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Simple Summary: The losses caused by the outbreak of diseases are disastrous for the animal farming
industries. There is an urgent need for an efficient, economical, and permanent disease control
method to cope with the adverse effects of diseases in farm animals. In this review, we have proposed
that genetic/genomic selection for animals with favorable health traits provide potential methods
to eliminate the adverse influences of diseases in farm animals. It is undeniable that the traditional
methods for disease control (e.g., vaccination, treatment, and eradication strategy) and several other
rising disease control and detection methods (e.g., genome editing, biosensor, and probiotics) are
contributing to the prevention of diseases from farm animals, curing infected animals, and detecting
sick individuals; however, the limitations and deficiencies of these methods cannot be ignored.
Although genetic/genomic selection solutions are facing some challenges, the developments of
selection-associated techniques (e.g., high throughput phenotyping and sequencing, and generation
of big data) and the advantages of selection over the other disease control methods can provide
animal farming industries the ability to cope with the issues caused by diseases through breeding for
health traits.

Abstract: Disease is a global problem for animal farming industries causing tremendous economic
losses (>USD 220 billion over the last decade) and serious animal welfare issues. The limitations
and deficiencies of current non-selection disease control methods (e.g., vaccination, treatment,
eradication strategy, genome editing, and probiotics) make it difficult to effectively, economically,
and permanently eliminate the adverse influences of disease in the farm animals. These limitations
and deficiencies drive animal breeders to be more concerned and committed to dealing with health
problems in farm animals by selecting animals with favorable health traits. Both genetic selection
and genomic selection contribute to improving the health of farm animals by selecting certain health
traits (e.g., disease tolerance, disease resistance, and immune response), although both of them
face some challenges. The objective of this review was to comprehensively review the potential of
selecting health traits in coping with issues caused by diseases in farm animals. Within this review,
we highlighted that selecting health traits can be applied as a method of disease control to help
animal agriculture industries to cope with the adverse influences caused by diseases in farm animals.
Certainly, the genetic/genomic selection solution cannot solve all the disease problems in farm
animals. Therefore, management, vaccination, culling, medical treatment, and other measures must
accompany selection solution to reduce the adverse impact of farm animal diseases on profitability
and animal welfare.
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1. Introduction

Disease control is a global challenge for livestock industries and farmers, as diseases bring
tremendous economic losses to farm animal production systems. The animal farming systems in both
developed and developing countries are suffering economically from different infectious diseases.
Direct economic losses from the outbreaks of disease can account for up to 20% of the revenue in
developed countries and up to 50% of the revenue within the livestock sector of the developing
world [1]. Basically, all farm animal production systems are vulnerable to disease. Many diseases,
such as bovine viral diarrhea (BVD), Johne’s disease, and bovine respiratory disease complex (BRDC)
in cattle farming; bluetongue and sheep pox in sheep farming; porcine reproductive and respiratory
syndrome (PRRS), and African swine fever (ASF) in the swine industry; Newcastle disease and Marek’s
disease in the poultry industry; and Aleutian disease in the mink industry, contribute to economic
losses and cause serious animal welfare issues via persistent infection, increased mortality, reduced
productivity and reproduction performance, and decreased product quality. Therefore, finding
the effective solutions to combat diseases has become a top priority for all livestock industries.

To control diseases, many methods have been used with some level of success. Vaccination, medical
treatment, and eradication strategy are common methods to control health issues caused by diseases.
These methods, however, are facing some bottlenecks, such as the side effects of vaccination [2,3],
public concerns about residual drugs and drug resistance after employing medical treatment [4–9],
and financial cost and high recurrence rate of using eradication strategies [10,11]. Several other methods
including genome editing, biosensor, and probiotics provide animal farming industries more options
to enhance animal health. Unfortunately, the lack of effective legal oversight (e.g., genome editing)
and technological immaturity (e.g., genome editing, probiotics, and biosensor) make these technologies
not widely available for controlling diseases of farm animals. This makes seeking alternative solutions
one of the main concerns for animal producers.

Breeding for favorable health traits is one solution that is highly anticipated. Health traits mainly
include health body traits, disease susceptibility traits, and immune system traits. Selecting favorable
health traits, which are complex traits influenced by many genes and environmental factors is a powerful
tool against disease [12]. Host genetics is significant in controlling the health status of each individual
in the same environment. Compared with the other methods of disease control in farm animals,
the selection of animals with favorable health traits such as disease resistance, disease tolerance [13],
and immunity responses [14] has many advantages. Classical genetic selection and genomic selection
are playing important roles in genetically improving health and controlling diseases. Although many
challenges exist in both selection methods, the great potential to genetically eradicate diseases from
farming systems is still attracting the attention of many animal farming industries.

Given the importance of disease in farm animals and the dramatic development of technologies
for disease characterization, it is crucial to have a comprehensive and holistic view about challenges
and solutions for combating disease in farm animals. Therefore, this review paper was written: (1) to
present an overview of common diseases in farm animals and the methods used to control them;
(2) to highlight the advantages of coping with diseases by selecting for health traits through genetic or
genomic selection, as well as the current stages of selection on major diseases in livestock industries;
and (3) to discuss the major challenges of employing health trait selection and the potential solutions
that can help improve selection.

2. Farm Animal Diseases: Influence, Prevalence, and Controlling Issues

2.1. The Influence, Prevalence, and Controlling Issues of Common Diseases in Farm Animals

Disease in farm animals is a significant challenge to farm animal industries worldwide. Cattle,
sheep, swine, poultry, and fur-bearing animals such as mink are the most important farm animals for
human society and provide the main resource of milk, meat, egg, wool, and fur. Unfortunately, all
these important farming systems are vulnerable to disease (Figure 1).
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Figure 1. Economic consequences of common diseases in farm animals including pig, sheep, poultry, 
mink, and cattle. The upward-pointing arrows refer to increase, and the downward-pointing arrows 
refer to decrease (PRRS1 = Porcine reproductive and respiratory syndrome; ASF2 = African swine 
fever; BL3 = Bluetongue; SP4 = Sheep pox; ND5 = Newcastle disease; MD6 = Marek’s disease; AD7 = 
Aleutian disease; BVD8 = Bovine viral diarrhea; JD9 = Johne’s disease; BRDC10 = Bovine respiratory 
disease complex). 

