scaling Community Diversity from Plot to Grid Cell
It is possible and commonly practised to generate models of

species richness and compositional dissimilarity that are relevant to

smaller ecological survey plots occurring within larger spatial grid

cells. However, for the purposes of the present study, our objective

was to generate predictions of species richness and compositional

dissimilarity that are relevant to the spatial grain of the 250 m grid

cells (62,500 m2) rather than the much smaller area that the survey

plots occupy (500–1,000 m2). To transform our community

diversity data so that they were relevant to the spatial grid cell

Conserving Tropical Forests
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resolution, we applied a recently developed biodiversity scaling

method [35].

Briefly, this approach applies the species-area power model

(S= cAz) to scale both species richness and compositional

dissimilarity from small sample areas to larger areas. Under this

approach, the species richness of a grid cell (S) is predicted from

the observed richness of the community survey (c) and the area of

the grid cell relative to the survey area (e.g. A=62,500 m2/500 m2

for the Queensland herbarium data). To scale pair-wise compo-

sitional dissimilarity from the community surveys to the grid cells

they occurred within, we first predict the number of species in

common between the two grid cells i and j (Scom,ij) from the

observed number of species in common between the two

community surveys (ccom,ij) using the species area power relation-

Figure 1. The study region. The study region, being the Wet Tropics Bioregion (blue line) and 100 km of surrounding area, in Queensland,
Australia (inset). Protected areas (dark green), unprotected natural habitat (pale green) and modified habitat (grey) are shown, along with the
locations of the 527 plant community surveys used in our analyses (black dots).
doi:10.1371/journal.pone.0089084.g001
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ship (Scom,ij= ccom,ijA
zcom). We then calculate the predicted Soren-

sen’s compositional dissimilarity between the two grid cells (bij=1–

[2Scom,ij/(Si+Sj)]) using the predicted species richness of each grid

cell (Si, Sj) and the predicted number of species in common

between the two grid cells (Scom,ij). We applied a single scaling

factor for species richness (z=0.25) and for the number of species

shared between a pair of communities (zcom=0.42), as derived

previously [35]. This scaling approach retains the underlying

gradients in species richness and compositional dissimilarity that

are observed across the community survey plots, but scales the

absolute values so that they better represent those of the grid cells

being modelled.

Species Richness Modelling
We generated a model of plant species richness using the

Generalized Regression and Spatial Prediction package (GRASP

[36]) in R [37]. GRASP applies a generalised additive modelling

framework, and for the current implementation we used a Poisson

link function with 3 degrees of freedom for each independent

variable. We applied an interactive backward variable selection

process, using a range of environmental variables that we

hypothesised could be important in influencing plant community

species richness in the study region. Candidate environmental

variables were gradually omitted based on model Bayesian

Information Criterion values, variable significance, and variable

contribution to deviance reduction. Plant community species

richness for each cell on the spatial grid of the region was predicted

using the final model and the environmental variables for every

grid cell.

Compositional Dissimilarity Modelling
We generated a model of pair-wise plant community compo-

sitional dissimilarity (Sorensen’s dissimilarity) using Generalised

Dissimilarity Modelling (GDM) which is an extension of matrix

regression, designed to accommodate both the curvilinear

relationship of observed compositional dissimilarity with increas-

ing ecological distance between sites, and the variation in the rate

of compositional turnover at different positions along environ-

mental gradients [23]. We applied an interactive backward

variable selection process, using a range of environmental

variables that we hypothesised could be important in influencing

plant community compositional dissimilarity in the study region.

We applied custom written code in R [37] to implement a

permutation test of variable and model significance. Using this

procedure with 1,000 permutations, candidate environmental

variables were gradually omitted based on variable significance

and contribution to deviance reduction. We used the final model

of compositional dissimilarity to generate spatially complete

transformed environmental layers, which allow prediction of

compositional dissimilarity between any pair of communities (i.e.

pairs of cells on the spatial grid) [38].

Predicting Community Composition with DynamicFOAM
We applied the DynamicFOAM procedure to generate predic-

tions of the composition of each community (i.e. grid cell) across

the region. DynamicFOAM is an optimisation algorithm that

constructs species lists for each community which best meet the

constraints of modelled estimates of the number of species present,

the predicted dissimilarity in species composition between each

pair of communities and any available data on the occurrences of

specific species at specific sites [26]. When predicting the

composition of all communities using DynamicFOAM, it is possible

to include a specified number of hypothetical species (e.g.

undescribed species) [26], however, for the current implementa-

tion we applied only the 4,313 native species whose occurrences

had been recorded within the study region. Given the stochastic

nature of the DynamicFOAM algorithm, we generated 10 replicate

solutions, with the results presented here being summaries over

these replicates.

