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The distributed nature of information processing in the brain creates a complex variety

of decision making behavior. Likewise, computational models of saccadic decision

making behavior are numerous and diverse. Here we present a generative model

of saccadic action selection in the context of competitive decision making in the

superior colliculus (SC) in order to investigate how independent neural signals may

converge to interact and guide saccade selection, and to test if systematic variations

can better replicate the variability in responses that are part of normal human behavior.

The model was tasked with performing pro- and anti-saccades in order to replicate

specific attributes of healthy human saccade behavior. Participants (ages 18–39) were

instructed to either look toward (pro-saccade, well-practiced automated response)

or away from (anti-saccade, combination of inhibitory and voluntary responses) a

peripheral visual stimulus. They generated express and regular latency saccades in the

pro-saccade task. In the anti-saccade task, correct reaction times were longer and

participants occasionally looked at the stimulus (direction error) at either express or

regular latencies. To gain a better understanding of the underlying neural processes

that lead to saccadic action selection and response inhibition, we implemented 8 inputs

inspired by systems neuroscience. These inputs reflected known sensory, automated,

voluntary, and inhibitory components of cortical and basal ganglia activity that coalesces

in the intermediate layers of the SC (SCi). The model produced bimodal reaction time

distributions, where express and regular latency saccades had distinct modes, for both

correct pro-saccades and direction errors in the anti-saccade task. Importantly, express

and regular latency direction errors resulted from interactions of different inputs in the

model. Express latency direction errors were due to a lack of pre-emptive fixation and

inhibitory activity, which aloud sensory and automated inputs to initiate a stimulus-driven

saccade. Regular latency errors occurred when the automated motor signals were

stronger than the voluntary motor signals. While previous models have emulated fewer

aspects of these behavioral findings, the focus of the simulations here is on the interaction

of a wide variety of physiologically-based information integration producing a richer set

of natural behavioral variability.
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INTRODUCTION

Saccadic action-selection requires a complex network of brain
areas that provide different information signals (e.g., sensory,
motor, cognitive). In a pro- and anti-saccade task participants
are asked to either look toward a peripheral visual stimulus
(pro-saccade), or suppress that response and generate an anti-
saccade in the opposite direction (Hallett, 1978). Detailed
analysis of the temporal distributions of correct pro- and anti-
saccades and direction errors in healthy humans and patients
with neurological disease can be used to identify different
signals coding response inhibition and saccade generation that
contribute to the natural behavioral repertoire produced in these
tasks (Coe and Munoz, 2017). In this paper we introduce a
computational model of action selection, based on Trappenberg
et al. (2001), that includes conceptualized inputs inspired by
sensory, automated, voluntary, and inhibitory components of
neural activity. This model is intended to isolate the various
types of information coalescing within the primate brain to guide
saccadic action selection. The goal is to improve the behavioral
performance of the model (e.g., better emulate human behavior),
by investigating the function of interactions within neural
circuits and systems that control specific behaviors. We first
provide an extended Introduction bridging three fields of systems
neuroscience: human saccadic eye movement behavior, monkey
neurophysiology, and computational modeling of decision
making processes. We then present our new model.

Human Saccadic Eye Movement Behavior
Saccade tasks produce reliable behaviors that elucidate stages
of cognitive maturation, aging, and the effects of neurological
disorders in humans (Munoz et al., 1998; Kramer et al., 2005;
Luna et al., 2008; McDowell et al., 2008; Coe and Munoz,
2017). During the pro-saccade task (Figure 1A), participants
are instructed to look toward a peripheral stimulus, requiring
a basic sensory-motor transformation and an automated, well-
practiced, response. The distributions of saccadic reaction times
(SRT) seen in this task are often bi-modal, consisting of express
latency and regular latency saccades. Express saccades (Fischer
and Boch, 1983; Fischer and Ramsperger, 1984) are thought
to be guided by reflexive drives and pathways, as they are
facilitated by introducing a predictable, temporal gap between the
disappearance of the central fixation point and the appearance of
the peripheral stimuli [gap effect, (Saslow, 1967; Mayfrank et al.,
1986)], and require an intact Superior Colliculus (SC) (Schiller
et al., 1987). Regular saccades are believed to be guided by
both automated and voluntary drives. Regular latency saccades
have also been described as “fast-regular” and “slow-regular”
(Fischer and Weber, 1992, 1997; Fischer et al., 1993a,b). The
overlapping reaction times of reflexive express, “fast-regular,”
and “slow-regular” saccades can make these saccades difficult to
tease apart and the arbitrary temporal delineations between them
should not be considered unequivocal. In other words, not all
express latency saccades are reflexive saccades. However, these
three types have beenmanipulated experimentally using stimulus
size (Ploner et al., 2004), and have been modeled statistically to
show how training increases the proportion of reflexive express

(Paré and Munoz, 1996) and automated “fast-regular” saccades
over “slow-regular” saccades (Gezeck et al., 1997).

In the anti-saccade task (Figure 1B), participants are required
to suppress the sensory-cued pro-saccade and instead perform
a voluntary anti-saccade in the opposite direction. We argue
that there are different types of response inhibition used to
prevent express vs. regular latency direction errors (reviewed
in Coe and Munoz, 2017). Pre-emptive inhibition is required
to block express latency saccades to the stimulus. To prevent
regular latency direction errors, the voluntary drive to make the
anti-saccade must override the automated drive to make the
pro-saccade. Detailed analyses of SRT and direction errors have
provided significant insight into the neurophysiology behind
the sensory, motor, and cognitive processes involved in action
selection and response inhibition.

Neurophysiology
Eye movement neural circuitry has been studied intensively for
the past 40 years. In humans, this includes saccadic behavior,
functional imaging, and clinical studies. In animal studies,
this includes saccadic behavior, neurophysiology, anatomy, and
pharmacology. Critical sites in the oculomotor network include
regions of the parietal and frontal cortices, basal ganglia,
thalamus, SC, and brainstem reticular formation(Gandhi and
Katnani, 2011; Krauzlis et al., 2013; Kim and Hikosaka, 2015;
Schall, 2015; Hikosaka et al., 2018a). Figure 2 highlights selected
areas of interest for our revised model. Instead of attempting
to replicate cell types as inputs to the model, we focus on
“components” of neuronal activity identified from single unit
recordings in these areas. Most areas contain multiple signal
components (e.g., sensory, motor, preparation, inhibition). Our
goal is to emulate and modulate these components separately
to see how each contributes to action selection and response
inhibition. The main body of the model is based on the known
circuitry of the SC, which is a central structure for saccade control
(for review, see Hall and Moschovakis, 2003; Krauzlis et al.,
2004, 2013; Gandhi and Katnani, 2011; White andMunoz, 2011).
The SC is a multilayered structure divided into superficial layers
(SCs, visual input), and intermediate/deeper layers (SCi, visual,
cognitive, motor integration). The SCi has a retinotopically coded
map for saccadic eye movements (Robinson, 1972) and receives
signals from many structures including the SCs (Saito and Isa,
2005), posterior parietal cortex (Lynch et al., 1985; Andersen
et al., 1990), frontal cortex (Segraves and Goldberg, 1987; Seltzer
and Pandya, 1989), and basal ganglia (Hopkins and Niessen,
1976; Jayaraman et al., 1977; Hikosaka andWurtz, 1983d). These
numerous connections from the parietal cortex, frontal cortex,
basal ganglia, and SCs make the SCi an excellent structure to
study how sensory, automated, voluntary, and inhibitory signals
combine, both cooperatively and competitively, to guide action
selection in the pro- and anti-saccade tasks.