In cattle, BVD, Johne’s Disease, and BRDC are the most costly and persistent diseases (Table 1). 
The BVD commonly causes respiratory and reproductive complications in the herd. The prevalence 
of BVD in Northern Ireland can reach as high as 98.5% in non-vaccinated dairy herds and 98.3% in 
beef herds [15]. The BVD causes the dairy industry to lose 40 to 100 thousand US dollars per herd in 
Canada and 10 to 40 million US dollars per million calvings in Europe [16,17]. Culling infected 
animals and vaccinations are employed as short-term strategies to control this disease; however, they 
do not effectively eradicate BVD from the dairy farms [18,19]. Johne’s disease affects the small 
intestine of ruminant animals and results in weight loss, diarrhea, decreased fertility, and death. The 
current strategy of controlling Johne’s disease is based on timely detection through Mycobacterium 
avium ssp. Paratuberculosis enzyme-linked immunosorbent assay testing and then culling infected 
animals as there is no effective vaccine or treatment. For this reason, Johne’s disease is still rampant 
worldwide [10]. Approximately 68% of dairy operations in the USA were affected by this disease [20]. 
This disease causes economic losses of 15 million Canadian dollars per year to the dairy industries in 
Canada, and 200 to 250 million US dollars per year in the USA [21]. The BRDC, which is usually 
associated with infections of the lungs, causes pneumonia in calves and has been regarded as one of 
the primary causes of morbidity and mortality in beef farming [22,23]. In the USA, BRDC is the 
leading natural cause of death in beef cattle and causes financial losses of more than one billion US 
dollars annually [24]. The main method of controlling BRDC is using antibiotics; however, bacterial 
pathogen resistance to antibiotics for BRDC has caused the producers, practitioners, and the animal 
health industry to doubt the sustainability of using antibiotics to control BRDC [25]. 

Figure 1. Economic consequences of common diseases in farm animals including pig, sheep, poultry,
mink, and cattle. The upward-pointing arrows refer to increase, and the downward-pointing arrows
refer to decrease (PRRS1 = Porcine reproductive and respiratory syndrome; ASF2 = African swine fever;
BL3 = Bluetongue; SP4 = Sheep pox; ND5 = Newcastle disease; MD6 = Marek’s disease; AD7 = Aleutian
disease; BVD8 = Bovine viral diarrhea; JD9 = Johne’s disease; BRDC10 = Bovine respiratory disease
complex).

In cattle, BVD, Johne’s Disease, and BRDC are the most costly and persistent diseases (Table 1).
The BVD commonly causes respiratory and reproductive complications in the herd. The prevalence
of BVD in Northern Ireland can reach as high as 98.5% in non-vaccinated dairy herds and 98.3% in
beef herds [15]. The BVD causes the dairy industry to lose 40 to 100 thousand US dollars per herd
in Canada and 10 to 40 million US dollars per million calvings in Europe [16,17]. Culling infected
animals and vaccinations are employed as short-term strategies to control this disease; however, they
do not effectively eradicate BVD from the dairy farms [18,19]. Johne’s disease affects the small intestine
of ruminant animals and results in weight loss, diarrhea, decreased fertility, and death. The current
strategy of controlling Johne’s disease is based on timely detection through Mycobacterium avium ssp.
Paratuberculosis enzyme-linked immunosorbent assay testing and then culling infected animals as there
is no effective vaccine or treatment. For this reason, Johne’s disease is still rampant worldwide [10].
Approximately 68% of dairy operations in the USA were affected by this disease [20]. This disease
causes economic losses of 15 million Canadian dollars per year to the dairy industries in Canada,
and 200 to 250 million US dollars per year in the USA [21]. The BRDC, which is usually associated with
infections of the lungs, causes pneumonia in calves and has been regarded as one of the primary causes
of morbidity and mortality in beef farming [22,23]. In the USA, BRDC is the leading natural cause
of death in beef cattle and causes financial losses of more than one billion US dollars annually [24].
The main method of controlling BRDC is using antibiotics; however, bacterial pathogen resistance to
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antibiotics for BRDC has caused the producers, practitioners, and the animal health industry to doubt
the sustainability of using antibiotics to control BRDC [25].

In sheep, bluetongue and sheep pox are two common diseases in the sheep industry, causing
significant economic losses (Table 1). Bluetongue causes huge economic losses to the sheep industry
due to high mortality and morbidity, as well as the trading of animals associated with its outbreak.
The prevalence of bluetongue was 19% in Italy [26], but in Sudan, the prevalence has been as high
as 94% [27]. In 2007, the cost of the bluetongue disease for sheep breeding farms in the Netherlands
was estimated at 12.6 million euros [28]. Vaccination has been regarded as the most viable method for
the prevention and eradication of bluetongue disease; however, the expensive cost and potential side
effects seriously influence the practicality and effectiveness of bluetongue disease vaccine [29]. Sheep
pox is a serious, and often fatal infectious disease in sheep and causes a high mortality rate in sheep
populations. Although live vaccines have been developed and are used worldwide, sheep pox still
persists in regions where vaccination is routinely practiced, causing huge economic losses to the sheep
industry [30]. Up to 22% [31] and 40% [32] of sheep in India and Ethiopia were infected by this disease,
respectively. Annual economic losses from sheep pox disease in Maharashtra, India, were 2.4 million
US dollars due to high mortality rates [33].

In swine, outbreaks of contagious diseases, such as PRRS and ASF, have not only resulted in
significant economic losses for swine industries but have also caused animal welfare and environmental
concerns (Table 1). The PRRS can cause anorexia, lethargy, hyperemia of the skin, dyspnea,
hyperthermia, increased mortality rates, and reduction in average daily gain [34]. Up to 48% of
swine farms in Ontario, Canada, were infected by PRRS from 2010 to 2013 [35]. In 2013, the total annual
losses due to PRRS in the US were estimated at 664 million US dollars [36]. In Canada, the cost of PRRS
was estimated at 130 million Canadian dollars per year [37]. Vaccination is considered the most feasible
method for PRRS control; however, the high mutation rate and antigenic variability of the PRRS virus
influences the effectiveness of controlling PRRS through vaccination. Meanwhile, the limited protection
period of the vaccine against PRRS makes vaccination effective for only short time periods instead
of eradicating the virus permanently [38,39]. The ASF is a viral disease that leads to high morbidity
and mortality in swine and has drastic influences on global domestic swine production. The absence
of an effective vaccine and available methods of disease control causes tremendous economic losses to
the infected areas [40]. The ASF was reported in most provinces of China from August 2018 to July 2019
and resulted in an insufficient supply of pork products in China. The overall mean rate of incidence
was 12.5%, and the highest incidence rate of 30% occurred in April–May 2019 [41]. In Russia, ASF has
resulted in the loss of 800,000 pigs and 0.83–1.25 billion US dollars since its outbreak in 2007 [42].