Analysing Predictions of Community Composition
We applied a number of analytical approaches in examining our

predictions of community composition across the study region.

The median area of occurrence of species within each community

(grid cell) was quantified by combining the predicted composition

of each community and the predicted area of occurrence of each

species over the study region. We also determined the predicted

number of species within each community that were endemic to a

circular area of radius 30 km centred on that community. We

calculated the predicted number of ‘‘primitive’’ angiosperm

families represented in each community by combining predicted

community composition with family-level taxonomic affinity.

Primitive angiosperm families were defined as phylogenetically

near-basal, and included the families Austrobaileyaceae, Myristi-

caceae, Himantandraceae, Eupomatiaceae, Annonaceae, Ather-

ospermataceae, Calycanthaceae, Hernandiaceae, Lauraceae,

Monimiaceae, Winteraceae, Aristolochiaceae and Piperaceae

[6,39]. Each of the above indices provide alternative measures of

the conservation value of each community (grid cell), and many

additional measures of conservation value could also have been

obtained from our analyses. Here we simply demonstrate how

these four alternative measures of conservation value can be

synthesised into a single index of conservation value, by first

normalising each to a 0–1 range (where 1= highest conservation

value), then calculating the mean value across all four normalised

conservation attributes for each community.

Results

The model of plant species richness in the Australian Wet

Tropics explained 40.7% of the total deviance (D2), and included

nine independent variables of climate and substrate (Table 1,

Fig. 2). The strongest relationships with individual environmental

variables were for species richness to increase with annual

precipitation (D2= 25.1%; P,0.001), soil plant available water

holding capacity (D2 = 22.5%; P,0.001), C3 megaphyll plant

growth index (D2= 19.5%; P,0.001) and decrease with annual

mean radiation (D2= 21.9%; P,0.001) (Table 1, Fig. 2). Spatial

projection of the species richness model showed moist coastal

mountainous areas as having the greatest predicted species

richness, while communities where predicted richness was lowest

occurred in the drier inland areas in the south of the region

(Fig. 3A).

The model of compositional dissimilarity for plant communities

in the Australian Wet Tropics included seven independent climate

and substrate variables, plus geographic distance, and explained

34.2% of the total deviance (Table 2, Fig. 4). The strongest

relationships between compositional dissimilarity and individual

environmental variables were for annual precipitation

(D2= 23.8%; P,0.001), annual mean radiation (D2= 16.6%; P,

0.001) and C3 megaphyll plant growth index (D2= 16.7%; P,

0.001) (Table 2, Fig. 4). In the full model with all eight variables,

the amount of deviance in compositional dissimilarity explained

solely by geographic distance was relatively low (lost D2 when

removed= 0.3%; Table 2, Fig. 4H).

We combined the model predictions of species richness for all

1,397,833 communities (grid cells) across the region with the

model predictions of compositional dissimilarity between each pair

Conserving Tropical Forests
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Table 1. Variable contribution to the Generalised Additive Model of plant species richness for the Australian Wet Tropics.

All variable model Single variable model

Variable % deviance lost % deviance explained

Annual mean radiation 0.8** 21.9**

Annual precipitation 0.4** 25.1**

Isothermality 0.4** 5.0**

Minimum temp. coldest period 2.5** 11.7**

C3 megaphyll growth index 3.4** 19.5**

C3 mesophyll growth index 3.4** 12.7**

Soil depth 5.0** 17.9**

Soil PAW holding capacity 9.0** 22.5**

Weathering index 6.1** 6.8**

**P,0.001; PAW=Plant available water; temp. = temperature.
For the full model of plant species richness (all variable model), the null deviance = 44,424, the residual deviance = 26,359, the residual degrees of freedom=499, the
deviance explained = 40.7% and the model P-value ,0.001.
doi:10.1371/journal.pone.0089084.t001

Figure 2. Species richness model response functions. Plant species richness as a function of each of the nine explanatory variables included in
the model of plant species richness ((A)–(I)). The line shows the fitted relationship in the model, while observed data for the 527 community survey
sites are shown by the open circles (richness scaled to grid cell area).
doi:10.1371/journal.pone.0089084.g002

Conserving Tropical Forests
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of communities, to predict the current composition of every

community using the DynamicFOAM algorithm [26]. Across the

ten replicate DynamicFOAM solutions generated for the region, the

proportion of species occurrences correctly predicted was 0.406

(65.261023) with correctly predicted occurrences significantly

(P,0.01) more frequent than random, while the mean absolute

error in predicted Sorensen’s dissimilarity between site pairs was

0.050 (61.961024) (Fig. S3).

Table 2. Variable contribution to the Generalised Dissimilarity Model of pairwise community compositional dissimilarity for plants
in the Australian Wet Tropics.