Sensory inputs are fashioned after the retinotectal and retino-
geniculo-cortical pathways to the SCi (Moschovakis, 1996).
These are the fastest routes and are believed to facilitate direct
sensory-motor transformations and trigger reflexive saccades
(Isa, 2002; Marino et al., 2015). Removal of the SC from the
monkey leads to inability to execute express latency saccades,
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FIGURE 1 | The pro- and anti-saccade tasks and the five specific types of saccades. When a 200ms gap between the fixation point disappearance and stimulus

appearance is implemented, the pro-saccade task (A) elicits 2 stereotypical behaviors: express latency (cyan) and regular latency (blue) correct saccades. The

anti-saccade task (B) elicits 3 stereotypical behaviors: correct anti-saccades (red), express latency (orange), and regular latency (brown) direction errors.

thereby implicating the SC in sensory driven express saccade
generation (Schiller et al., 1987).

Signals from frontal and parietal cortices to the SCi carry both
visual and cognitive signals (Segraves and Goldberg, 1987; Shook
et al., 1991; Paré and Wurtz, 1997; Everling and Munoz, 2000;
Everling and Johnston, 2013). Tonic fixation-related activity has
been recorded from neurons in parietal (Lynch et al., 1977; Sakata
et al., 1980) and frontal (Bon and Lucchetti, 1992; Everling and
Munoz, 2000; Amador et al., 2004) cortex as well as SCi (Munoz
and Wurtz, 1992, 1993a,b). This activity is both dependent (i.e.,
automated fixation) and independent (voluntary fixation) of a
visual stimulus on the fovea. The motor responses in the frontal
and parietal cortices can also be automated or voluntary. The
strength of the response of neurons in the lateral intraparietal
cortex (LIP) to a visual stimulus could be viewed as part of
an automated motor plan (Snyder et al., 1997; Gottlieb et al.,
1998; Bisley and Goldberg, 2010). Additionally, neurons in the
dorsolateral prefrontal cortex (DLPFC), supplementary eye field
(SEF), frontal eye field (FEF), and LIP have been shown to
discharge prior to saccades in complete darkness, independent of
a visual stimulus (e.g., memory-guided saccades, anti-saccades),
indicating a voluntary motor plan (Goldberg and Bruce, 1990;
Funahashi et al., 1993; Schlag-Rey et al., 1997; Everling and
Munoz, 2000; Johnston and Everling, 2006; Stuphorn et al., 2010).
In the frontal cortex, this voluntary motor command does not
require a visual stimulus (Goldberg and Bruce, 1990; Schlag-
Rey et al., 1997; Everling and Munoz, 2000). Together, these
findings show that both the frontal and parietal cortices are
strongly involved in automated and voluntary components of
action selection.

The basal ganglia are also an integral part of the neural
circuitry for action selection. The Caudate Nucleus (CD) receives
the main input to the basal ganglia from cerebral cortex and
provides input via the direct and indirect pathways to the

Substantia Nigra pars Reticulata (SNr). The SNr is part of
the output for the basal ganglia and projects directly to the

SCi (Hikosaka and Wurtz, 1983d) via an inhibitory synapse

(Vincent et al., 1978; Di Chiara et al., 1979; Chevalier et al.,
1981). Here, we focus on two types of inhibitory processes
seen in the basal ganglia. The first process can be described
as an inhibitory gate, where tonic inhibition is removed from
a specific location at the time of a motor action. This type of
location-specific dis-inhibition has been shown in the Substantia
Nigra pars Reticulata (SNr) (Hikosaka and Wurtz, 1983a,b,c;
Handel and Glimcher, 1999). The other inhibitory process is
global and holds back all movement, like a parking break.
When it releases the entire peripheral field is dis-inhibited
allowing excitatory activity to propagate through the SCi. This
type of activity has been observed in the “omni-directional”
pause neurons (Kato and Hikosaka, 1995) in the external globus
pallidus (GPe) and “universal pausers” (Handel and Glimcher,
1999) in the SNr.

These numerous and complicated inputs to the SCi coalesce,
both cooperatively and competitively, to guide saccadic eye
movements. It is components of these signals that inspired
the inputs for our computational modeling of decision
making processes.

Computational Modeling of Decision Making

Processes
The expansive knowledge of the oculomotor system has helped
build a solid foundation for modeling saccade behavior. Using
information about the brainstem circuitry and the on-line control
of individual saccades led to models of the saccade burst
generator and the SC (for a review see Girard and Berthoz,
2005). Early models of saccadic behavior primarily focused
on producing the correct kinematics for saccade generation
(Robinson, 1975; Jürgens et al., 1981; Quaia et al., 1999) and
the variable shape of individual SRT distributions (Carpenter
and Williams, 1995). More recently, models that employed
neural fields (Amari, 1977), were fundamental in decision-
makingmodels that concentrated on the competitive interactions
between visually driven and cognitively driven inputs to vie for
action selection (Carpenter and Williams, 1995; Kopecz, 1995;
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FIGURE 2 | A simplified model of the oculomotor system with streamlined

neural signals impinging on the SCi that influence saccades. The colors are

meant to represent a highly simplified classification of the signal components

that inspired the inputs to the model (See Figure 3). They do not represent all

signals in each area. Cyan indicates sensory; Blue indicates automated; Red

indicates voluntary; and orange indicates inhibitory. DLPFC, dorsolateral

prefrontal cortex; SEF, supplementary eye fields; FEF, frontal eye fields;

LIP/PEF, lateral intraparietal cortex/parietal eye fields; LGN, lateral geniculate

nucleus; SCi, intermediate layers of the Superior colliculus; SCs, superficial

layers of the superior colliculus; CD, caudate nucleus; GPe, external globus

pallidus; STN, subthalamic nucleus; SNr, substantia nigra pars reticulata.

Trappenberg et al., 2001; Camalier et al., 2007; Cutsuridis et al.,
2007; Schall et al., 2011).