In poultry, diseases such as Newcastle disease and Marek’s disease have caused devastating
economic losses worldwide (Table 1). Newcastle disease was regarded as one of the biggest threats to
the poultry industry as this disease significantly affected poultry production throughout the world
and has accounted for huge economic losses due to high mortality, high morbidity, and trade
restrictions [43]. The average prevalence in adult birds was 85% in the breeding and wintering grounds
of Michigan, Mississippi, and Wisconsin states of the US, and Ontario province of Canada from 2009 to
2011 [44]. The outbreak of Newcastle disease in California state of the US from 2002 to 2003, caused
3.3 million birds to be culled and cost 200 million US dollars to eradicate the virus [45]. With no
effective treatment for Newcastle disease, vaccination is primarily used by the poultry industry to
control the spread of disease. The multiple worldwide outbreaks of Newcastle disease in the past few
years, however, have shown that the vaccination strategies are not fully effective in controlling this
disease in different environmental conditions [46,47]. Marek is another disease that affects the poultry
industry and is one of the most ubiquitous highly contagious viral avian infections affecting chicken
flocks worldwide. Although the clinical Marek disease is not always apparent in infected flocks,
the subclinical decrease in growth rate and egg production can significantly affect the economic benefits
of chicken farms [48]. In Iraq, the overall prevalence of Marek disease was 49.5% with a range of 37% to
65% in different areas [49]. Even though mass vaccination is relatively efficient in controlling Marek’s
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disease, the appearance of highly virulent strains that can decrease vaccine immunity results in Marek’s
disease virus continuing to cause a serious threat to the poultry industry [50,51]. The annual economic
losses due to Marek’s disease were estimated as high as 1–2 billion US dollars worldwide [52].

As the primary source of fur among all fur industries, mink farming also suffers from the serious
economic losses caused by Aleutian disease (Table 1). Aleutian disease, a chronic and persistent viral
infection can cause a decrease in litter size (2.5 kits per whelping), high adult and embryonic mortalities
(30–100%), and poor fur quality [53–56]. From 1998 to 2005, 24% to 71% of farmed mink were infected
in Nova Scotia province of Canada [57]. The test-and-remove strategy, which is the process used to
remove mink tested positive for Aleutian Disease, is employed as the main method to control Aleutian
disease because of the ineffective immunoprophylaxis and treatment [58]. The unsatisfactory outcome
of the test-and-remove strategy, however, makes Aleutian disease still a major problem and results in
tremendous economic losses for the mink industry in North America and Europe [57,59]. The annual
economic losses to the mink industry were estimated at approximately ten million US dollars in
Denmark during 1984 [60].
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Table 1. Prevalence and economic losses of common diseases and their impacts on performance in farm animal species.

Species Disease Prevalence Economic Losses Milk Yield Fertility/Egg
Production Growth Rate Mortality Vaccine

Available?
Specific

Treatment?

Cattle

Bovine Viral
Diarrhea

Up to 98.5% and 98.3%
in non-vaccinated dairy

and beef herds,
respectively [15]

40–100 thousand USD
per herd in Canada [16]
and 10–40 million USD
per million calvings in

Europe [17]

Reduced
(~0.074

kg/day [61])

Reduced
(21% abortion

rate [62])
Reduced

High
(~50% in

calves [63])
Yes No

Johne’s Disease
68.1% of US dairy
operations were

infected [20]

15 million CAD
annually in Canada
and 200–250 million

USD in US [21]

Reduced
(up to 25% [64])

Reduced
(7% lower rate of
conception [65])

Reduced Culling infected
individuals Yes No

Bovine Respiratory
Disease Complex

45.9% in UK dairy
heifers

One billion USD
annually in US [24] N/A N/A Reduced

Moderate
(~20% in

calves [66])
Yes No

Sheep Bluetongue 19% in Italy [26] and up
to 94.3% in Sudan [27]

In 2007, 12.6 million
euros in

the Netherlands [28]

Reduced
(up to 42% [67])

Reduced
(25% abortion rate
and 50% decrease

in fertility [68])

Reduced High
(up to 41.5% [69]) Yes No

Sheeppox
Up to 22% [31] in India

and 40% in
Ethiopia [32]

2.4 million USD
annually in

Maharashtra, India [33]
N/A N/A Reduced High

(up to 40% [70]) Yes No

Swine

Porcine
Reproductive

and Respiratory
Syndrome

Up to 48% of pig farms
in Ontario, Canada [35]

664 million USD
annually in US [36]

and 130 million CAD
annually in Canada [37]

N/A
Reduced

(up to 40%
abortion rate [71])

Reduced High
(up to 100% [72]) Yes No

African Swine
Fever

12.5% in China from
August 2018 to July

2019 [41]

1.25 billion USD from
2007 to 2017 in

Russia [42]
N/A

Reduced
(54% abortion

rate [73])
N/A High

(30–70% [74]) No No

Poultry Newcastle Disease
85.2% in eastern North
America between 2009

and 2011 [44]

200 million USD from
2002 to 2003 in

California, US [45]
N/A

Reduced
(55% of egg

production [75])
Reduced High

(up to 100% [76]) Yes No

Marek’s Disease 49.5% in Iraq [49]
1–2 billion USD

annually
worldwide [52]

N/A
Reduced

(decrease 5% egg
production [77])

Reduced Moderate
(10–30% [78]) Yes No

Mink Aleutian Disease
Up to 71% in Nova

Scotia, Canada between
1998 and 2005 [57]

10 million USD in
Denmark during

1984 [57]
N/A

Reduced fertility
(~2.5 kits per

whelping [56])
Reduced High

(30–100% [55]) No No
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2.2. Current Methods to Control Diseases in Farm Animals

Many disease-controlling methods are contributing to help farm animals cope with diseases.
Vaccination, treatment, and test-based culling strategies are common approaches for the livestock
industry to treat diseases and reduce the economic losses caused by subsequent health issues.
Meanwhile, the development of genome editing, biosensor, and probiotics have provided more options
for solving the economic and animal welfare issues caused by disease in animal farming systems.
These methods have made great contributions to the control of diseases, but their deficiencies exposed
in the application process cannot be ignored (Table 2).

Table 2. Strengths and weaknesses of common non-selection disease control methods in farm animals.

Controlling Method Advantages Disadvantages

Vaccination

� Prevent and mitigate various diseases
in livestock

� Provide solutions to control diseases
which have complex, limited or no
treatment options available

� Decrease the antimicrobial resistance

� Only administered to healthy
subjectsMay cause adverse
reactionsBring expensive cost for
large-scale use

