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Gain-of-function mutations of isocitrate dehydrogenases 1/2 (IDH1/2) play crucial roles in
the development and progression of acute myeloid leukemia (AML), which provide
promising therapeutic targets. Two small molecular inhibitors, ivosidenib and
enasidenib have been approved for the treatment of IDH1- and IDH2-mutant AML,
respectively. Although these inhibitors benefit patients with AML clinically, drug resistance
still occurs and have become a major problem for targeted therapies of IDH-mutant AML.
A number of up-to-date studies have demonstrated molecular mechanisms of resistance,
providing rationales of novel therapeutic strategies targeting mutant IDH1/2. In this review,
we discuss mechanisms of resistance to ivosidenib and enasidenib in patients with AML.
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INTRODUCTION

Isocitrate dehydrogenases 1/2 (IDH1/2) are metabolic enzymes catalyzing the oxidative
decarboxylation of isocitrate to a-KG and reducing NAD(P)+ to NAD(P)H in the tricarboxylic
acid (TCA) cycle (1). In human cells, IDH1 localizes to peroxisome and cytoplasm (2, 3) and IDH2
localizes to mitochondria (4). IDH1 plays a prominent role in glucose sensing (5) and lipid
metabolism (6), while IDH2 is involved in regulating oxidative respiration. Thus, both IDH1 and
IDH2 are thought to play key roles in cellular metabolisms. Also, the activity of IDH1/2 confers
protection from oxidative damage, since NADPH is involved in reducing glutathione by glutathione
reductase and a-KG is implicated as a potent antioxidant (7).

Mutations to IDH1/2 are important events in several types of cancers, including acute myeloid
leukemia (AML), glioma, angio-immunoblastic T-cell lymphoma, chondrosarcoma, intrahepatic
cholangiocarcinoma, and so on (8–11). In AML, IDH1/2 mutations were found in 16~33% patients,
with R132H accounting for over 93% of IDH1 variants and R140Q/R172K being predominant in
IDH2 variants (12, 13). These mutations gain a neomorphic catalytic function that converts a-KG
to the oncometabolite R-2-hydroxyglutarate (2-HG) (14). The accumulating 2-HG, acting as a
competitive inhibitor of a-KG, occupies the catalytic sites of multiple a-KG-dependent
dioxygenases to inhibit their catalytic activity competitively. The potential targets of 2-HG
inhibition that have acquired significant attention mainly include JmjC domain-containing
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histone demethylases (JmjC KDMs), tet methylcytosine
dioxygenase 2 (TET2), and prolyl hydroxylases (PHD). JmjC
KDMs and TET2 regulate gene expression by participating in
histone and DNA demethylation, respectively, which contributes
to the blockade of cell differentiation and the development of
cancers. In addition, PHDs, the regulatory proteins catalyzing
degradation of hypoxia-inducible factor 1a (HIF-1a), also can be
inhibited by 2-HG that promotes oncogenesis and tumor
progression (15).

Multiple studies have investigated the impact of IDH1/2
mutations on the prognosis of AML, with inconclusive results.
Generally, IDH1 mutations are associated with an inferior outcome
and IDH2 mutations are associated with a relatively favorable
prognosis in AML (12, 16–19). In AML, mutant IDH1/2 serves as
a poor prognostic factor in cytogenetically normal (CN)-AML with
mutant NPM1 without FLT3-ITD (12). Several studies analyzed the
specific clinical characteristics of AML patients with IDH1/2
mutations, and reported that IDH1/2 mutations are associated
with old age, low WBC, high platelets, normal cytogenetics, and
mutant NPM1 (12).

The discovery of IDH mutations in cancers promotes the
rapid development of targeted inhibitors. Enasidenib (AG-221)
and ivosidenib (AG-120) are inhibitors approved by FDA for the
treatment of refractory or relapsed R/R AML with IDH2 or IDH1
mutations (20). Vorasidenib is a potent, oral, brain-penetrant
dual inhibitor targeting both IDH1 and IDH2 mutants, which is
undergoing a phase III INDIGO study (NCT04164901) in
patients with residual or recurrent grade II glioma (21). A
first-in-human phase I study (NCT02492737) of vorasidenib
demonstrated well tolerability and preliminary antitumor
activity in patients with low-grade gliomas (22).