The LATER model (Carpenter and Williams, 1995) used
trial-by-trial variation in the linear rise of decision signals that
needed to cross a fixed threshold to emulate SRT variability
(see review Noorani and Carpenter, 2016). Neural correlates of
decision-making via the accumulation of information have been
found in numerous areas of the brain (Kim and Shadlen, 1999;
Shadlen and Newsome, 2001; Heekeren et al., 2004; Huk and
Shadlen, 2005; Gold and Shadlen, 2007; Ding and Gold, 2010,
2012; Mante et al., 2013). Subsequent iterations of the LATER
model were designed for the countermanding task (Logan and
Cowan, 1984) and included a “go” and a “stop” input to estimate
stop signal reaction times (Hanes and Carpenter, 1999). These
models were quite elegant in their simplicity and explanation
of SRT distributions. However, each “decision” input (e.g., “go”
or “stop”) directly represented one specific behavioral outcome
and they did not interact with each other. The LATER model
has been redeveloped in several ways to address anti-saccade and
countermanding tasks (Noorani and Carpenter, 2013; Noorani,
2014), and inhibition and error rates in anti-saccades (Aponte
et al., 2017, 2018a,b).

Kopecz and Schoener (Kopecz, 1995; Kopecz and Schöner,
1995) introduced distinctive “visual” and “intentional” inputs
that represented two potentially competing behavioral goals.
These inputs interacted in a 1-dimensional, laterally-inhibitory,
neural field (Amari, 1977). The progression here was to move

from abstract decision signals, which were independent, to
inputs that interacted and could inhibit each other. The two
Gaussian-like inputs (representing activity across horizontal
space) were locally excitatory and distally inhibitory to represent
the inhibitory interplay within the saccadic system between two
mutually exclusive eye movement commands. The pattern local-
excitation and distal-inhibition is quite robust and has been
noted in sensory cortex (Grossberg, 1973; Wilson and Cowan,
1973), the basal ganglia (see Nambu, 2008 for review) and
the SC Meredith and Ramoa, 1998; Munoz and Istvan, 1998;
Olivier et al., 1999; Munoz and Fecteau, 2002; Phongphanphanee
et al., 2014. Importantly, for this type of model is that the
variability of the SRT distributions was based on the interaction
of both inputs in a neural field. Importantly, the strength of
the “losing” input could still affect SRT. Usher and McClelland
(2001) compared their “leaky competing accumulator model”
with existing diffusion, random walk, and accumulator models
to show how models similar to Kopecz and Schoener’s were
able to address a wider range of data from perceptual choice
experiments. In addition, they found that the neural field
model described the nonlinear integrations during sensorymotor
transformations better than linear models.

Trappenberg et al. (2001) introduced a model designed to
emulate SCi activity during several oculomotor tasks, including
the anti-saccade task. Similar to the Kopecz model Kopecz
(1995), there were two inputs racing to a fixed threshold: an
“endogenous” input that represented the intended location of
the anti-saccade, and an “exogenous” input that represented the
location of a visual stimulus. Again, these inputs were potentially
mutually inhibitory and competed in a 1-dimensional neural
field that used competitive integration. This model used neural
recordings of SC activities to guide the shape of the inputs
and their integration in the model. Behavioral results from this
model were impressive because they simulated the bimodality of
pro-SRTs, and anti-SRTs were slower. Although they addressed
the possible sources of express latency saccades, they did not
address direction errors. Recent work by Bompas and Sumner
(2011) directly compared an extended version of the LATER
model and an extended version of the Trappenberg model
with a focus on the effects of transient visual information on
saccade behavior. They found that their updated Trappenberg
model could account for inhibitory effects of distractors on
SRT, while their updated LATER model could not. This was
primarily due to the interactive nature of inputs in a dynamic
neural field model. Additionally, spatial interactions of multiple
sensory inputs using dynamic fields has been examined in a 2-
dimensional version of the Trappenberg model (Marino et al.,
2012) that explained SRT changes based on stimulus intensity,
as well as the number and location of stimuli. Cutsuridis et al.
(2007) created another rendition of a dynamic neural field model
that used even more types of “cells,” including fixation cells,
further improving behavior. Their model was able to produce
direction errors but did not perform express latency saccades
for either pro-saccades or direction errors. The common theme
from these papers is that the authors used neural recordings
to constrain the size and shape of the model inputs, and
improved performance.
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Saccade initiation or decision models can clearly be
formulated in numerous different ways, but our previous
model lent itself better to the integration of relatively simple
inputs that would interact, spatial and temporally, and could
easily be manipulated. We reconceptualized the Trappenberg
model with neurophysiologically inspired inputs, but instead of
cell types, we used components of signals that have been recorded
in areas of the primate brain during behavioral experiments,
aiming for a systems-neuroscience approach. For the current
model, 8 inputs were designed to emulate components of
sensory, automated, voluntary, and inhibitory signals known
to impinge on the SCi. Admittedly, this strategy complicates a
well-functioning model that used only two inputs (Trappenberg
et al., 2001), but we were confident that a more detailed set of
inputs would be capable of producing a wider range of normal
saccadic behavior. Implementing inputs based on components
of neural activity allow us to test for causal links between each
input and the behaviors the model simulates.

MATERIALS AND METHODS

Behavior and Nomenclature
The pro- and anti-saccade tasks (Figure 1) elicit several
stereotypical behaviors in humans (Fischer and Weber, 1992;
Fischer et al., 1993b; Munoz et al., 1998; Peltsch et al., 2011; Coe
and Munoz, 2017). The pro-saccade task (Figure 1A) generally
features a range of SRT distributions for correct saccades,
including express and regular latency saccades (Fischer and Boch,
1983; Fischer and Ramsperger, 1984). The exact timing of express
latency saccades depends on lab conditions and variability across
participants, but is generally considered to be around 90–140ms
after a stimulus appearance for healthy adult humans. Saccades
after this window are referred to as regular latency saccades.
The anti-saccade task (Figure 1B) represents a competition
between a desirable voluntary anti-saccade to an abstract location
and undesirable sensory-cued saccade toward the peripheral
stimulus. This competition can either delay the voluntary anti-
saccade or sometimes the automated command can override
it, resulting in direction errors. During the anti-saccade task,
visually triggered saccades result in direction errors that have
express latency reaction times. Similar to the pro-saccades, we
separated express and regular latency anti-saccade direction
errors. The frequency of these two types of direction errors
(express and regular latency) changes through development,
maturation, and aging and is indicative of different mechanisms
of saccadic production and response inhibition (Coe andMunoz,
2017). Thus, we have formalized five specific types of saccadic
behaviors observed in the pro- and anti-saccade tasks based on
SRT and the saccade selected:

1) Regular latency correct pro-saccades (Regular-Pro)
2) Express latency correct pro-saccades (Express-Pro)
3) All correct anti-saccades (Correct-Anti)
4) Regular latency anti-saccade direction errors (Regular-Errors)
5) Express latency anti-saccade direction errors (Express-Errors)

These five types of saccades reveal distinct aspects of sensory,
automated, voluntary, and inhibitory signals in the saccadic

eye movement system. For the purpose of this model, Sensory
signals are entirely driven by environmental stimulus properties.
Automated signals are initiated by an external stimulus but can
trigger a pre-determined neurological circuit (like a domino
effect), honed through previous experience and training, to
propagate a well-practiced motor command. Voluntary signals
are initiated and sustained by internal drives and are not reliant
on external or environmental stimuli. Finally, Inhibitory signals
are tonic holding commands that must be removed and/or
overcome in order to execute motor commands. During the pro-
or anti-saccade task, the activity of an individual task-related
neuron in the oculomotor network may display one or more of
these signals. We recapitulated these neural signals as individual
inputs to our model. To help clarify, the term “signals” will
be used to described specific components of neuronal activity,
and the term “inputs” will be used to described the inputs
created for the model. If we simulate neural signals properly,
using individual inputs, then the output of the model (e.g.,
SRT, and saccade selection) should show similar patterns to
human behavioral data. The use of multiple component-based
inputs allows for specific causal links to be drawn between these
five types of saccades and the underlying neural processes that
produce them.