Medical treatment

� Treat many common diseases in
livestock species

� Increase in feed efficiency
and performance

� Increase the occurrence of
drug residues

� Increase the risk of drug resistance

Culling
� Main method used to control highly

contagious and inextirpable diseases

� Fail in permanently eradicating some
diseases from livestock farms

� High reinfection rate in some cases
� Very costly in large-scale farms

Genome editing

� Offer solutions to control untreatable
diseases at affordable costs

� Has high efficiency and low cost in
controlling diseases

� No legal regulations have been
established to supervise
genome-editing animals

� Is not mature enough for
large-scale use

� Public’s concerns

Biosensor
� Effective in disease detection

and isolation, and health monitoring

� Not effective in practical livestock
health management

� Not widespread and promoted due to
the lack of investment

Probiotics

� Have great potential to reduce the risk
of intestinal diseases

� Have the potential to replace
some antibiotics

� Lacking adequate related research
� Unable to apply in large-scale

livestock farming

2.2.1. Vaccination

Vaccination has long been a key tool to reduce disease in livestock and maintain the health
and welfare of livestock. Vaccines are contributing to preventing and mitigating many livestock
diseases (e.g., Johne’s Disease and BRDC in cattle, bluetongue and sheeppox in sheep, PRRS in swine,
and Newcastle and Marek’s diseases in poultry), which have complex, limited or no treatment options
available, as well as reducing the use and misuse of antibiotics [79–82]. Vaccines play a significant role
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in preventing livestock diseases, but they also have some unsatisfactory side effects. First, vaccines are
only administered to healthy subjects because they aim to prevent, not to treat. This means the vaccine
can only protect the animal from disease, instead of eradication of disease [83]. Second, vaccination
may cause adverse reactions in vaccinated animals. This means a vaccine may cause some adverse side
effects (e.g., anaphylaxis, decrease in production traits) to a recipient [2,3]. Third, mass vaccination
campaigns can be very expensive and may be unprofitable for some livestock farmers [84].

2.2.2. Medical Treatments

Medical treatment is one of the main typical treatments for coping with diseases in farm animals.
Veterinary drugs not only play a crucial role in controlling the diseases-related risks but also make
contributions to higher agricultural productivity and a steady livestock supply [85,86]. The overall
economic benefit can be increased by using the medical treatments because their applications can
increase feed efficiency and performance (growth rate, egg production) for 1% to 15% more than
animals that do not receive antibiotics or medical treatments [87]. Although veterinary drugs have
played an important role in the field of animal husbandry and agro-industry, the increasing occurrence
of residues and resistance have become issues worldwide [4–9].

2.2.3. Culling

Culling infected animals and carrying strict hygiene practices are also commonly applied to
control many highly contagious and inextirpable diseases in farm animals by reducing the transmission
of disease. High culling rate and cost of culling make it expensive to control some diseases by culling
strategy. The overall annual culling rate of 590 randomly selected dairy herds from New Zealand
for BVD was 23.1% in 2002, and the cull cost for each cow was 324 US dollars [61]. About 200,000
pigs were culled from August to October of 2018 due to the outbreak of ASF in China. The direct
damage from culling was estimated at about 37.8 million US dollars [88]. For controlling PRRS in
Vietnam, the government needs to provide a subsidy to encourage pig farmers to voluntarily cull
infected pigs [89]. This strategy, however, still cannot eradicate some of the viruses in some cases, such
as Aleutian disease in mink and Johne’s disease in dairy cattle [10,11,57]. Many potential reasons such
as the variability of the virus genome, ineffectiveness of biosecurity failure, viral transmission from
wild animals, and persistent virus on the farms lead to the failure of culling strategies [57,90,91].

2.2.4. Genome Editing

Genome editing is a powerful technology that can precisely modify the genome of an organism.
The main genome editing tools are zinc-finger nucleases, transcription activator-like effector nucleases,
and CRISPR/Cas9, which have been successfully employed to many farm animal species including
swine, cattle, sheep, and poultry to cope with diseases at affordable costs by creating farm animals with
disease-resistant genes [92–99]. There are clear opportunities especially in cases where conventional
control options have shown limited success. For PRRS, the in vitro research has shown that
the macrophage surface protein CD163 and specifically the scavenger receptor cysteine-rich domain
5 (SRCR5) of the CD163 protein mediate entry of PRRS virus into the host cell [100]. Based on this
information, a genome-edited pig with increased resistance to PRRS virus infection could be generated
with a disruption to the CD163 gene. The genome-edited pigs created by completely knocking out
the CD163 gene [98,101] or by removing only the SRCR5-encoding genome section [102,103] showed
resistance to PRRS virus infection. However, such studies did not deliver the complete resistance in
the pigs in which the endogenous CD163 gene was edited. The effectiveness of genome editing in
disease control will be influenced by many factors, such as the proportion of gene-edited animals
in the population and how these gene-edited animals are distributed within and across farms [96].
The disease-specific epidemiological models, however, are missing in helping with defining the exact
proportion of gene-edited animals needed for each species/disease. Meanwhile, the limited shelf-life
of genome editing needs to be considered. Genome editing shares the potential risk of vaccines,
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as the efficacy might be time-limited due to the emergence of escape mutants [96]. Especially for
some RNA viruses with extremely high mutation rates, like the PRRS virus [104], this concern is
justified. So far, no legal regulations have been established to supervise genome-editing animals,
and all previous examples are at a preliminary stage. This means that applying this technology to farm
animal production still needs a large amount of research and comprehensive monitoring systems to
ensure biosafety [96]. On the other hand, public concerns about genome-edited farm animal products
are also a factor that cannot be ignored, and directly determines whether genome-edited farm animal
products have market value [95].

2.2.5. Biosensor

A biosensor is used to quantify physiological, immunological, and behavioral responses of farm
animal species through detecting specific interaction results to a change in one or more physico-chemical
properties (pH change, electron transfer, mass change, heat transfer, uptake or release of gases or
specific ions) [105]. This technology is applied in disease detection and isolation, and health monitoring
in cattle, swine, and poultry [106–112]. Although the biosensor can detect abundant precise data,
the data is currently not being effectively transferred into practical information that could be used
for the decision-making process in farm animal health management. At the same time, the lack of
investment by individual farmers has also limited the widespread application and promotion of this
technology [108].

2.2.6. Probiotics

The use of probiotics is also believed to have great potential to reduce the risk of the diseases of
farm animals especially intestinal diseases and to replace the use of some antibiotics [113,114]. Creating
a bacterial competition using probiotics, which are live microorganisms that provide a health benefit to
the host when administered in adequate amounts, is a strategy to maintain health and prevent and treat
infections in animals [114]. Many probiotic products are available for farm animals to improve their
health and prevent them from disease [115–117]. Lack of statistical analysis, unclear experimental
protocols, lack of precise identification of microorganisms, and missing data related to the viability
of the organisms make it difficult to assess the studies associated with probiotics based on earlier
research [118]. Meanwhile, the lack of an appropriate government regulatory framework and safety
studies slow the industrial exploitation of novel probiotic genera and delay the large-scale application
of this technology in animal farming [119].

3. Selection for Animals with Favorable Health Traits

3.1. Health Traits in Farm Animals: Definition, Classification, and Components

Historical emphasis on farm animal selective breeding programs were only focussed on profitability,
and the most easily measured traits such as milk yield in dairy cows or bodyweight in swine. Recently,
selection between and within breeds for health traits is attracting more attention from farm animal
producers. The farmers realize that only by having a more comprehensive assessment of animal
performance, the level of productivity can be maintained or improved [120].

