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Research in context panel 
 
Evidence before this study 
 
Before undertaking this study, we searched PubMed and preprint articles from in early 2022 for 
studies published in English that investigated the clinical subphenotypes of MIS-C using the 
terms “multi-system inflammatory syndrome in children” or “pediatric inflammatory 
multisystem syndrome”, and “phenotypes”. One study in 2020 divided 63 patients into 
Kawasaki and non-Kawasaki disease subphenotypes. Another CDC study in 2020 evaluated 3 
subclasses of MIS-C in 570 children, with one class representing the highest number of organ 
systems, a second class with predominant respiratory system involvement, and a third class 
with features overlapping with Kawasaki Disease. However, both studies were conducted 
during the early phase of the pandemic when misclassification of cases as Kawasaki disease or 
acute COVID-19 may have occurred. Therefore, the subphenotypes of MIS-C needs further 
investigation. In addition, we searched research articles for studies published in English on 
algorithms for distributed multi-site latent class analysis with the terms “distributed latent class 
analysis” or “multi-site latent class analysis”. Most of the existing literatures for distributed 
learning have focused on supervised learning. Literatures discuss latent class analysis for 
disease sub phenotyping in a multi-site setting where data are distributed across different sites 
are lacking.  
 
Added value of this study 
 
We developed a new algorithm to jointly identify subphenotypes of MIS-C using data across 
multiple institutions. Our algorithm does not require individual-level data sharing across the 
institutions while achieves the same result as when the data are pooled. Besides, our algorithm 
properly accounts for the heterogeneity across sites, and it can lead to accurate 
characterization of the subphenotypes at the patient-level. We then applied our algorithm to 
PEDSnet data for identifying the subphenotypes of MIS-C. PEDSnet provides one of the largest 
MIS-C cohorts described so far, providing sufficient power for detailed analyses on MIS-C 
subphenotypes. We identified three subphenotypes that can be characterized as mild with 
minimal cardiac involvement (46.1%), severe requiring intensive care with >4 organ being 
impacted, and the one with intermediate risk of respiratory symptoms, and high risk of shock, 
cardiac and renal involvement (25.3%). For hospital-specific clinical decision-making, our 
algorithm revealed a substantial heterogeneity in relative proportions of these three subtypes 
across hospitals.  
 
Implications of all the available evidence 
 
Our algorithm provides an effective distributed learning framework for disease subphenotyping 
using multi-site data based on aggregated data only. It facilitates high accuracy while properly 
accounts for the between-site heterogeneity. The results provide an update to the 
subphenotypes of MIS-C with larger and more recent data, aid in the understanding of the 
various disease patterns of MIS-C, and may improve the evaluation and intervention of MIS-C.  
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Summary 
 
Background 
 
Multisystem inflammatory syndrome in children (MIS-C) is a severe post-acute sequela of SARS-
CoV-2 infection. The highly diverse clinical features of MIS-C necessities characterizing its 
features by subphenotypes for improved recognition and treatment. However, jointly 
identifying subphenotypes in multi-site settings can be challenging. We propose a distributed 
multi-site latent class analysis (dMLCA) approach to jointly learn MIS-C subphenotypes using 
data across multiple institutions. 
 
Methods 
 
We used data from the electronic health records (EHR) systems across nine U.S. children’s 
hospitals. Among the 3,549,894 patients, we extracted 864 patients < 21 years of age who had 
received a diagnosis of MIS-C during an inpatient stay or up to one day before admission. Using 
MIS-C conditions, laboratory results, and procedure information as input features for the 
patients, we applied our dMLCA algorithm and identified three MIS-C subphenotypes. As 
validation, we characterized and compared more granular features across subphenotypes. To 
evaluate the specificity of the identified subphenotypes, we further compared them with the 
general subphenotypes identified in the COVID-19 infected patients. 
 
Findings 
 
Subphenotype 1 (46.1%) represents patients with a mild manifestation of MIS-C not requiring 
intensive care, with minimal cardiac involvement. Subphenotype 2 (25.3%) is associated with a 
high risk of shock, cardiac and renal involvement, and an intermediate risk of respiratory 
symptoms. Subphenotype 3 (28.6%) represents patients requiring intensive care, with a high 
risk of shock and cardiac involvement, accompanied by a high risk of >4 organ system being 
impacted. Importantly, for hospital-specific clinical decision-making, our algorithm also 
revealed a substantial heterogeneity in relative proportions of these three subtypes across 
hospitals. Properly accounting for such heterogeneity can lead to accurate characterization of 
the subphenotypes at the patient-level.  
 