The Neural Field Model
The basic assumptions and framework of the model and
inputs were based on the Trappenberg et al. (2001) model.
It used competitive integration of an exogenous input and an
endogenous input in a laterally inhibitory neural field intended
to emulate neural dynamics within the SCi. We used this
type of model to simulate horizontal eye movements and
hence employed a 1D-feature space defined by nodes that
represents horizontal visual space and represents 10mm of
the SCi bilaterally. We used a discretization of the fields with
a vector of 100 nodes (N = 100) to implement the feature
space from −5mm (far left) to 5mm (far right), where zero
indicated the center. This discretization was the same for the
input field (Figure 3A, top), the field governed by competitive
integration dynamics (Figure 3A, middle), and the output
activity (Figure 3A, bottom). First, we describe the 8 inputs with
the help of samples from a correct anti-saccade trial (Figure 4)
so we can explain the theory and implementation. We then
describe the competitive integration dynamics of the neural field
model itself (Figure 3A), and finally we describe the controlled
variability applied to the inputs (Figure 3B).

The Eight Component-Based Inputs
We implemented 8 inputs, which were manipulated separately.
These inputs emulated components of neural activity identified
in the primate brain during the performance of saccade tasks.
Although these inputs were inspired by the numerous signals
converging onto the SCi, they were not intended to represent
actual firing rates of particular neurons in specific brain areas.
Rather, they represent individual components of neural activity,
often seen in multiple brain areas. All 8 input vectors were
updated at each time point (Equation 1) and were defined by the
following attributes: an Onset Delay, a linear change in strength
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FIGURE 3 | (A) Graphical representation of the mathematical model. The

primary stage shows the eight inputs that were derived from components of

neural signals in the brain. The central stage (within the green shaded box)

demonstrates the dynamic internal state of the model. Vector cext represents

the combination of the external inputs. Vector cint represents the internal

connections across the model (Equation 6). Vector u represents internal state

of the model (equation 5). Vector a represents output activity from the model

(Equation 3). The final stage is the output activity. (B) A graphical

representation of the three levels of controlled variability for the Onset Delay,

the RoR, and the MaxVal for various inputs (see Table 1).

characterized by a rate of response (RoR), a maximum value for
its strength (MaxVal), and the center of activity (µ). The settings
for some of these attributes were varied deterministically to add
structured variability, and are described inmore detail below. The
Onset Delay was the amount of time between an event and the
onset of the RoR for that input. Whereas previous accumulation
models (Carpenter andWilliams, 1995; Trappenberg et al., 2001)
discussed only rate of rise for the inputs, here the term Rate of

Response is used because the inputs could weaken (where values
move toward zero) as well as strengthen (where values move
away from zero either negatively or positively). The MaxVal was
the absolute value of how far from zero an input could get. The
RoR was a proportion of the fixed spatial function k (Equation 2)
that was added to or subtracted from the input’s current value to
create the input’s updated value. Generally, lower-case bold letters
indicate vectors and upper-case bold letters denote matrices.

inputi ( t + 1t) = inputi (t) + (k
µ
i × RoR× 1t), (1)

The node index (i) indicates position in space (i.e., 1:100) and 1t

indicates the increment of time (1t = 1ms for all simulations).
The value of k at each node depended on the node’s smallest
distance from the center of activity (µ) according to a Gaussian
profile with standard deviation (γ) of 0.6 and an amplitude
(amp) of 1.05, following closely the values from the original
Trappenberg et al. (2001) model settings.

k
µ
i = amp× exp (

− (min (|i1x− µ| , N − |i1x− µ|))2

2γ 2
). (2)

The numerator in the exponential is the minimal distance of a
node to the center of the Gaussian when representing the feature
space on a torus (ring) to avoid boundary conditions. This is a
common computational technique with neural fields. Examples
of the eight inputs during a sample correct anti-saccade trial, with
the visual stimuli on the right (µ = 2.5) and the anti-saccadic
goal on the left (µ= −2.5), are presented in Figure 4 to illustrate
their temporal and spatial nature. This trial’s specific Onset Delay,
RoR, MaxVal, and µ for each of the eight inputs during this
example trial are given in the text.

Visual transient
Input #1 (Figure 4A; Onset Delay = 50ms; RoR = 15%;
MaxVal = 8; µ = 2.5). This sensory input had a brief burst
soon after the onset of a visual stimulus. It was modeled
after components of activity seen in the magnocellular LGN
(McAlonan et al., 2008) and the superficial layers of the SC
(Boehnke et al., 2011; Marino et al., 2012). Once the model had
fixated on the central fixation point the visual scene remained
constant so the Visual Transient input returned to zero across
the entire field. When the visual stimulus appeared in the right
periphery of visual space, plus a 50ms afferent delay (White et al.,
2017), there was a brief response of the Visual Transient input
on the right side of the model’s feature space. Thus, the Visual
Transient input increased at each iteration by k2.5 × 0.15 × 1
(Equation 1) until it rose to its MaxVal. The Visual Transient
started to fade using half its RoR 50ms after its response onset
and decreased until it was zero across the entire field. The Visual
Transient input was also reset to zero after each saccade.

Automated motor
Input #2 (Figure 4B; Onset Delay = 60 ms; RoR = 6%;
MaxVal = 6; µ = 2.5). This input represented an externally
triggered, but self-propagating motor command to drive a
saccade to a peripheral visual stimulus. The timing of this input
was derived from recordings in macaques (Barash et al., 1991;
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FIGURE 4 | Examples of the eight inputs during a correct anti-saccade trial. Panels (A–H) show 3D plots of intensity (bottom right legend) over time (bottom left

legend) and space for the 8 inputs during an example trial described in the Methods section. The time scale of each panel starts after the model has fixated on the

central fixation point. Each panel represents the model’s visual space across 100 nodes. The fixation point is presented at the 50th node labeled “center,” the

peripheral stimulus is presented at the 75th node labeled “right,” and the anti-saccade goal is the 25th node labeled “left.” At the bottom left is a panel showing task

space where the anti-saccade direction is to the left, the fixation is in the middle and the stimulus location is to the right. The fixation point is indicated by the red bar,

the peripheral stimulus is indicated by the black bar, and the eye-position is indicated by the green line. At the bottom left is a color map to indicate input strength (in

arbitrary units). In each panel, fixation offset is the earliest dotted line (−200ms), stimulus onset is the middle dotted line (0ms), and saccade initiation is indicated by

the final dotted line.