Health traits could simply be the traits related to the health status of animals, and therefore, they
could be disease traits or host immune status. According to the Animal Trait Ontology [121,122],
health traits are a part of animal welfare traits. The traits could be further divided into three main
groups including health body traits, disease susceptibility traits, and immune system traits. For each
group, several subgroups are also included such as immune system traits which could include
acquired immune system traits and innate immune systems traits. Health traits are defined by
the interaction between host genetics and environment which includes the management factors as well
as the pathogens. Host genetics play important roles in animals, which decide the health status of each
individual in the same environment. Selection for host genetics often involves selection for disease
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resistance or tolerance as well as their immune systems. To maximize the host genetic potentials, it is
important to study the gene by environment interaction. Genomic selection for gene by environment
interaction might become more feasible using the big data [123].

Health traits could be reported at different levels as within (individual variations) or between
populations. The heritabilities of health traits depend on many factors such as the nature of the traits
or the method of records; however, they are known to be low-to-moderate. For instance, the estimated
heritabilities for the susceptibility of cattle to Johne’s disease infection were ranged from 0.06 to
0.18 [124–126]. Therefore, selection for health traits can be achieved but might require quite longer
time compared to the other production traits with higher heritabilities.

3.2. The Benefits of Selecting Farm Animals with Favorable Health Traits

Genetic improvement of animal health brings many benefits to the farmers, such as increase
in production, reduction in the cost of treatment, enhancement of product quality and fertility
(Figure 2). Overall, it improves animal welfare as less animals suffer from disease, as well as improving
environmental health and human health by reducing the potential disease transmission to humans.
Breeding animals with health traits for controlling disease offers several advantages over the other
methods of disease control. Selecting health traits, such as disease tolerance, disease resistance,
and immune response, can be an inexpensive and relatively simple way to improve animal health,
welfare, and productivity. Breeding for health traits appears more and more attractive as the infectious
organisms evolve resistance to the drugs and vaccines used to control them, as the costs of treatment
and veterinary care increases faster than the value of the animals, and as a result of the huge economic
loss caused by the culling of animals with positive disease tests results.
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Protecting farm animals by vaccination or drug treatment has been the major method used
to protect at-risk farm animals; however, the public concern about vaccination or drug treatment
is increasing due to the drug residues and the resistance of pathogens and parasites to drugs
and vaccines [127]. The intense selection pressure, which evolved into the resistance of parasites
to drugs, can be imposed on the parasite population by treating farm animals with drugs such
as antibiotics or anthelmintics [128]. Genetic improvement of the health of farm animals through
selecting disease resistance may reduce the need for treatment with antibiotics and reduce the risk of
residues in farm animal products. The worldwide control strategies to cope with helminths are entirely
based on the frequent use of dewormers, which are anthelmintic drugs [129]. These control strategies
have been increasingly regarded as unsustainable given the emergence of multiple drug-resistant
parasites [130]. Each time an anthelmintic is employed, the resistant parasites will be selected for
and will pass their resistant genes onto the next generation of worms [129]. As a result, breeding
for genetic resistance is a significant component in integrated parasite management programs [131].
The genome-wide selection strategies are playing an important role in selecting animals for nematodes
resistance traits [129]. The most frequent reason for using antibiotics in lactating dairy cattle is
mastitis [132]. In the earlier research of bovine mastitis in Finland, the proportion of coagulase-negative
Staphylococci resistant to at least one antibiotic drug increased from 27% in 1988 to 50% in 1995
and from 37% to 64% for S. aureus strains [133]. Significant increases in the antibiotics resistance
were also observed in France as tetracycline resistance in Streptococcus uberis isolates increased from
15.7% to 20.4% and third-generation cephalosporin resistance in Escherichia coli isolates increased
from 0.4% to 2.4% in the period from 2006 to 2016 [134]. The issues of antibiotic resistance make
a permanent improvement in mastitis resistance for cow through selected breeding [135]. Vaccination
can be regarded as an alternative strategy for genetic improvement of mastitis; however, a single
vaccination can only provide a short-term protection instead of a permanent protection from generation
to generation. Although it may be more cost-effective in the short run by using effective low-cost
vaccination, genetic improvement in disease resistance has more advantages in the long run [135].

Selection for health traits can reduce the production costs associated with disease control in farm
animals [136]. Culling, or test-and-remove strategy, is one of the common approaches to control highly
contagious diseases such as PRRS in swine and Aleutian disease in mink. It can cause huge economic
loss to farmers due to the expensive cost in replacing a diseased animal and the loss of farmed animals.
Bovine tuberculosis, caused by the bacterium Mycobacterium bovis, is an endemic disease with zoonotic
potential in many parts of the world, notably in the UK and Ireland [1]. The primary method used to
control this disease is compulsory testing of cattle followed by the slaughter of test-positive animals
at a total cost exceeding GBP 227 million in the UK and Ireland in 2010–2011 [137]. Highly tolerant
animals still have good performance in an environment with significant virus exposure, and thus
genetic selection for disease tolerance has the potential to reduce the production costs associated with
culling diseased animals and eliminating the disease virus. In some developing countries, the majority
of poor farmers cannot afford or do not have access to therapeutic and vaccine control, and thus
the selection for healthy animals is critical for effective disease control [136].

Selection for animals with health traits (e.g., disease tolerance and disease resistance) has
the potentials to bring positive economic impacts to animal farming industries. The disease-resistant
animal has the ability to prevent the entry of a pathogen or inhibit the replication of the pathogen [138].
Therefore, selecting the disease-resistant animal has the potential to save the cost of medicine treatment
and eliminate the economic losses caused by disease (such as reduced production, high mortality,
and low fertility). The disease-tolerant animal has the ability to limit the influence of infection on its
health or production performance [138]. Hence, selecting the disease-tolerant animal has the potential
to minimize the adverse influence caused by disease during the production period.
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3.3. Methods of Selection for Health Traits

Artificial selection is the process used for determining the parents for the breeding program,
the number of offspring the selected parents produce, and the duration that the selected parents
remain in the breeding population [139]. Artificial selection is commonly used in farm animal selection
to maximize the benefits by selecting favorable characteristics and excluding the features that are
not sought after by the market. The principle of selection is choosing the individuals with the best
sets of alleles as genetic parents to reproduce so that the next generation has more desirable alleles
than the current generation. The consequence of successful selection is genetically improving future
generations of a population by increasing the proportion of desirable genes in the population over
time [139]. The progress of selection for farm animal species can be viewed according to the development
of molecular techniques as traditional genetic selection, marker-assisted selection and genomic selection.