Enasidenib and ivosidenib are first-in-class small molecule
inhibitors targeting mutant IDH2 or IDH1. Biochemical and
cellular analyses showed that ivosidenib was a highly selective
inhibitor of IDH1, with no inhibition to IDH2 at micromolar
concentrations. Preclinical data demonstrated that the treatment
of ivosidenib significantly decreases the level of 2-HG in tumor
models and promotes differentiation of primary human AML
blast cells (23). Notably, ivosidenib and enasidenib demonstrated
excellent clinical efficacy in IDH1/2-mutated R/R AML patients,
with overall response rates (ORRs) of 41.6% and 40.3%,
respectively, total CR rates of 21.6% and 19.3%, respectively,
and median overall survival (mOS) of 8.8 months and 9.3
months, respectively. The median event-free survival (mEFS)
duration for enasidenib-treated AML patients was 6.4 months.
Vorasidenib showed preliminary antitumor activity in recurrent
or progressive non-enhancing IDH1/2-mutated low-grade
glioma with an objective response rate of 18% and a median
progression-free survival of 36.8 months.

Although enasidenib or ivosidenib have remarkable
advantages as therapeutic agents in the treatment of R/R AML,
drug-resistance inevitably occurs, rendering disease progression.
Some AML patients with IDH mutations have no response to
monotherapy with mIDH inhibitors, and some patients relapsed
with elevated circulating levels of 2-HG and acquired resistance
to IDH-targeted therapies. The mechanism of drug-resistance is
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complex. In this review, we discuss the mechanisms of resistance
to enasidenib or ivosidenib and potential strategies to overcome
these mechanisms (Figure 1).
SECONDARY IDH MUTATIONS

Allosteric inhibitors of IDH mutations exhibit similar binding
characteristics, which was validated by using structure modeling.
enasidenib was confirmed to bind to an allosteric site of mIDH2
within the homodimer interface, which stabilized the open
conformation of mutant enzyme and suppressed production of
2-HG. Hydrogen bonds and hydrophobic interactions anchor
enasidenib binding with Q316 residues of mIDH2 (24). In
addition, interactions between enasidenib and other
surrounding residuals including D312, W164, V294, V297,
L298, V315, I319, and L320 also contribute to high inhibitory
of potency (24). A recent case report showed two patients with
gain resistance to enasidenib relapsed for secondary IDH2
mutations including Q316E and I319M. The structure
modeling revealed that Q316 mutation led to diminished
hydrogen bonds between enasidenib and IDH2, whereas
I319M mutation led to steric hindrance for the bulky side
chain. Another study described an AML patient with initial
IDH1-R132H mutation who had a clinical response to
ivosidenib, followed by relapse. Subsequent sequencing showed
emergence of a secondary IDH1-S280F known as the cause of
drug-resistance. The structure modeling confirmed that S280F
mutation created steric hindrance between ivosidenib and
mIDH1 dimer interface. These studies provide direct evidence
for the resistance mechanism of second-site mutations, such as
Q316E and I319M in IDH2 mutations and S280F in IDH1
mutations, that result in therapeutic resistance.
LEUKEMIA STEMNESS

Accumulating evidence has confirmed that cancer derives from
cancer stem cells, a population of self-renewal cells that contribute
to resistance to multiple therapies (25). Multipronged genomic
analysis reveals the promoters of genes related to transcriptional
regulation of leukemia stemness exhibit significant
hypermethylation, which is closely related to primary resistance to
IDH inhibitors (26). The molecular drivers of hypermethylated
phenotype including FOXC1, CD99 and DNMT3A are identified as
critical regulators of leukemia stemness. Additionally, targeting
sequencing indicated co-occurring mutations of transcription
factors related to hematopoietic differentiation including RUNX1,
CEBPA and GATA2, are also associated with significantly worse
response to IDH inhibitors (IDHi). Multi-logistic regression analysis
showed that increased stemness is one of the mechanisms of IDHi
primary resistance, and the score of stemness can be used as a
potential predictive biomarker for IDH inhibitor response (26).