Duhamel et al., 1992; Gottlieb and Goldberg, 1999) and has been
used in previous models (Noorani and Carpenter, 2013; Noorani,
2014) for similar stimulus driven inputs. We modeled response
activity that did not necessarily elicit a motor command, similar
to where the strength of the initial response of some neurons was
not related to whether or not a saccade was made to a peripheral

stimuli (Snyder et al., 1997; Gottlieb et al., 1998; Bisley and
Goldberg, 2010). As illustrated in the example trial, the location
of peak activity (µ in equation 2) for the Automated Motor Input

was always at the spatial location of the visual stimulus. We
gave automated inputs a fixed Onset Delay because they were

triggered externally, but the RoR and MaxVal were one of three
settings (Table 1), representing different levels of automation.
The Automated Motor input stayed at its trial-specific MaxVal
until a saccade was made, after which it was reset to zero.

Automated fixation
Input #3 (Figure 4C; Onset Delay = 60ms; RoR = 10%;
MaxVal = 6; µ = 0.0). This input also represented an externally
triggered excitatory component, but only for a visual stimulus
that was currently foveated, and was modeled after components
of activity seen in the parietal cortex (Lynch et al., 1977) related
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TABLE 1 | The possible settings used for the attributes of each input for each trial.

Inputs Onset delay

(ms)

Rate of

response (%)

Maximum

value

(1) Visual transient 50 15 8

(2) Automated motor 60 4, 6, 8 4, 6, 8

(3) Automated fixation 60 10 6

(4) Voluntary motor 140,155,170* 5, 10, 15 Dependent

(5) Voluntary fixation 10 4, 6, 8

(6) Voluntary preparation Dependent 4, 6, 8

(7) Inhibitory gate 5, 10, 15 4, 6, 8

(8) Peripheral inhibition 5, 10, 15 4, 6, 8

*Inputs 4–8 had the same onset delay per trial.

only 10 attributes had 3 possible values for both the pro- and anti-saccade tasks leading

to 118,098 (310 × 2) possible trials. The Voluntary Motor MaXVal was dependent on when

the saccade was made and the Voluntary Preparation RoR was dependent on its MaxVal.

to fixation control. Similar inputs with similar timing have been
used before (Heinzle et al., 2007). In the example trial illustrated
in Figure 4C, the fixation point was already illuminated and the
model was fixating on it so the Automated Fixation input was
at MaxVal at the center. After the fixation point disappeared to
start the gap period, plus the fixed Onset Delay, the Automated
Fixation input started to fade using its negative RoR. As this trial
produced a regular latency saccade, there was no activity from the
Automated Fixation input for the stimulus because the saccade
occurred after the stimulus disappeared.

Voluntary motor
Input #4 (Figure 4D; Onset Delay = 170ms; RoR = 15%;
µ = –2.5). This input represented an internally initiated
motor command that did not require a visual stimulus and
was modeled after components of activity seen in the frontal
cortex (Goldberg and Bruce, 1990; Schlag-Rey et al., 1997;
Everling and Munoz, 2000). This type of signal has been argued
to be specifically important for non-visually driven saccade
performance (Funahashi et al., 1993; Johnston and Everling,
2006). Because this input was fashioned after a voluntarily
initiated motor command, it had a longer Onset Delay than
the automated inputs. Also, it was not initiated by stimulus
appearance, so it had a variable Onset Delay as well as RoR.
The earliest Onset Delay setting was chosen to be after the
express latency window (at 140ms) and we arbitrarily chose
15ms increments for the medium and late settings (Table 1).
All voluntary inputs (4–8) had the same Onset Delay for a
given trial. Admittedly, defining the onset timing for voluntary
inputs unbound to external triggers is a vague concept but
the precise values we used are trivial. Here, we merely assert
that voluntary signals take longer to start than automated
signals and that their onset timing is more variable. The
spatial peak of this input was centered on the saccadic goal
as defined by the task, not necessarily the stimulus. During
a pro-saccade trial the peaks of the Automated Motor and
the Voluntary-Motor inputs were spatially aligned on the
visual stimulus so they were cooperative, but during an anti-
saccade trial the peaks were on diametrically opposed sides of

space (Figures 4B,D) supporting mutually exclusive saccades in
opposite directions.

In our example anti-saccade trial, the Voluntary-Motor input
(Figure 4D) started at zero strength across the neural field and
after the visual stimulus onset, plus the medium Onset Delay,
it built up strength (determined by the RoR) at the location
of the saccadic goal on the left (i.e., k−2.5 × 0.15 × 1), until
a saccade was executed. Due to the goal-driven nature of this
signal, the Voluntary-Motor input was allowed to rise until a
saccade was initiated. A low MaxVal would merely represent
that the “participant” does not want to perform the task. We
presume that the goal is to participate so there was no value in
limiting the Voluntary-Motor. After a saccade was executed the
Voluntary-Motor input was reset to zero.

Voluntary fixation
Input #5 (Figure 4E; Onset Delay = 170ms; RoR = 15%;
MaxVal = 6; µ = 0.0). This input represented an internally
initiated command to maintain fixation, even without a visual
stimulus present, and was modeled after components of fixation
activity in the frontal cortex (Sakata et al., 1980; Bon and
Lucchetti, 1992; Amador et al., 2004). Clear correlates also exist
in the SCi itself (Munoz and Wurtz, 1993a; Everling et al., 1999).
In the example anti-saccade trial, the model was already fixating
so the Voluntary Fixation input was already at its MaxVal and
was centered on the fovea. In unison with the onset of the
Voluntary-Motor input, the Voluntary Fixation input decayed
using a negative RoR until it reached zero or until a saccade was
initiated. Once a saccade wasmade, this input returned to its peak
strength using a positive RoR.

Voluntary preparation
Input #6 (Figure 4F; Onset Delay = 170ms; MaxVal = 4;
µ = –2.5 and 2.5). This input represented an internally initiated
preparatory signal that does not require a visual stimulus and
was modeled after components of activity observed in the SEF
and FEF (Schlag-Rey et al., 1997; Everling and Munoz, 2000;
Coe et al., 2002). The Onset Delay for this input was relative
to when fixation was established on the central cue. The model
was imparted with the “knowledge” of when the stimulus would
appear and that the stimulus could appear at one of two possible
locations. We modeled this information by using a two-peaked
excitatory input (e.g., max [k−2.5, k+2.5]) that slowly built up to
reach its MaxVal at the expected stimulus onset time. This type
of activity has been directly measured in the SCi using different
fixation durations (Thevarajah et al., 2009). In the example anti-
saccade trial (Figure 4F), once fixation was established, and after
the Onset Delay, the Voluntary Preparation input began to rise
at a rate that was dependent on its MaxVal. We gave this input
a dependent RoR to ensure that this input’s two peaks reached
the MaxVal at the predictable onset of the visual stimulus. It
sustained that value until a saccade was made. After a saccade
was executed the Voluntary Preparation input was reset to zero.