 
Interpretation 
 
Our identified three MIS-C subphenotypes have profound implications for personalized 
treatment strategies, potentially influencing clinical outcomes. Further, the proposed algorithm 
facilitates federated subphenotyping while accounting for the heterogeneity across hospitals. 
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Introduction 
 
Multisystem inflammatory syndrome in children (MIS-C) is a form of post-acute sequelae of 
SARS-CoV-2 infection (PASC). It is a rare but severe post-infectious hyperinflammatory disorder 
happening in children and adolescents < 21 years of age that occurs 2-6 weeks after the 
infection of SARS-CoV-2. The clinical features of MIS-C are diverse. Commonly observed clinical 
features include fever, gastrointestinal symptoms, cardiac complications, mucocutaneous, and 
respiratory symptoms, with some features overlapping with Kawasaki disease or macrophage 
activation syndrome.1 The highly heterogeneous and complex spectrum of clinical features 
makes the diagnoses of MIS-C difficult. Therefore, characterizing its disease patterns by 
subphenotypes is essential to learn the co-occurrence pattern of the conditions, understand 
the pathophysiological mechanisms underlying the clinical presentations, and eventually 
improve its recognition and intervention.  
 
The latent class analysis (LCA) model is a widely used and effective method for disease 
subphenotyping.2–9 However, MIS-C is rare while LCA models often involve many parameters 
that require sufficient samples to guarantee an accurate estimate. In the MIS-C study supported 
by the PEDSnet,12, 13 the smallest hospital only identified 32 MIS-C patients, which is far from 
being sufficient for obtaining reliable LCA results. One promising strategy is to integrate data 
from multiple hospitals to increase the sample size toward reliable disease subphenotyping. 
However, individual-level data sharing is usually prohibited due to regulatory restrictions and 
privacy policies. An effective approach is federated learning,14 a method designed to analyze 
distributed data with only summary-level statistics (i.e., aggregated data) being shared across 
the institutions. However, to the best of our knowledge, there is currently a lack of federated 
learning algorithms for subphenotyping. Further, it is important to properly account for 
between-site heterogeneity due to the intrinsic differences in characteristics of patients across 
hospitals, which can lead to accurate characterization of the subphenotypes at the patient-
level. From a clinical perspective, the current understanding of MIS-C subphenotypes is limited, 
with few earlier studies.1,2 Therefore, there is still a critical need to develop an effective 
federated learning algorithm for LCA, and to characterize MIS-C subphenotypes using this novel 
method with decentralized data sets. 
 
Data integration can significantly enhance the precision and power of clinical studies by 
providing large and representative study samples. In recent years, numerous efforts have been 
made in developing large clinical research networks (e.g., OHDSI,15 PEDSnet) and data 
harmonization tools16 to make multi-site data integration possible. In addition, in the last 
decades, federated learning algorithms have been developed for analyzing distributed data in a 
privacy-aware and heterogeneity-aware manner.17–32 Nevertheless, most of the existing 
methods have focused on supervised learning, while less attention has been paid to 
unsupervised clustering tasks, such as subphenotyping via the LCA. Different from supervised 
learning, the traditional divide-and-conquer strategy (e.g., meta-analysis) cannot be directly 
applied to subphenotyping with several unique challenges. A prominent challenge is that 
applying LCA separately at different sites does not guarantee the same number of latent 
classes, which raises significant difficulty in synthesizing the results. Further, even with the 
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same number of latent classes, the identified latent classes at different sites may not be 
comparable. As an alternative to divide-and-conquer strategy, novel federated learning 
algorithms that warrant coherent definitions of the latent classes while account for between-
site heterogeneity are critically needed. 
 