TheWnt/b-catenin signaling pathway, key components of the
cascade for maintaining cancer cell stemness, participates in
diverse physiological processes including proliferation,
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differentiation, apoptosis, invasion, migration, and tissue
homeostasis, and its deregulation is closely related to initiation
and progression of tumors (27–29). Whereas, 2-HG induces the
hypermethylated inhibitory signals of Wnt, which lead to the
improvement of stemness (30). Accumulating 2-HG resulted
from IDH mutations improves leukemia stemness to block cell
differentiation, which induces primary resistance to IDH inhibitors.
ISOFORM SWITCHING

Both IDH1 and IDH2 mutations have been reported in cancers,
whereas usually only one mutation is identified in a certain
cancer (31, 32). An AML patient with IDH mutation is usually
treated by one type of small molecular inhibitor, either
enasidenib or ivosidenib, to block disease progression.
However, Harding et al. described four patients identifying
IDH mutation isoform switching, either from mutant IDH1 to
mutant IDH2 or vice versa (33).

Importantly, in this case report, two R/R AML patients with
initial IDH1-R132C mutation achieved durable remissions with
therapy of ivosidenib, but leukemia cells recurred with
emergence of neomorphic mutation IDH2-R140Q. The third
Frontiers in Oncology | www.frontiersin.org 3
patient who suffered from treatment-refractory intrahepatic
cholangiocarcinoma with IDH1-R132C obtained a sustained
partial response to ivosidenib. The disease progressed
subsequently with emergence of a new IDH2-R172V mutation.
The fourth case, an R/R AML patient with initial IDH2-R140Q
mutation achieved a durable remission with enasidenib, but
disease progression occured with emergence of a new IDH1-
R132C mutation which was sensitive to combined blockade
IDH1/2 by vorasidenib. The isoform switching from IDH1
mutations to IDH2 mutations or vice versa were accompanied
with elevated levels of 2-HG and disease progression. Therefore,
isoform switching of IDH mutations is identified as one of the
mechanisms of acquired resistance to IDH-targeted inhibitors.
However, the precise frequency of isoform switching of IDH
mutation remain unclear, which is essential to be determined in
studies with large populations.
RTK PATHWAY MUTATIONS

Choe et al. performed a comprehensive genomic analysis in a
large population of R/R AML patients carrying IDH mutations
who were treated by ivosidenib, and confirmed that RTK
FIGURE 1 | The mechanisms of ivosidenib/enasidenib resistance in AML.
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pathway mutations are associated with primary resistance to
ivosidenib. They performed co-occurring mutation profiling in
these patients by NGS and found that baseline mutations of the
individual RTK pathway genes including NRAS and PTPN11,
and in the grouped RTK pathway genes including NRAS, KRAS,
PTPN11, KIT, and FLT3, were implicated with an importantly
lower likelihood of achievement of CR or CRh as a best response
to ivosidenib (34). These results are consistent with previous
work, in which NRAS mutation is associated with a worse
response to enasidenib in R/R AML patients with mIDH2 (35).
Therefore, co-occurring RTK pathway mutation is one of the
mechanisms of primary resistance to mIDH inhibitors.

Additionally, Choe et al. observed emergence of RTK pathway
mutations in about 35% relapsed cases achieving CR or CRh after
monotherapy of ivosidenib, suggesting RTK pathway mutations
are also associated with acquired resistance to ivosidenib (34).
The biological processes that explain why RTK pathway
mutations are implicated in both primary and acquired
resistance to mIDH inhibitors are unclear. Several hypotheses
were raised. First, it may be that the proliferative and prosurvival
effects of RTK pathway activation are sufficiently strong
oncogenic signals to reduce dependency on 2-HG. Second, it is
possible that RTK pathway-activating mutations contribute to a
differentiation block that remains enforced after initiation of
ivosidenib treatment. A third hypothesis is that IDH1/2
mutations result in activation of some components of RTK
signaling, which would not be reversed by ivosidenib in cases
with co-occurring RTK pathway mutations.
MITOCHONDRIAL METABOLISM

Metabolic adaptations derived from changes of energy and
intermediary metabolism in cancer cells are thought to meet
biosynthetic and energetic requirements for proliferation (36).
IHD1/2 play crucial roles in cell metabolism including Krebs cycle,
cytosolic and mitochondrial redox, (oxidative phosphorylation)
OxPHOS, and anabolism such as lipid biosynthesis. A better
understanding of contributions of IDH mutations to metabolism
and metabolic homeostasis may promote promising therapeutic
strategies. Recently, several studies demonstrated that cancer cells
carrying IDH mutations display some metabolic specificities,
especially enhanced mitochondrial oxidative metabolism
compared with wild-type cancer cells, and these cells tend to
show vulnerability to mitochondrial inhibition (37–43).