Inhibitory gate
Input #7 (Figure 4G; Onset Delay = 170ms; RoR = 10%;
MaxVal = 8; µ = –2.5). This input was designed to provide a
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wall of inhibition across the entire visual field holding backmotor
commands. When a specific motor command was ready only a
portion of the wall “opened” (like a small gate). In this fashion,
the Inhibitory Gate input released the specificmotor command by
removing the inhibition at that precise section of the visual field.
This type of location-specific dis-inhibition has been shown in
the SNr (Hikosaka and Wurtz, 1983a,b,c; Handel and Glimcher,
1999). This input was fashioned with its MaxVal as a measure
of baseline inhibitory strength and was negative, and a positive
RoR would bring the inhibition to zero at a specific location.
At the start of the example anti-saccade trial (Figure 4G), the
Inhibitory Gate input was already at its maximum inhibitory
strength across the entire visual field. In unison with the variable
Onset Delay of the Voluntary-Motor input, the Inhibitory Gate
input started to dis-inhibit the location that represented the
voluntary saccade goal on the left (i.e., k−2.5 × 0.10 × 1). In
this example trial, the dis-inhibition continued until there was
zero inhibition at that location or a saccade was made. Once
a saccade was initiated, it returned to its maximum inhibitory
strength using a negative RoR.

Peripheral inhibition
Input #8 (Figure 4H; Onset Delay = 170ms; RoR = 10%;
MaxVal = 8; µ = 0.0). This input was designed to provide
inhibition in the periphery, helping to maintain fixation. When
a motor command was ready, the peripheral neural field was
dis-inhibited, like the release of a parking brake, allowing any
excitatory activity to propagate through the SCi. This type
of activity has been observed in the “omni-directional” pause
neurons (Kato and Hikosaka, 1995) and “universal pausers”
(Handel and Glimcher, 1999) in the basal ganglia. In our example
anti-saccade trial (Figure 4H), the Peripheral Inhibition input
started at its maximum inhibitory firing rate across the peripheral
visual field and suppressed everything except fixation activity in
the center of the neural field. In unison with the variable Onset
Delay of the Voluntary Fixation input, the Peripheral Inhibition
input releases its inhibition across the entire visual field using a
positive RoR. In this example trial, the dis-inhibition progressed
until there was zero inhibition across the peripheral visual field
or a saccade was made. Once a saccade was made, the Peripheral
Inhibition input returns to its maximum inhibitory strength using
a negative RoR.

Competitive Integration Dynamics
The model’s three stages are illustrated in Figure 3A. The
input stage represents the sum of the 8 inputs described above
(Figure 3A, top). The second stage represents the internal state
of the integration nodes (Figure 3A, center). The final stage
represents the output of the model (Figure 3A, bottom). The
output activity across the neural field model was represented
by the vector a, and was calculated for each time point
(t) as a nonlinear function of its internal state (u) using a
sigmoidal function:

a (t) =
1

1+ exp(−βu (t))
(3)

where β defined the steepness of the sigmoid. This was set as 0.09
for all simulations. Larger values for β force the output activity
of each node closer to a binary on-off state so smaller values are
more appropriate. The Trappenberg et al. model Trappenberg
et al. (2001) used 0.07 to imitate build-up neurons specifically and
only a mild increase was chosen here to simulate a larger variety
of neuronal firing patterns. We implemented a fixed threshold
for saccade initiation by stating that when the output activity at
any non-central location reached 0.7, a saccade would be made
to that location. The continuous form, in both time and space, of
the equation for the dynamics of the neural field (u) was similar to
Trappenberg et al. (2001) which has been elaborated upon more
recently (Trappenberg, 2010);

τ
du (x, t)

dt
= −u (x, t) + (cext(x, t)+ c

int
(x, t)). (4)

We used the Euler method to implement a temporally discrete
version of Equation (4) for this simulation, and space was
discretized by building the model using vectors of nodes:

ui (t + 1t) =

(

1−
1t

τ

)

×ui (t) +
1t

τ
×

(

ci
ext (t) + ci

int (t)
)

, (5)

where 1t is a step parameter for the time discretization (1ms),
i= 1. . . , N is an index for the spatial location (N = 100), Tau (τ )
is a time scale constant (set to 4 for all simulations), the external
contribution (cext) is a vector representing the contribution of the
sum of the eight external inputs to the model, and the internal
contribution (cint) is a vector representing the contribution from
the internal connections across the model (Equation 6).

cint (t) = W × a (t) (6)

W = (G−m) × 1x (7)

Gi,j=sf × exp (
− ( min

(
∣

∣i− j
∣

∣ , N −
∣

∣i− j
∣

∣

)

× 1 x )
2

2σ 2
)(8)

The internal contribution (cint) is the matrix product of the
current activity of the model (a) and a laterally-inhibitory weight
matrix (W; Equation 7).The weight matrix W (equation 7) is
positive (i.e., excitatory) for proximal nodes and negative (i.e.,
inhibitory) for distal nodes. It was created by the Gaussian matrix
G (Equation 8) that has been shifted by 80% of its maximum value
[m = 0.8 × max(G)] and scaled by 1x. The constant 1x =

10/N represents the discrete distance in feature space between
the nodes of themodel from the discretization of the feature space
in the range of –5 to 5mm of SC tissue. The weight matrix W

was kept periodic by using theminimum circumferential distance
between i and j for the Gaussian G (Equation 8), and the width of
the Gaussian was set to σ = 0.85 with a scaling factor (sf ) of 74.7.

Controlled Deterministic Variability
It is important to note that none of the equations above
contain any random variables. In order to test the robustness
of the model and to vary its behavior we introduced controlled
variability by implementing three values (small, medium, or
large) for the Onset Delay, RoR, and MaxVal for some of
the input vectors (Figure 3B). This controlled variability of
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the input attributes is the only parameter that was used to
create variations in SRT distributions and selection behavior.
By using only three values, we could perform controlled post-
hoc analyses on the finite number of possible outcomes to
determine which settings influenced which behaviors. The three
values were monotonically increasing (e.g., 4, 6, 8 or 5, 10,
15). We did not bias the frequency of any settings to attempt
to force the model’s behavior to match a prescribed data set;
we simply wanted to show how the model’s performance is
modified by an equally distributed range of inputs. The actual
values for the attributes of each input were kept as simple (and
similar) as possible while still producing a reasonable likeness to
human behavior.