All variable model Single variable model

Variable % deviance lost % deviance explained

Annual precipitation 3.1** 23.8**

Maximum temp. warmest period 0.5* 3.4**

Annual mean radiation 0.6* 16.6**

C3 megaphyll growth index 0.5* 16.7**

C3 mesophyll growth index 0.7** 11.9**

Soil PAW holding capacity 2.0** 10.1**

Soil nutrient status 0.3* 4.8**

Geographic distance 0.3** 7.7**

*P,0.01;
**P,0.001; PAW=Plant available water; temp. = temperature.
For the full model of plant community compositional dissimilarity, the number of site pairs = 138,601, the intercept = 0.349, the null deviance = 48,010, the residual
deviance = 31,568, the deviance explained= 34.2% and the model P-value ,0.001.
doi:10.1371/journal.pone.0089084.t002

Figure 3. Predicted plant diversity attributes. Predictions across the study region of: (A) species richness; (B) median area of occurrence of
species within each community; (C) the number of species present that are endemic to a circular area of radius 30 km centred on each community,
and; (D) the number of primitive angiosperm families represented in each community (250 m grid cell).
doi:10.1371/journal.pone.0089084.g003

Conserving Tropical Forests
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Applying the predictions of the composition of every community

(i.e. grid cell) across the region, we calculated three biodiversity

metrics. First, we found that communities predicted to contain the

rarest species (lowest median area of occurrence) were located in

high altitude locations within the tropical forests (Fig. 3B).

However, communities with the greatest predicted density of

species endemic to the surrounding area of 30 km radius were

concentrated in two locations: (1) the North Johnstone River in the

Atherton Tablelands area, and (2) the Daintree rainforest around

Thornton Peak (Fig. 3C). Finally, communities containing the

largest number of ‘‘primitive’’ angiosperm families (described in

[6,39]) were predicted to occur more evenly across the area of wet

tropical forest (Fig. 3D). When the three attributes of plant

biodiversity considered here (Fig. 3) were combined with species

richness (Fig. 3A) in a single index of conservation value, habitat

within two areas (Atherton Tablelands, Daintree rainforest) were

predicted to have the greatest overall value for conserving plant

diversity in the Australian Wet Tropics (Fig. 5).

Discussion

Drivers of Diversity
To identify conservation and management actions that are likely

to best retain the diversity of tropical forests over time, we need to

rapidly improve our understanding of current biodiversity in these

systems. Here we have demonstrated how macroecological

modelling can overcome shortfalls in our knowledge of diversity

in tropical forests [40], providing valuable new insight into current

patterns plus identifying priority areas for conservation and

management. Although the Australian Wet Tropics are some of

the world’s best studied tropical rain forest, the same macro-

ecological modelling approaches can be successfully applied in

systems where biological information is much more limited, as the

proportion of occurrences correctly predicted by the method is

relatively insensitive to the amount of community survey data

included in the analyses, at all but extremely low levels of input

data [26].

For the Australian Wet Tropics, our continuous predictions of

species richness, compositional dissimilarity and community

composition for the 4,313 vascular plant species recorded in the

region highlight which areas are likely to contain the greatest

species richness (Fig. 3A), the most rare species (Fig. 3B), the

greatest concentration of endemic species (Fig. 3C), and the

greatest representation of ‘‘primitive’’ angiosperm families

(Fig. 3D).These continuous predictions of plant diversity offer

substantial advances over previous categorical assessment of

vegetation patterns in the Australian Wet Tropics [12,13].

For both the models of species richness and compositional

dissimilarity, annual precipitation was the most important

individual predictor (Tables 1,2; Figs. 2B, 4A), supporting

substantial previous research in both the Australian Wet Tropics

and other tropical forests [4,15,41]. Outcomes for these tropical

forests under climate change are therefore likely to strongly

depend upon the nature of any concomitant changes in

precipitation [16,42]. Other important explanatory variables were

also shared by the macroecological models of species richness and

compositional dissimilarity, including annual mean radiation and

C3 megaphyll plant growth index (Tables 1,2; Fig. 2,4). Although

both of these variables incorporate components of energy and

temperature [30], they are also likely to be important through

their relationship with moisture availability.