In this paper, we developed a federated learning framework for disease subphenotyping and 
applied it to detect subphenotypes of MIS-C. Different from the divide-and-conquer method, 
our federated learning algorithm circumvents the class-match issue by collaboratively learning a 
common set of latent classes shared across all sites. What’s more, between-site heterogeneity 
can also be properly modeled and handled. We showed the validity and the strength of the 
proposed method through extensive real-data guided simulation studies. We then applied the 
proposed algorithm to a large electronic health records (EHR) data cohort and identified three 
clinically significant MIS-C subphenotypes. We conducted two independent validation studies. 
First, for identified clinical subtypes, we characterized and compared the demographics and 
around sixty more granular clinical features across three subphenotypes. Second, we also 
compared the identified MIS-C subphenotypes with the general subphenotypes in the COVID-
19 infected patients. And our study found that our identified MIS-C subphenotypes are truly de 
novo and specific to the MIS-C population. All these findings demonstrated the essential role of 
our method in identifying disease subphenotypes in multi-site settings. We concluded the 
paper by discussing strengths and limitations of our method. 
 
Methods 
 
Study design and participants 
 
In this retrospective and multi-site cohort study, we developed, trained, and validated a 
federated learning algorithm that was designed to detect subphenotypes of MIS-C using the 
EHR data from nine pediatric hospitals in the United States. The data were retrieved from the 
following nine PEDSnet institutions, which is a national collaboration of pediatric health 
systems that share EHR data, conduct research, and improve outcomes together: Children’s 
Hospital of Philadelphia, Cincinnati Children’s Hospital Medical Center, Children’s Hospital 
Colorado, Ann & Robert H. Lurie Children’s Hospital of Chicago, Nationwide Children’s Hospital, 
Nemours Children’s Health System (a Delaware and Florida health system), Seattle Children’s 
Hospital, and Stanford Children’s Health).  
 
We included encounters from children and adolescents < 21 years of age who had visited the 
nine hospitals between March 2020 and December 2021, with a total of 3,549, 894 patients. To 
identify the hospitalized MIS-C cases, we used the International Classification of Diseases, Tenth 
Revision, Clinical Modification (ICD-10-CM) code for “MIS-C” or “Other specified systemic 
involvement of connective tissue”. We identified a final study cohort of 864 hospitalized MIS-C 
patients. For details of the cohort selection process refer to Figure A2. 
 
We developed ten clinical dichotomous variables to characterize MIS-C patients, including 
SARS-CoV-2 infection, SARS-CoV-2 exposure 42 days before or during the inpatient stay, shock, 
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and involvement of the following organ systems: cardiac, gastrointestinal, hematological, 
neurologic, renal, respiratory, and dermatologic. Our evaluation time window of the organ 
system involvements and shock was during hospitalization or 1 day prior to the hospitalization. 
A particular organ system involvement was positive if at least one condition, abnormal 
laboratory result, or procedure related to that system was positive within the specified time 
window. The detailed information on the condition, laboratory results, and procedures used to 
define each variable is in Table A2. In addition, we have included the code sets used to define 
all the related conditions, laboratory results, and procedures in the Supplementary Material. 
The code sets were developed with the effort of a group of clinicians in pediatric diseases. 
 
The use of data was approved by the Children’s Hospital of Philadelphia’s Institutional Review 
Board (IRB). The informed consent was waived.  
 
Procedures 
 
Latent class analysis (LCA) is a well-suited approach for our purpose of MIS-C subphenotyping. 
LCA takes in discrete manifest variables and identifies latent classes (i.e., subphenotypes) based 
on class-specific co-occurrence pattern among manifest variables. Each latent class can be 
characterized by a vector of prevalence of the manifest variables within this latent class, which 
represents a specific pattern of distribution. 
 
To jointly conduct LCA using data from multiple sites, we developed a Distributed Multi-site LCA 

approach (dMLCA). The proposed dMLCA successfully addresses two key challenges when 
applying LCA in multi-site settings: first, a common set of latent classes shared by all sites are 
defined to solve the class-match issue. Second, site-specific class mixing proportions are 
allowed to account for the between-site heterogeneity in the study population. In Figure 1, we 
illustrated the between-site heterogeneity and how this can be unfolded by the shared latent 
classes and site-specific class proportions. To be concrete, in MIS-C data analysis where we 
used ten clinical dichotomous variables to characterize MIS-C patients, the prevalence of these 
variables within each institution indicates substantial heterogeneity of population across sites 
(see Table A1). Since the subphenotypes of a disease are expected to reflect the intrinsic 
clinical mechanisms of the disease which do not rely on the hospitals, the subphenotypes 
should be consistent across sites. By using the varying mixing proportions of subphenotypes 
across sites, our dMLCA indeed provides a reasonable framework to explain the between-site 
heterogeneity of populations while retains the consistency of subphenotypes across sites.  
 