3.3.1. Traditional Genetic Selection

Improvement of farm animals has focused on the selective breeding of individuals with superior
phenotypes. With the development of increasingly advanced statistical methods that maximize
selection for genetic gain, this simple approach has been spectacularly successful in increasing
the quantity of agricultural output. Selections for certain health traits have been done for a long time
when the ancient people tried to select animals with better health or resistance to certain diseases
during domestication [140]. These selections were purely based on their observation of performance
characteristics without any information about molecular genetics. Existing selection techniques,
however, still rely on laborious and time-consuming progeny-testing programs and often depend on
subjective assessment of the phenotype. The traditional genetic selection breeding program evaluates
the genetic potential of animals, which is based on breeding value, for some important traits using
phenotype and pedigree information observed on the animal [141]. Genetic selection has significantly
increased the production levels of farm animal species. The high accuracy of breeding value estimation,
the moderate-to-high heritability of most production traits, and the use of large databases containing
production records of many farm animal species and their genetic relationships have been found to boost
breeding programs based on genetic selection and have become quite successful [142]. The application
of genetic selection in commercial farm animals based on aspects of output such as higher growth rate
in poultry, less fat percentage rate in swine, and greater milk yield in cows has had significant effects
on outputs in the farm animal industries [143]. Genetic selection for health traits has been applied in
countries with routine health data records collected for a long time. For instance, health traits have
been included in breeding programs in Scandinavian countries since the mid-1970s [144]. Mastitis,
ketosis and displaced abomasum diseases records were included in the breeding programs of dairy
cattle in Canada [145,146]. The impacts of genetic selection for health traits depend on the nature of
the traits (heritability), sample size, methods of recording, the priority of selection (e.g., economic
weight in the selection index), environments and species; however, the progress for genetic selection
for health traits is often lower than production traits.

3.3.2. Marker-Assisted Selection

The molecular techniques such as Polymerase Chain Reaction (PCR), Fluorescence In Situ
Hybridization (FISH), and Sanger sequencing were developed in the 1980s [147]. These techniques
performed the amplification and sequencing of DNA and identification of markers linked to genes
for economically important traits such as disease resistance. When available, these markers will
provide animal breeders with an objective test system to identify the animals carrying desirable alleles
at birth or even earlier such as an embryo or sperm [148]. The method allows the identification
of genes or DNA markers for genetically engineering disease resistance and selection of enhanced
production traits [148]. Quantitative trait loci (QTL) mapping is the first step to detect chromosomal
regions affecting complex traits, which will be used in the fine mapping for identification of DNA
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markers for traits of interest. The QTL detection experiments in farm animals started in the 1990s
when Andersson et al. [149] detected a QTL for fatness on chromosome four in pigs. Many QTLs
were detected initially using initial linkage maps in either crossbreds for highly divergent traits of
interest, or commercial populations where half-sib families were available. In the early 1990s, QTL
experiments were based on resource populations with a few hundred animals; over time resource
population size has increased to thousands of animals coupled with an increasingly large number of
markers. Consequently, the number of detected QTLs has also increased rapidly in different farm
animal species (Table 3). While genetic markers that are linked to the QTL could be used to choose
animals for selective breeding programs, the most effective markers are the functional mutations within
the trait genes. For instance, the QTL identified for milk yields and components in chromosome 14
of Holstein dairy cattle is linked to the Acyl-CoA: Diacylglycerol Acyltransferase 1 (DGAT1) K232A
Polymorphism in Sweden [150], Germany [151], Canada [152], and China [153]. Strategies to identify
markers for traits and the application of these markers are described with reference to examples of loci
that control a range of different traits [154]. Detection of QTLs, and genes involving the traits of interest
helps to develop the marker-assisted selection programs [155]. For example, Ruane and Colleau [156]
found that the application of marker-assisted selection could increase 6% to 15% of the selection
response for milk production in cattle that used multiple ovulation and embryo transfer in the first
six generations of selection. However, most of the detected genes and markers only explain a small
proportion of phenotypic variances, and therefore, they are not effective for the selection of quantitative
traits. For instance, all genetic markers of 42k genotyping panel could only explain about 11% of
phenotypic variation in mortality due to Marek’s disease virus infection in layers [157].

Table 3. The number of quantitative trait loci (QTLs) detected in animal species by 7 July 2020.

Species Number of
Publications

Number
of Traits Overall Health Disease

Suppressibility
Immune
Capacity

Pathogens
and Parasites

Blood
Parameters

Cattle 1001 646 142,261 6380 2771 232 124 355
Chicken 328 430 12,246 820 739 NA NA 294
Horse 94 56 2446 1128 1026 19 NA 1
Swine 698 691 30,580 6598 586 3230 81 2747
Sheep 173 262 3305 619 135 39 335 37

3.3.3. Genomic Selection

High-throughput genomic technologies especially high-throughput single nucleotide
polymorphism (SNP) genotyping, genotype-by-sequencing, as well as the whole genome sequencing
methods, have been commercially available for more than ten years. Genomic prediction/selection
was the biggest change in the artificial selection of livestock species by adapting high-throughput
genotyping technologies in the farm animal sector [158]. Genomic selection refers to making breeding
decisions based on genomic estimated breeding values (GEBVs) obtained from SNP effects using
various prediction methods [158]. The main approach for genomic selection is to determine the SNP
effects from a reference population consisting of a subset of animals with both SNP genotypes
and phenotypes for traits of interest, then to use the SNP effects to compute the breeding values (genetic
merit) for other genotyped animals that are not yet phenotyped. The basic statistical method used
for genomic prediction is similar to the traditional best linear unbiased prediction (BLUP) method
that has traditionally been used in animal breeding for a long time, except that the relationship matrix
is computed based on SNP genotypes or genomic information. The major advantages of genomic
selection are the higher prediction accuracy (compared to traditional EBVs obtained using pedigree
information) and the shorter generation interval [159]. The accuracy of GEBVs depends on the size of
the reference population used to derive prediction equations, the heritability of the trait, the extent of
relationships between selection candidates and the reference population, the relationship between
test and reference populations, number of SNPs, number of loci affecting the traits as well as how
close assumptions in genomic prediction methods are to the truth [160,161]. Genomic selection has
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been successfully applied in the farm animal sections and has accelerated the genetic gain not only for
the production traits but also for many health traits [162].

3.4. Selection for Different Types of Health Traits

3.4.1. Selection for Disease Response Traits (Resistance, Tolerance, and Resilience)

Disease tolerance and resistance are the most common targeted disease response traits in farm
animal breeding programs, as they are natural and distinct mechanisms of a host’s response to infectious
pathogens and could be targeted for genetic improvement [13]. Resistance is the ability of a host to
prevent the entry of a pathogen or inhibit the replication of the pathogen. Tolerance is an ability of
a host to limit the influence of an infection on the host’s health or production performance without
interfering with the life cycle of the pathogen [138].