Spatial Projection of Plant Diversity
Here we have demonstrated how the predictions of the species

richness and compositional dissimilarity models can be combined

using DynamicFOAM [26], to predict the composition of every

community across the region (n= 1,397,833). These complete

metacommunity predictions can then be analysed in numerous

Figure 4. Compositional dissimilarity model response functions. GDM transformed environmental values as a function of the original
environmental values for each of the eight explanatory variables included in the model of community compositional dissimilarity ((A) – (H)). The
relative y-axis (transformed) range for the response of each variable indicates the relative strength of that variable in determining compositional
dissimilarity, while the nonlinearity of the response indicates which sections of the environmental gradient have steeper predicted compositional
dissimilarity.
doi:10.1371/journal.pone.0089084.g004

Conserving Tropical Forests
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ways to identify both major patterns in diversity and priorities for

conservation or management. For example, in the Australian Wet

Tropics, the communities predicted to contain the most rare

species are not consistently those with the greatest species richness,

but rather are areas with combinations of both moderately high

species richness and high compositional dissimilarity to all other

communities (Figs. 3A,B).

Another useful application of the predictions of community

composition is in identifying areas of high species endemism. Areas

that possess large numbers of endemic species are of particularly

Figure 5. Predicted conservation value. Predictions of the overall conservation value for plant diversity of each community (grid cell) in the
Australian Wet Tropics, as synthesised across the four different elements of diversity we considered (from Fig. 3).
doi:10.1371/journal.pone.0089084.g005
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high value for conservation, through minimising the threat of

extinction for the endemic species occurring there and because

these areas may be important refuges for many other species under

climate change [43,44]. Our analyses of species endemism within

surrounding areas of 30 km radius identified two major centres of

endemism for vascular plants: the North Johnstone River in the

Atherton Tablelands, and; the Daintree rainforest around

Thornton Peak (Fig. 3C). Interestingly, these predictions generally

align with those of Nix & Switzer [14], who identified two large

rainforest refugia in the same areas of the Australian Wet Tropics,

by modelling the distribution of ‘‘rainforest’’, as a vegetation

category, back to the last glacial maximum.

The Australian Wet Tropics flora has particular value globally

for the large representation of ‘‘primitive’’ angiosperm families (13

out of 28) as described by Metcalfe and Ford [6,39]. Here we

combined our predictions of plant community composition across

the region with the identities of the 13 primitive angiosperm

families, to quantify the predicted number of primitive angiosperm

families occurring within each community (grid cell) (Fig. 3D).

While the density of primitive angiosperm families corresponds

roughly with overall plant species richness (Fig. 3A), communities

in which primitive angiosperm families are best represented are

not consistently those with the most species.

Conservation and Management Implications
Identifying priority areas for conservation and management

often requires consideration of a range of biodiversity features

[45]. These multiple features of biodiversity may be weighted in

different ways for specific conservation applications, with a range

of alternative algorithms and software available to achieve this

[45,46]. Here we demonstrate how the predictions for multiple

attributes of diversity emerging from our macroecological analyses

(Fig. 3) can be simply synthesised into a single index of

conservation value (Fig. 5). For more specific applications, other

attributes of diversity could be additionally considered, the

importance of specific diversity attributes could be weighted, or

our predictions of diversity could be used in iterative assessment of

alternative conservation/management options to incorporate

complementarity between areas. Here, however, we simply

demonstrate the potential for deriving a single measure of

conservation value that is clearly composed of different elements

of biodiversity that are perceived to be important.

For the Australian Wet Tropics, the Atherton Tablelands and

Daintree rainforest areas were predicted to have the greatest

overall conservation value for plant diversity (Fig. 5), possessing

combinations of high species richness, many rare and endemic

species, plus many primitive angiosperm families. The prediction

of high conservation value for the Atherton Tablelands is of

particular relevance for conservation and management, given the

high levels of habitat loss already incurred in this area (Fig. 1).

Indices of overall conservation value (Fig. 5) could be used to

identify priorities for new protected areas in the region, capturing

any high-value tropical forest currently outside the reserve estate.

Our predicted conservation value could also be applied in

targeting priority locations for management actions such as alien

invasive species control measures or habitat restoration efforts, so

that they best contribute to the maintenance of native plant

diversity.

Future Directions
Here we have extended our knowledge of current patterns in

plant diversity for the Australian Wet Tropics, through continuous

modelling and prediction of species richness, compositional

dissimilarity and complete metacommunity composition. We have

applied these predictions to identify current priority areas for

conservation and management, however, a thorough assessment of

alternative management scenarios to retain biodiversity over time

requires a more dynamic modelling approach. Indeed, the models

and predictions of community composition generated here could

form the basis for semi-mechanistic macroecological modelling to

assess spatiotemporally explicit outcomes for biodiversity under

specified climate and management scenarios [47]. Such semi-

mechanistic modelling can incorporate dynamic dispersal process-

es and could be applied to help identify adaptive management

actions under climate change [48]. Improved projections for plant

diversity under alternative climate and management scenarios

could also contribute to improving our understanding of likely

outcomes for the diverse fauna that inhabit these tropical forests

[49,50].
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