Properly handling the between-site heterogeneity is helpful to improve the estimation and 
prediction accuracy in multi-site analysis. Most current work that uses centralized data, i.e., 
pooled data analysis, ignores the between-site heterogeneity and simply applies the standard6, 1 
on the pooled data, which could lead to biased results.33,34 In contrast, with dMLCA, the 
between-site heterogeneity is carefully handled, which can provide us with improved 
estimation accuracy compared to centralized LCA and further facilitates higher prediction 
accuracy for patient class membership. 
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In multi-site studies, individual-level data-sharing is often prohibited due to privacy concerns, 
necessitating the use of federated learning algorithms. In the MIS-C data analysis, we can 
access the individual-level data at the Children’s Hospital of Philadelphia (CHOP), while other 
participant sites might not be able to timely provide individual-level data. To meet the analysis 
need without sharing individual-level data, we developed a distributed Expectation-
Maximization (EM) algorithm requiring only individual-level data from a lead site (i.e., CHOP) 
and aggregated data from all participant sites to fit dMLCA. EM algorithm35  is designed to deal 
with missing data and therefore is appropriate here by treating the unobserved subphenotypes 
as missing. At each iteration of the EM algorithm to update the parameters, a key observation 
to guarantee lossless estimation while handling the data-sharing prohibition is that the 
updating formulas are exactly decomposable by sites. Therefore, at each iteration, each site 
only needs to calculate the decomposable part using its local data and transfer the results 
(which are aggregated data) to the lead site to update the estimates. No patient-level data 
sharing is needed in this procedure.  
 
Applying dMLCA can improve patient-level class membership prediction. With the dMLCA 
fitting results, the class membership for each patient can be inferred from the posterior 
probability which is the probability of each patient belonging to a certain latent class. The 

Figure 1 Illustration of the shared subphenotypes, the heterogeneous population 
across sites and how the varying proportions/prevalence of the subphenotypes 
account for the heterogeneity. The populations across sites may appear very different 
(represented by different outlines; see the second column – “Heterogeneous 
population”), and this overall between-site heterogeneity is unfolded by latent 
classes (see the third column – “Shared subpopulations”). Suppose the population 
contains three distinct subphenotypes. Population in Site 1 is an even mixture of two 
of the subphenotypes (i.e., classes 1 and 2) and with a small portion of the remaining 
subphenotype, while Site 2 contains a large portion of a subphenotype (i.e., class 2) 
and small portions of the remaining subphenotypes (i.e., classes 1 and 3). 
Heterogeneity in the prevalence of the subphenotypes across sites explains the 
heterogeneity in the population. 
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benefits of applying dMLCA to improve patient-level class membership prediction can be 
displayed much clearer with the formula of calculating the posterior probability: 

𝑤𝑘𝑖𝑐 = Pr(𝑍𝑘𝑖 = 𝑐|𝑌𝑘𝑖 , 𝑋𝑘𝑖 , 𝜃) =
𝜆𝑘𝑐(𝑋𝑘𝑖)𝑓(𝑌𝑘𝑖 , 𝜋𝑐)

∑ 𝜆𝑘𝑐′(𝑋𝑘𝑖)𝑓(𝑌𝑘𝑖 , 𝜋𝑐′)
𝐶
𝑐′=1

. 

First, the prevalence of manifest variables 𝑌𝑘𝑖 within each latent class 𝜋𝑐  is learned jointly in 
dMLCA, which provides higher estimation accuracy than the single-site analysis and has smaller 
bias than the divide-and-conquer method; second, the site-specific class mixing proportion 𝜆𝑘𝑐 
solely employed in dMLCA takes into account unobserved site-specific factors into 
consideration, while pooled analysis simply ignores this information; third, when the effects 
from patient-level covariates 𝑋𝑘𝑖, e.g., age, on class membership prediction are of interest, 
dMLCA allows for a regression model 𝜆𝑘𝑐(𝑋𝑘𝑖) to jointly learn these effects. Then, the class with 
the maximum posterior can be used as the inferred class membership of a patient.  
 