To date, most efforts to control infectious disease focus on selecting disease resistance farm animals
to improve the ability of the host to fight disease. The heritable differences of disease resistance
between animals lead to opportunities to breed animals for enhanced resistance to the disease [163].
In cattle, the major focus on health traits selection is for mastitis resistance. Many different approaches
have been proposed in order to increase the possibility of selection for mastitis [164]. Up to date,
2382 QTLs have been identified for mastitis resistance in dairy cows (Animal QTL Database, https:
//www.animalgenome.org/cgi-bin/QTLdb/BT/nscape?isID=1439). Not only increasing the number
of QTLs, the genetic and genomic selection for mastitis has also achieved a certain level of success
(reviewed by Weigel and Shook, [165]) because of the increasing accuracy of prediction for mastitis or
the inclusion of different new methods of identification of mastitis incidence in the selection index.
For instance, the accuracy of genomic prediction could reach as high as 0.50 to 0.55 for mastitis
infection depending on the models [166]. Unlike mastitis, less progress is reported for selection for
Johne’s disease and BRDC resistance, which might be due to the lack of accurate measurements
and their less serious impact on production. The heritabilities for Johne’s disease (range from 0.07
to 0.16) and BRDC (range from 0.07 to 0.19) resistance and differences among breeds have been
documented in the previous studies [20,124,167,168]. These heritability estimates and significant
estimates of additive genetic variances indicate that computing traditional phenotype-based genetic
evaluations for resistance to Johne’s disease and BRDC is feasible in cattle populations. In swine,
43 QTLs for PRRS resistance have been mapped to 12 chromosomes (Animal QTL Database, https:
//www.animalgenome.org/cgi-bin/QTLdb/SS/traitmap?trait_ID=779). The major QTL region was
located on chromosome four (SSC4) that explained 16% of the genetic variance of PRRS virus load
with a frequency for the favorable allele of 0.16 and a heritability of 0.30 [169]. In poultry, a number of
QTLs associated with Marek’s disease resistance have been reported in various lines and breeds of
chicken using SNP or microsatellite markers since 1998 [170–174].

The research focus associated with selecting health traits has expanded to increase the host’s
tolerance to reduce the harmful effects of infection on health and performance [13,175]. Genetic
selections of disease tolerance are rare, as the genetics of disease tolerance and its measurement are
more difficult to elucidate than disease resistance in farm animals [1,176]. Growing evidence, however,
indicates the potential for genomic selection of disease tolerance. Genomic studies have been able to
map the QTL for tolerance traits as Zanella et al. [177] identified a number of QTLs for Johne’s disease
and Hanotte et al. [178] detected 16 QTLs for trypanosomosis, in the cross of N’Dama and Boran
cattle. Meanwhile, the results of genomic prediction (accuracy of 0.38) for facial eczema suggested that
genomic selection for the facial eczema disease tolerance has the potential to help the New Zealand
sheep industry to cope with the issues caused by facial eczema [179].

Although both resistance and tolerance traits may be under genetic control and could thus be
targeted for genetic improvement, selecting tolerance for disease may have some advantages over
selecting disease resistance [176]. Firstly, the resistance ability of a host can limit the replication of
a pathogen within the host, and therefore, selecting host resistance has a potential to increase the selection

https://www.animalgenome.org/cgi-bin/QTLdb/BT/nscape?isID=1439
https://www.animalgenome.org/cgi-bin/QTLdb/BT/nscape?isID=1439
https://www.animalgenome.org/cgi-bin/QTLdb/SS/traitmap?trait_ID=779
https://www.animalgenome.org/cgi-bin/QTLdb/SS/traitmap?trait_ID=779


Animals 2020, 10, 1717 15 of 28

advantages on pathogen strains that can withstand host resistance mechanisms and eventually result
in a loss of selection advantage of the host [180,181]. It is the potential pitfall for a long-term breeding
strategy which focuses on disease resistance if the disease virus has a high mutation rate such
as the PRRS virus in swine [182]. It has been theoretically proposed that selecting tolerance might
not motivate such selection pressure on the pathogen [181]. Secondly, compared with the resistance
mechanisms which directly influence the life-cycle of the pathogen, improving host tolerance has
the potential to provide cross-protection against other strains of the virus, or other prevalent infectious
agents due to the mechanisms of tolerance which primarily target host-intrinsic damage prevention or
repair mechanisms [175,183,184].

Resilience is another health trait that is attracting the attention of animal breeders. Generally,
resilience is an ability of an animal either to minimize the influences caused by disturbances or to
return to the body condition prior to exposure of a disturbance [185]. The capability of taking care of
a larger number of animals is one of the requirements for the intensification of farm animal production.
Selecting resilient animals can improve this capability of the farm animal industries because resilient
animals are healthy and easy-to-care-for animals that need less attention time [186]. On the other
hand, compared to the direct selection based on disease tolerance and resistance, the selection based
on resilience is a more pragmatic way of keeping healthy animals, because it does not need the records
on pathogen burden, which is the amount of pathogen in the animal’s body [187–189]. Resilience,
however, is not yet included in breeding goals due to the difficulty of phenotyping [13]. Fortunately,
the current developments on the big data collection and new disease resilience indicators defined
based on these data provide great opportunities to breed for improved resilience in livestock [190].

3.4.2. Selections for Immune Response Traits

Immunity response traits are also important health traits for animal breeders to select for improving
the farm animals’ ability to withstand disease. The immune system is important to control infections
and diseases. The immune response traits have been recommended to be selected for decreasing
the incidence and impact of the disease in farm animals [14,191]. In Holstein cattle, the lower occurrence
of mastitis improved response to the commercial vaccine, and increased milk and colostrum quality
are all observed in cows with superior or high immunity response [118]. Consequently, improving
the inherent ability to cope with the diseases in dairy cattle through genetic selection for superior or high
immunity response is feasible [192]. In cattle, the High Immune Response (HIR™) and the Immunity+,
which are used to identify and select animals with naturally optimized immune responses, have been
applied in the genetic selection of cattle for improved immunity and health [14]. In swine, the total
and differential numbers of leukocytes, expression levels of swine leukocyte antigens I and II, and serum
concentrations of IgG and haptoglobin are immunity traits that have been demonstrated to have
additive genetic variation. These immunity traits, therefore, have the potential to be used as criteria
to improve the selection of pigs for coping with clinical and subclinical diseases [193]. In poultry,
the presence of genetic variability in immune response traits and the discovery of SNPs associated
with immune response traits indicate that genetically enhancing antibody response and resistance to
parasitism is feasible through genomic selection [194].