Stuani et al. found AML patients with IDH mutations exhibited
an enhanced mitochondrial oxidative metabolism which supports
resistance to IDHmutation inhibitors. They performedmulti-omics
and functional approaches to investigate the mechanism of
resistance. While IDH1 mutant inhibitor reduced 2-HG
oncometabolite and CEBPa methylation, it failed to reverse (fatty
acid b-oxidation) FAO and OxPHOS. OxPHOS, as a master
regulator of mitochondrial biogenesis, and biosynthesis or
degradation of FA, activation of PGC1a (peroxisome proliferator-
activated receptor-g coactivator-1) was not reversed after the
inhibition of mIDH1. Importantly, FAO is a crucial biochemical
Frontiers in Oncology | www.frontiersin.org 4
process for sustaining OxPHOS and mitochondrial function in
AML cells. Analysis of transcriptomic data from four clinical trials
in 10 resistant patients demonstrated that genes associated with high
OxPHOS function are enriched. Collectively, the OxPHOS
phenotype was also confirmed as a nongenetic mechanism of
IDHi resistance.
CLONAL SELECTION/EVOLUTION

Accumulating emergence of somatic mutations in cancers
promote the development of clonal heterogeneity (44). AML has
been firmly established as a highly dynamic oligoclonal disease by
using single-cell DNA sequencing approaches (45, 46). A good
understanding of evolution of clonal heterogeneity is helpful to
make a precise investigation of mechanisms of drug resistance.

Quek et al. studied the clonal basis of response and acquired
resistance to enasidenib treatment (47). An analysis of paired
diagnosis/relapse samples did not identify second site mutations
in IDH2 at relapse. Instead, relapse arose by clonal evolution, or
selection, of terminal or ancestral clones, highlighting multiple
bypass pathways that could potentially be targeted to restore
differentiation arrest. The increased variant allele frequency
(VAF) of colony stimulating factor 3 receptor (CSF3R), (FMS-
like tyrosine kinase 3) FLT3, and Cbl proto-oncogene (CBL),
were identified as potential risks for acquired resistance. Relapse
is also associated with concurrent mutations in U2 small nuclear
RNA auxiliary factor 1 (U2AF1) and hematopoietic transcription
factors, including RUNX1, BCL6 corepressor like 1 (BCORL1),
GATA2, and BAF chromatin remodeling complex subunit
BCL11A (BCL11A). The deletion of all or part of chromosome
7 is a risk factor for relapse after enasidenib treatment. Less
reported variations in other genes including nuclear factor kappa
B subunit 1 (NFKB1), DEAD-box helicase 1 (DDX1),
microtubule associated scaffold protein 1 (MTUS1), DEAH-
box helicase 15 (DHX15), and DEAF1 transcription factor
(DEAF1), contribute to clonal evolution related to relapse.
Mutations in DHX15 (R222G) and DDX1 (G699A) are notable
due to their vital role in altering RNA splicing.
CONCLUSION

In summary, this review concludes the resistance mechanisms of
approved mIDH1/2 inhibitors and the increased understanding
of drug-resistance mechanism would promote the development
of corresponding strategies. To better investigate resistance
mechanisms, development of novel effective approaches for
detecting gene mutations is extremely important, such as next
generation sequencing (NGS) and single-cell RNA sequencing
(scRNA-seq). Future strategies should pay attention to the
development of rational combination therapies with mIDH
inhibitors or agents which can overcome the resistance to
improve the response duration. The emerging biological
mechanisms and clinical insights into these issues will provide
guidance for rational treatment in the future.
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