We summarize the differences between dMLCA and several existing methods in Table 1. Our 
simulation studies have demonstrated that dMLCA outperforms other methods with greater 
estimation and prediction accuracy. Details and results of the simulation studies are provided in 
the Supplemental Material. 
 

Table 1 Comparison of the proposed dMLCA and several existing methods. 

 
 
Statistical analysis 
 
LCA requires a pre-specified number of latent classes. To select the number of latent classes, 
we inspected several model fitting criteria including Akaike Information Criterion (AIC)36 and 
Bayesian Information Criterion (BIC).37 We fitted the model with two to six classes and 
evaluated the corresponding AIC and BIC values (Table A3). While AIC continued to decrease as 
the number of classes increased, BIC favored three latent classes most. To guarantee the 
interpretability of the latent classes, we also took into account clinicians’ judgement and 
expertise in selecting the optimal number of classes and decided the number of latent classes 

 Methods 

Centralized 
LCA 

Single-site 
LCA 

Divide-and-
conquer 

dMLCA 

Aggregated-data based No Yes Yes Yes 

No class-match issue Yes N/A No Yes 

Heterogeneity-aware No N/A No Yes 

Accurate class membership 
prediction 

No Yes No Yes 

Accurate estimation Yes No No Yes 
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to be three. We randomly generated 10 initial values to run dMLCA with three latent classes 
and reported the one with the maximum likelihood as the final estimator. The algorithm was 
run in R version 4.1.2 (2021-11-01). As sensitivity analysis, we also provided the analysis results 
with four latent classes in Figure A3 in the Supplementary Material. 
 
To validate the analysis results, we further characterized and compared the three identified 
latent classes by using demographic variables (age, race/ethnicity, gender, ICU admission, 
death, PMCA index, Pre-admission obesity) and several more granular clinical features, 
including a list of relevant medications, and the conditions, diagnoses, and lab results that were 
used to define organ systems. Specifically, medications, conditions, abnormal lab results and 
procedures were coded as dichotomous and were positive if occurred during the evaluation 
time window. For each variable, we calculated its prevalence in each latent class through an 
estimated average weighted by the patients’ posterior class membership probabilities (see 
Figure 4). 
 
In addition, we compared the identified MIS-C latent classes with the latent classes identified 
from the acute COVID-19 but non-MIS-C cohort. This comparison was made to validate that our 
identified MIS-C subphenotypes are truly de novo and specific to the MIS-C population and to 
demonstrate that the selection criteria for the MIS-C cohort were indeed valid. Specifically, we 
identified three latent classes for children testing positive for COVID-19 by PCR without MIS-C 
diagnosis by applying LCA to 59,740 children (see Panel A) of Figure 5). As for the manifest 
variables used for COVID-19 subphenotyping, except that we removed SARS-CoV-2 infection 
and exposure since all the children in this cohort were infected, we used the same manifest 
variables as in the MIS-C analysis but with an evaluation time window of -7 to 28 days from the 
first positive test date. We compared the two sets of subphenotypes identified from the MIS-C 
and COVID-19 cohorts, respectively, to see their difference. What’s more, we visualized the 
distances between COVID-19 and MIS-C subpopulations (see Panel B) of Figure 5). Specifically, 
patients were grouped into latent classes according to their maximum posterior class 
membership probabilities, then the distance between each pair of latent classes was measured 
by fixation index38 and mapped onto a 2-dimensional plot through multidimensional scaling.39 
 
Role of the funding source 
 
The funder had no role in the design and conduct of the study; collection, management, 
analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and 
decision to submit the manuscript for publication. 
 