3.5. Challenges in the Selection of Health Traits

Health traits, such as disease resistance, disease tolerance, and immunity response level are usually
quantitative traits which are influenced by many genetic and environmental factors. Although genetic
selection has significantly increased the production traits in farm animal species such as higher growth
rate, less fatness, and greater milk yield [143], selection for health traits is much more complicated
and faces some challenging obstacles. The potential problems in selection for health traits can be
classified under desirability, feasibility and sustainability [195].
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3.5.1. Desirability

The desirability describes the importance of the disease relative to the other diseases or production
traits. The correlations between health traits and economic traits are often negative, which means
the health traits are potentially genetically antagonistic to production traits [196,197]. Milk yield in dairy
cattle has unfavorable correlations with many disease response traits [198,199]. The genetic correlations
between mastitis and milk production or high somatic cell score and milk production are moderate
and positive [200]. In poultry, genetic selection for greater body weight can lead to decreased immunity
to fowl cholera and Newcastle disease [201]. The opposite results, however, also occur in some research.
For example, van der Most et al. [202] stated that selection for growth in poultry can compromise
the immune function, while the selection for immune function does not consistently affect growth.
Therefore, identifying the genetic correlations between health traits and production traits in farm
animals is an important aspect of health traits selection. Applying the economic selection index is one
of the solutions to deal with the antagonistic genetic correlation between traits. In 1943, Hazel [203] first
presented the aggregate genotype, which was also called net merit of animals as a linear combination of
breeding values for each trait weighted by the economic value of the traits. After that, the economic
selection index for multi-trait selection has been used in animal breeding research fields and employed
in animal agriculture industries. The breeding objective can be defined as the aggregate breeding value
expressed by profit or economic efficiency, and it is the overall goal of breeding programs to increase
the profits or economic efficiency for breeders and/or producers. In this way, multi-trait selection with
the economic selection index can minimize the adverse influences caused by the antagonistic genetic
correlations between target traits to achieve the overall goal of breeding programs [204].

3.5.2. Feasibility

Feasibility accounts for the tools available with which to perform the selection. The success of
selection for health traits is highly dependent on correctly identifying the phenotype for traits associated
with the host’s abilities to withstand infectious diseases. Accurately identifying the phenotypes for
health traits is expensive and difficult. An extensive data recording is required to enable an accurate
genetic evaluation. High labor costs are required for long-term recording of large amounts of
phenotypic and progeny data [12]. In a combined population of infected and healthy individuals, it is
not correct to consider an individual with good performance to have favorable health traits, nor the sick
populations to be genetically susceptible [205]. Some susceptible animals still show good performance
because they may not have been sufficiently exposed to the pathogens. An animal displaying
a healthy performance without clinical symptoms may have sub-clinical infections and represents
a pathogen carrier. The clinical expression of a disease can be confounded by infection with one or
more similar diseases such as pneumonia which can be confused with pulmonary adenomatosis,
bronchitis, and pleuritis. Meanwhile, diagnosing a disease accurately and specifically is costly
and time-consuming [196].

3.5.3. Sustainability

Sustainability means the enhanced resistance to the infectious disease in the farms or flocks
is stable for a long period especially when the pathogens often evolve faster than the hosts [195].
The long-term success of selection involves not only the choice of the best animals with disease
resistance but also the management systems with the ability to cope with the constant changes in
the farming environment. For instance, hot environment caused by global warming could impair
production and reproductive performance, metabolic and health status, and immune response [206].
The climate changes also cause changes in the pathogens or create novel pathogens which require
the producers to constantly adapt new methods and treatments for their animals. Genomic selection of
robustness and fitness traits could be a solution for this challenge [190,207].
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3.6. Promise of Selection for Health Traits

3.6.1. High-Throughput Phenotyping and Sequencing, and Generation of Big Data

Big data is a mix of different sources of data (structured and unstructured) that comprises a large
volume of information [208]. The major characteristics of big data include volume, velocity, variety,
variability, veracity, validity, and volatility [209]. Big data has been adapted to the farm animal sector
such as precision farming [210], biosensors [211], electronic feeding stations, and automatic milking
systems [123]. Big data is also important for infectious disease surveillance and modeling [190,212]. It is
clear that big data generated from high-throughput phenotyping will give unprecedented opportunities
for combating diseases and selecting healthy animals [213,214]. For example, the mastitis and claw
health can be recorded via high-throughput phenotyping devices such as real-time biosensors [215,216].
The use of big data for animal health care, however, needs a careful handling of the data [217]
and selection of appropriate statistical methods [218,219]. High-throughput sequencing data, such
as genomics, transcriptomics, proteomics, and epigenomics etc., have been adapted to improve
animal health [220,221] as they could help to understand the biology of disease, computing EBVs,
and pinpointing the biomarkers.

3.6.2. Data Sharing and International Corporations

Data sharing and international corporations can play crucial roles in the selection of healthy traits
even those selections that take place locally. The major reason for this is that many diseases in farm
animals are transboundary diseases. The outbreaks of diseases could potentially affect other farms in
different countries such as the outbreaks of Avian Influenzas Virus that cause significant loss in many
nations worldwide. Information sharing plays a crucial role in controlling diseases for nations on
the same continent especially for developing countries [222]. It is also important to have a standard
protocol for recoding the incidences, progress of the disease and consequences of diseases for better use
of data. In cattle, for instance, the International Committee for Animal Recording provides a recording
guideline for 1000 diagnoses that can be used toward the genetic improvement of health traits (ICAR
GUIDELINES, https://www.icar.org/index.php/icar-recording-guidelines/). International corporations
could work together in a joint effort for phenotyping or genotyping animals/disease to enlarge
the resources and enhance the human capacity to deal with disease. For example, the use of automatic
milking systems from different nations could improve the modeling of mastitis infections [165] or
the sharing of omics data could better develop the statistical methods and enhance understanding
about the disease biology [223]. The current 1000 Bull Genomes Project is a successful story regarding
the sharing of genomic data for improving the prediction accuracy of future genomic EBVs [224]. It is
important to indicate that increasing the capacity of cloud storage and computing could also support
the sharing of data and corporations.

4. Conclusions

Selecting favorable health traits to cope with diseases in farm animals has increasingly become
an attractive focus of animal farming industries. Given some limitations and deficiencies of current
non-selection disease control methods and the advantages of genetic selection over the other methods,
breeding for health traits is a promising solution for the sustainable development of livestock farming.
Although some remaining challenges regarding the accuracy of phenotyping and low heritability
of disease traits hinder the progress of breeding for health traits, the advancement of sequencing
techniques and affordable cost of genotyping make selective breeding more beneficial as a method for
disease control but also require more storage and computing power. With the development of cloud
computing, big data analyses increase the feasibility of selection for animal health traits. Increasing
threats, such as climate change, have caused changes in the environments that require international
collaborations to deal with the disease on a global scale. Eventually, smart farming with healthy animals
and clean environments will be achieved with the sustainable selection methods of favorable health

https://www.icar.org/index.php/icar-recording-guidelines/
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traits. The genetic and genomic selection solution, however, cannot address all the problems caused
by disease farm animals. Therefore, it is necessary to accompany selection solution approaches with
other disease control and monitor methods (e.g., vaccination, culling strategy, biosensor, and genome
editing) to help animal agriculture industries to reduce the economic losses and animal welfare issues
caused by farm animal diseases.
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