The small, medium, and large values for the attributes (Onset
Delay, RoR, MaxVal) gave the model a huge number of possible
trials. With three values for all 24 attributes (three attributes
of all eight inputs), for both tasks, we would have 324 ×

2 = 564,859,072,962 possible combinations; each one with its
own trial and outcome. However, to focus the model on action
selection, response inhibition, and reaction time variability, only
10 attributes were varied (see Table 1). As we were not interested
in sensory processing variability, all attributes for the Visual
Transient input and the Onset Delay for the automated inputs
were fixed for all trials. This ensured that all trials had the same
external stimulation and that all behaviors were due to factors
internal to the model and not variations in the environment
or sensory processing. Unlike the first 3 inputs, the voluntary
and inhibitory inputs (#4–8) were initiated by internal drives
that were not time-locked to any external event. We chose
to implement a common internal drive for the voluntary and
inhibitory inputs by varying the Onset Delays for these inputs
together on a trial-by-trial basis. In preliminary work, the
variation of the RoR and MaxVal for the Automated Fixation
input only influenced the gap-effect (Saslow, 1967; Dorris and
Munoz, 1995) and contributed to differences in express latency
saccades between the gap task, and a step task (not shown).
Similar techniques have been implemented previously to model
aspects of the gap-effect (Kopecz, 1995). Additionally, the gap-
effect is strongly guided by factors external to the model that
we were not currently exploring. Instead of removing it, the
attributes for it were fixed to singular values. In preliminary
work (Coe et al., 2010) variation of the RoR (e.g., 5 to 15%) of
the Voluntary Fixation input did not contribute to behavioral
variability so it was fixed to a single value. However, the
manipulation of the MaxVal for the Voluntary Fixation input did
contribute to behavioral variability and remained in the model.
The build-up activity seen in the SC has been shown to be
independent of the duration of the pre-stimulus window and
that it is the final level of build-up activity that is important
in both the SC (Thevarajah et al., 2009) and SEF (Coe et al.,
2002). Thus, the RoR of the Voluntary Preparation input was
dependent on its varying MaxVal and was equal for both left
and right stimulus locations, emulating a temporal expectation
that was not biased to either direction. Due to the goal-driven
nature of Voluntary-Motor input, this input had no maximum
value and would continue to rise and compete until a saccade
was made. Thus, in total there were 3 values for ten attributes in

both the pro- and anti-saccade tasks creating 310 × 2 = 118,098
combinations, or trials (see Table 1).

There were no a priori differences between the pro-saccade
trials and the anti-saccade trials for the values or timings of the
ten varied attributes. The only difference was that for the anti-
saccade task the Voluntary-Motor and the Inhibitory Gate inputs
were rotated 180◦ from what they were in the pro-saccade task
because they were goal-driven inputs. In order to test the simplest
form of the model, we initially did not add any task-based biases.
Finally, at the start of each trial, Inputs 5, 7, and 8 were adjusted
to their trial specific MaxVal settings. Both the cint and u vectors
were reset to their resting state of –30, as they represented more
of a negative membrane potential as opposed to a firing rate.
These steps were taken so that each trial was not affected by the
preceding trial.

Analysis of Human Behavior
To quantify whether the model’s performance was adequate,
we compared its performance to previously published saccadic
behavior from a population of healthy human adults who
performed pro- and anti-saccade tasks in a blocked design
(Munoz et al., 1998). Saccadic behavior recorded from 73 human
participants (aged 18–39) was divided into specific categories
and each participant’s data was normalized by the number of
trials performed. For each participant, trials were split by task
instruction (pro vs. anti). Anti-saccades were split by whether the
saccade was executed to the correct or incorrect location (correct
vs. error). Additionally, the correct pro-saccades and direction
error anti-saccades were further subdivided by a temporal cut-off
into two groups: “express” vs. “regular” latency saccades. Express
latency saccades were defined as saccades initiated between 90
and 138ms after stimulus appearance. Saccades initiated before
90ms were not included in any analysis because they were equally
likely to be made in either direction and were therefore classified
as anticipatory (Munoz et al., 1998). The delineation between
express and regular latency saccades was set to 138ms, as it was a
multiple of the bin size that was used (see below) and was closest
to the previously used value of 140ms (Fischer et al., 1993b;
Munoz et al., 1998).

SRT histograms the five types of saccades were created
using 6ms bins. Normalized histograms for these saccades
were created for each participant and then the average of
those histograms was created to describe the population. The
medians, means, and standard deviations of SRTs were calculated
for comparison with data from the model. Additionally, the
percentages for each behavior type were computed. Each value
was calculated for each participant, and each participant’s values
were averaged to describe the population. To quantify the SRT
variability difference between pro-saccades and anti-saccades,
we created a variation difference score for each participant by
subtracting the standard deviation of their Regular-Pro SRTs
from the standard deviation of their Correct-Anti SRTs. This
normalization process was done to control for inter-subject
variations and isolate task differences. If the difference between
these two standard deviations was negligible at the population
level the outcome would create normally distributed values,
centered on zero; a t-test was used to test this null hypothesis.

Frontiers in Systems Neuroscience | www.frontiersin.org 10 February 2019 | Volume 13 | Article 3

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Coe et al. Modeling Saccadic Action Selection

Previously, measurements of average latency and variability
were for Regular-Pro and Express-Pro combined. Here, they
were separated because if they were grouped together, the
measurements of the mean, median, and standard deviation for
SRTs would have been affected by the percentage of Express-Pro,
even though no change in the timing of Regular-Pro took place.
By separating these saccades, we could show how SRT for regular
latency saccades changed independently from the number of
express latency saccades.

Finally, as the anti-saccade task is a competition between the
automated drive to initiate a saccade toward a visual stimulus and
a voluntary drive to initiate a saccade in the opposite direction, a
subtraction of the cumulative curves for the correct anti-saccades
and the direction-error saccades was done to estimate the point
in time at which the voluntary signals started to overcome the
automated signals. This anti-saccade difference curve was created
from stimulus appearance (i.e., time zero) to 600ms to measure
ongoing performance. This is similar in concept to the Stop-
Signal Reaction Time (Hanes and Schall, 1995, 1996; Stuphorn
et al., 2000). Both are examples of measuring when a planned
response can be canceled. As we have seen from human data
(Munoz et al., 2007), anticipatory saccades were equally likely to
be made in either direction, thus the difference curve remains
near zero until express latency saccades begin to occur. As
direction errors are generally earlier than correct anti-saccades,
the difference curves should then dip below zero during the
express latency window. Then, as correct anti-saccades start to
outnumber direction errors, the difference curve should begin
to rise again after the express window, eventually climbing
above zero. The “Voluntary Override Time” was determined by
first finding the global minimum turning point (i.e., the lowest
value on the anti-saccade difference curve).Then finding the first
subsequent point that increased by at least 1 from the value
just prior to it. In other words, the velocity (1st derivative) of
performance (correct-error) was equal or greater than 1.

Analysis of Model Behavior
The model data was analyzed in the same manner as the
human data so that the two could be compared. When the
data was not normally distributed, nonparametric tests such as
the Wilcoxon–Mann–Whitney-U test (WMWU) were used. In
order to investigate what effects the variation of the 10 attributes
(Table 1) had on SRT, all trials were sub-divided by the 3 settings
for a given attribute (e.g., trials were sub-divided by the small,
medium, or large values for the RoR of the Automated Motor
input). This resulted in 10 regroupings of the full dataset; one for
each manipulated attribute.