Results 
 
Among 3,549,894 patients with age < 21 who visited any of the nine PEDSnet hospitals during 
March 2020 and December 2021, 1,180 were diagnosed as MIS-C, and 864 were hospitalized 
when the MIS-C code was assigned or 1 day after the MIS-C code was assigned (Figure A2). 
Table 2 describes the characteristics of the study cohort. The hospital names and the numbers 
that are less than 11 were blinded to protect patient data. The majority of children with MIS-C 
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were between the ages of 16 and 20 and identified as non-Hispanic White. Among the hospitals 
included in the study, Hospital B had the highest number of MIS-C cases, while Hospital F had 
the least with only 32 cases. It's also worth noting that 44% of the MIS-C patients were 
admitted to an ICU during their hospitalization. 
 

Table 2 Characteristics of the study cohort. 

 
Characteristics 

 
Number of patients (proportion) 

(N = 864) 

Age at MIS-C 
diagnosis, years 

<1 30(3.5%) 
1-4 207 (24.0%) 

5-11 171 (19.8%) 

12-15 79 (9.1%) 

16-20 377 (43.6%) 

Sex Female 343 (39.7%) 

 Male 521 (60.3%) 

Race/Ethnicity Hispanic 176 (20.4%) 
Non-Hispanic White 345 (39.9%) 

Non-Hispanic Black/African-American 225 (26.0%) 

Non-Hispanic Asian/Pacific Islander 33 (3.8%) 

Other/Unknown 46 (5.3%) 
Multiple 39 (4.5%) 

Institution A 113 (13.1%) 

B 189 (21.9%) 
C 49 (5.7%) 

D 113 (13.1%) 

E 73 (8.4%) 
F 32 (3.7%) 

G 143 (16.6%) 

H 65 (7.5%) 

I 87 (10.1%) 

Obesity Yes 100 (11.6%) 

Admitted to 
intensive care unit 

Yes 380 (44.0%) 

Vital status Yes <11 (<1.3%) 

Mechanical 
ventilation 

Yes 144 (16.7%) 

 

 
The dMLCA separated the complex MIS-C cohort into three clinically interpretable 
subphenotypes with different disease presentations. The resulting subphenotypes, as depicted 
in Panel A) of Figure 2, are characterized as follows: Class 1 represents patients with a milder 
form of MIS-C not necessitating intensive care and with no or minimal cardiac involvement.  
Class 2 comprises children exhibiting a severe presentation of MIS-C alongside cardiac system 
involvement and less than four involved organ systems; lastly, Class 3 represents children with 
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the most severe form of MIS-C showcasing cardiac involvement as well as over four impacted 
systems, including respiratory, gastrointestinal (GI), renal, hematologic, and dermatological 
manifestations. These findings have important clinical implications, suggesting that children 
with GI presentations or skin rashes may have an increased risk of more severe disease, thereby 
warranting closer monitoring and earlier treatment. The mean posterior probabilities of 
membership of the three latent class were 0·841, 0·802 and 0·874, respectively, which were 
large and therefore showed that the classes were well-separated.  
 
As for the whole population across all the nine sites, the estimated class mixing proportions 
(i.e., class prevalence) were 46·1%, 25·3%, and 28·6% for Class 1, 2 and 3, respectively.  
Besides, dMLCA estimated the site-specific class mixing proportions to help understand the 
population composition at each site. Panel B) of Figure 2 presents the prevalence of the classes 
at each of the nine sites (A-I), highlighting that the population composition varied significantly 
across sites. For example, 42·7% of patients in Site A would fall into Class 2, while only 11·0% of 
patients in Site B were in Class 2, and in Site C almost no patients fell into Class 2. These 
differences are likely due to variations in patient populations including race/ethnicity 
distributions, in patient acuity as some centers may have captured a more selective population, 
and in evaluation and treatment protocols in place across the different healthcare systems for 
children with MIS-C. 
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Figure 2 Results of MIS-C data analysis using dMLCA with three latent classes. A) A 
heatmap showing the prevalence of ten manifest variables in three latent classes; Each 
column represents a latent class, and each row represents a manifest variable. The color 
of the boxes represents the prevalence. The legend on the top right shows the scale of 
the colors. Red represents prevalence close to 100% and blue represents prevalence close 
to 0%. Class 1 corresponds to patients with a milder presentation of MIS-C not requiring 
intensive care, with no or minimal cardiac involvement. Class 2 represents children with a 
severe presentation of MIS-C, with cardiac system involvement and < 4 organ systems 
involved, and Class 3 represents children with the more severe presentation of MIS-C 
including cardiac involvement along with > 4 systems involved, including respiratory, 
gastrointestinal (GI), renal, hematologic, and dermatological manifestations. B) Pie charts 
showing the prevalence of the three latent classes by site.  
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Figure 2 Results of MIS-C data analysis using dMLCA with three latent classes. A) A 
heatmap showing the prevalence of ten manifest variables in three latent classes; Each 
column represents a latent class, and each row represents a manifest variable. The color 
of the boxes represents the prevalence. The legend on the top right shows the scale of 
the colors. Red represents prevalence close to 100% and blue represents prevalence close 
to 0%. Class 1 corresponds to patients with a milder presentation of MIS-C not requiring 
intensive care, with no or minimal cardiac involvement. Class 2 represents children with a 
severe presentation of MIS-C, with cardiac system involvement and < 4 organ systems 
involved, and Class 3 represents children with the more severe presentation of MIS-C 
including cardiac involvement along with > 4 systems involved, including respiratory, 
gastrointestinal (GI), renal, hematologic, and dermatological manifestations. B) Pie charts 
showing the prevalence of the three latent classes by site.  
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In addition, we demonstrated that the data integration in dMLCA was lossless by comparing the 
results obtained from dMLCA to those obtained from fitting LCA with site-specific mixing 
proportions on pooled data, i.e., the centralized patient-level data supposing data-sharing is 
allowed. Figure 3 showed that the estimated parameters in Class 1 from dMLCA using 
aggregated data only are identical to those obtained from pooled data analysis. Results 
regarding Class 2 and 3 are the same and are given in the Supplemental Material. 
 
As a validation, the subphenotypes were further characterized in Figure 4. The classes share 
close distributions of race and ethnicity, except for the black/African American race which is 
more prevalent in Classes 2 and 3 and has the highest proportion in Class 3. Class 3 also 
exhibited a larger proportion of children aged 12 years and older and children with complex 
chronic conditions. ICU admissions were higher in Classes 2 and 3. The patterns of the specific 
diagnoses, lab results, and medications were consistent with the co-occurrence patterns of the 
ten organ system involvement indicator variables found in the primary analysis as shown in 
Figure 2. 
 

 
 
 

Figure 3 Prevalence of manifest variables for latent class 1 and mixing proportion 
(prevalence) of latent class 1 estimated by dMLCA algorithm and the pooled data in the MIS-
C data analysis (the estimates for latent classes 2-3 are deferred to Figure A1 in the 
Supplementary Materials). 
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We further confirmed the uniqueness of the identified MIS-C latent classes by comparing them 
with the subphenotypes identified in the general COVID-19 cohort. In Figure 5, Panel A), we 
presented the characteristics of latent classes of COVID-19 PCR-positive children without MIS-C 
diagnoses, which were markedly different from the characteristics of the MIS-C latent classes. 
To further emphasize the separation between the COVID-19 and MIS-C subpopulations, we 
generated a visual representation of their distances in Panel B) of Figure 5. In general, the 

Class 2 Class 1 Class 3 

Figure 4. A heatmap showing the prevalence of over 60 demographic, condition, lab and 
medication variables in the three latent classes found in MIS-C data analysis; Each column 
represents a latent class, and each row represents a variable. The calculation of 
prevalence is weighted by posterior class membership probabilities. The color of the 
boxes represents the prevalence. The legend on the top right shows the scale of the 
colors. Red represents prevalence close to 100% and blue represents prevalence close to 
0%.  
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latent classes of the two cohorts were distinctly separated from each other, with COVID-19 
subphenotypes located at the left side of the figure and MIS-C subphenotypes located at the 
right part of the figure. 
 
 

 

Discussion 

 
We developed and validated a federated learning approach, dMLCA, which enables detecting 
subphenotypes of a disease using data from multiple sites when patient-level data sharing is 
not allowed. We applied dMLCA to analyze data from nine hospitals and identified three 
subphenotypes of MIS-C. Compared to divide-and-conquer methods, our dMLCA eliminates 
potential biases due to inconsistent number of classes or class mismatching, while allowing for 
site-specific parameters to account for between-site heterogeneity that is often overlooked in 
existing methods. More importantly, our estimation is statistically lossless compared to the 
results based on the pooled patient-level data. Overall, dMLCA represents a promising 

A 

B 

Figure 5. A) A heatmap showing the latent classes and their characteristics of children 
testing positive for SARS-CoV-2 by PCR test. B) A 2-Dimensional plot comparing the distances 
among MIS-C and COVID-19 PCR positive subpopulations. Closer subpopulations have larger 
similarities. The distance between each pair of latent classes was measured by fixation index 
(Fst) and mapped onto a 2-dimensional plot through multidimensional scaling.  
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approach for disease subphenotyping that can overcome barriers in data sharing across 
multiple sites. 
 
One of the major strengths of dMLCA is its novel formulation, which warrants coherent 
definitions of the latent classes while account for between-site heterogeneity. Specifically, it 
reduces estimation bias that can occur due to class mismatching for divide-and-conquer type of 
methods by defining a set of subphenotypes that are common across multiple datasets. 
Further, dMLCA also accounts for between-site heterogeneity, which is commonly observed in 
multi-site studies. By allowing for site-specific prevalence of subphenotypes, dMLCA can 
capture the unique characteristics and differences between different hospitals. This is a critical 
feature that can explain the heterogeneity and lead to more accurate class membership 
estimation. 
 
The second advantage of the dMLCA algorithm is its capacity to achieve lossless information 
integrate across multiple hospitals based on aggregated data only. Since all the calculations 
involved in EM algorithms are exactly decomposable in terms of hospitals, the dMLCA 
estimation procedure only requires each participating hospital carry out its calculations locally 
and send the aggregated information to the leading site. This approach guarantees that the 
estimation results achieved are equivalent to those obtained when data sharing is allowed. 
Moreover, the privacy-aware feature of dMLCA is also achieved since no patient-level data is 
exchanged across different institutions. 
 
Despite these strengths, our dMLCA algorithm has some limitations that warrants further 
investigations. First, our dMLCA is based on aggregated data only. Such algorithm is applicable 
to settings similar to the well-known GLORE19 and WebDISCO22 algorithms for federated logistic 
regression of binary outcome and Cox proportional hazard model of time-to-event outcomes, 
respectively. In the future, formal privacy techniques, such as k-anonymity,40 differential 
privacy,40, 41 homomorphic encryption42 and multi-party encryptions, 43 can be integrated into 
the step of shared aggregated data. Secondly, similar to the popular GLORE and WebDISCO, 
dMLCA requires multiple rounds of iterations, which requires automated data-sharing 
infrastructure, such as in the pSCANNER consortium44. It would be interesting to further 
develop few-shot algorithms for better communication-efficiency. 
 
In our application of dMLCA algorithm to the EHR data cohort, we detected three significant 
subphenotypes of MIS-C. Specifically, subphenotype 1 (46.1%) represents patients with a mild 
presentation of MIS-C; subphenotype 2 (25.3%) represents children featuring a high risk of 
shock, cardiac and renal involvement, and a medium risk of respiratory symptoms; and 
subphenotype 3 (28.6%) represents patients requiring intensive care, with a high risk of shock 
and cardiac involvement, accompanied by a high risk of > 4 organ system involvement. Notably, 
we observed significant differences in the prevalence of these subphenotypes across the 
hospitals, which likely reflects the varying patient populations. To ensure the validity of our 
study cohort selection criteria, we further confirmed that the detected MIS-C subphenotypes 
were distinct from the general COVID-19 subphenotypes. However, we acknowledge that our 
study has limitations due to a moderate sample size. Therefore, further investigations on the 
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MIS-C subphenotypes with a larger sample size at external pediatric cohorts are needed for 
confirmatory results. 
 
In summary, our dMLCA algorithm is among the first efforts as unsupervised federated learning 
algorithms in the real-world data settings. This algorithm enables multiple sites to 
collaboratively learn disease subphenotypes based on aggregated data only. Moreover, it 
accommodates site-specific parameters to deal with heterogeneity across different sites. We 
believe this is a critical advance of federated learning in the disease subphenotyping using 
multi-site data in real-world settings. 
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