To quantify the effects of the controlled variability on SRT,
the Kruskal-Wallis test was used to test for significant differences
between the small, medium, and large sub-groups of each
manipulated attribute. Due to the large number of trials that were
collected, miniscule differences in median SRTs between groups
would be construed as statistically significant. We therefore used
the difference in median SRTs between the trials with small and
large setting as a measure of absolute effect (Sullivan and Feinn,
2012). Cohen’s d effect size calculations were also performed with
different standard deviations for different behaviors.

To measure how variation of the 10 attributes determined
which saccade the model selected, we measured the frequency of
each setting for each saccade type. The values of the attributes
were equally probable for each task, so if the attribute settings
had no effect on saccade selection then all three values should
be equally present for that type of saccade. If the proportions
were not equal then it would reveal that the value of the attribute
must have caused, or blocked, that behavior. To quantify the
effects of the controlled variability on saccadic selection, the Chi-
Square Goodness of Fit test was performed to test for significant
difference from expected equivalence.

RESULTS

The Model Reproduced the Five Types of
Saccades Characteristic of Human
Behavior
Instantaneous and cumulative histograms showing the latencies
of the five different types of saccades from the human data
set (Munoz et al., 1998; Coe and Munoz, 2017) are presented
in Figures 5A,B, respectively. The data were compiled from
74 participants, aged 18–39, who performed a total of 14,140
saccades that were classified into one of the five saccade
types. Trial counts, percentages, medians, means, and standard
deviations for SRT for the five types of trials are presented
in Table 2 for the human data. Regular-Pro SRTs were earlier
than Correct-Anti SRTs (p < 0.01 WMWU) and the variance
analysis showed that Regular-Pro SRTs were less variable than
Correct-Anti SRT (p < 0.001, t-test).

The model reproduced the five types of saccades
(Figures 5C,D) in a similar fashion, with reduced variability for
the Regular-Pro SRT and higher anti-saccade error rates. Trial
counts, percentages, medians, means, and standard deviations
for SRT for the 5 types of trials are presented in Table 3 for the
model data. Similar to the human data, the mean Regular-Pro
SRT was earlier than the mean Correct-Anti SRT (p < 0.01
WMWU) and the Regular-Pro SRT was less variable than
Correct-Anti SRT.

The Effects of Attribute Variability
A qualitative summary of the effects the manipulated attributes
had on the model’s behaviors is shown if Figure 6. This figure
can also help to estimate what the outcome would have been
if higher or lower values would have used (see Table 1). Each
plot contains the same 118,098 trials as Figure 5D, but the data
were sorted by the 3 settings for the variable in question. Some
of the effects are straightforward. For example, increasing the
Onset Delay for internally initiated inputs (Figure 6E) produced
a clear rightward shift in SRT after the express window, indicating
that a larger Onset Delay slowed SRT but had minimal effect on
what type of saccade was selected, as measured by express latency
saccade rate or error rate. On the other hand, increasing the
MaxVal for the Inhibitory Gate input (Figure 6I) produced a clear
vertical shift, during and after the express window, indicating
that it had a strong determining force for what type of saccade
was selected, as measured by the frequency of express latency
saccades and direction errors. Furthermore, the MaxVal for the
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FIGURE 5 | Histograms of Human (A,B) and Model (C,D) SRTs plotted using 6ms bins. Direction errors are plotted below the zero line for ease of comparison. Gray

areas in each pane indicate the express saccade window (90–138ms). Instantaneous (A) and cumulative (B) histograms showing the percentages of saccades types

and their latencies from healthy adults performing the pro- and anti-saccade tasks. Data is pooled from 74 participants between the ages of 18-39 that preformed a

total of 14,493 saccades that fell into one of the five saccade types. Instantaneous (C) and cumulative (D) histograms showing percentages of saccades types and

their latencies from the model. The model performed 118,098 trials, all of which had saccades that fell into one of the five saccade types.

TABLE 2 | Behavioral data from 74 participants aged 18–39 years.

Regular-pro Express_pro Correct-anti Regular-error Express_error

Total count 4502 818 8171 390 259

P
o
p
u
la
tio

n
m
e
a
n
s

Count 61.7 11.2 110.4 5.3 3.5

Percent 86.6 13.4 92.3 4.7 3.0

Median SRT 206.3 120.0 253.6 212.9 117.6

Mean SRT 213.8 119.3 259.9 226.7 117.4

STD SRT 42.0 10.7 50.1 63.6 10.0

Automated Motor input (Figure 6F) influenced both SRT and
saccade selection.

Saccadic Reaction Time Variability
Saccadic Reaction Time (SRT) variability was assessed for only
the Regular-Pro, Correct-Anti, and Regular-Errors; as Express-
Pro and Express-Errors were confined within a fixed time-
window. The results from the Kruskal-Wallis test on SRT
variability showed that all but two median SRT comparisons
were significantly affected by the variability of the attributes
(p < 0.001). However, due to the massive size of the data set,
any absolute difference greater than 3ms constituted statistical
significance. Thus, the difference in median SRT between small
and large values (i.e., the median-shift) was used as a measure of
absolute effect (Table 4). Cohen’s d effect size analysis (Table 5)
uses standard deviation to normalize the effect size results. This
creates two caveats for the analysis of our data, the second one
being the most important. First, each behavior had very different

standard deviations giving each behavior different effect size
scores for the same effect. Second, the data is so skewed that the
standard deviation is not a great descriptor of the data. This is
especially the case for Correct-Anti histogram as it has a much
larger standard deviation due to the very elongated tail. Skewness
for Regular-Pro, Correct-Anti, and Regular-Errors are: 0.15, 1.85,
0.61 respectively, where over 1 is considered very skewed and
0.5 to 1 is moderately skewed. These descriptive statistics were
designed for a more normal distribution so here the exaggerated
standard deviation minimizes Cohen’s d effect size especially for
Correct-Anti. Using a single standard deviation for the three
behaviors combined would be similar to using absolute median-
shift, except that the effect values would lose their intrinsic
meaning. Although both results are presented the absolute effect
of the median-shift (in milliseconds) was used to discuss how
each setting influenced SRT.

Negative scores indicate that the large setting reduced SRT
relative to the small setting (i.e., bigger was faster). As the absolute
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TABLE 3 | Behavioral data from the model.

Regular-pro Express_pro Correct-anti Regular-error Express_error

Count 54898 4151 47756 7142 4151

Percent 92.97 7.03 80.875 12.095 7.03

Median SRT 190 120 256 186 120

Mean SRT 190.36 122.20 276.98 194.82 122.20

STD SRT 22.45 8.28 66.38 38.75 8.28

effect (in milliseconds) is constrained by the variability of the
input settings, we delineated the results by the 30th and 60th
percentile rank of the absolute median-shift. This corresponded
to a difference less than 10ms as a minor effect and a difference
above 20ms as a major effect. Only moderate (from 10 to 20ms)
and major effects are discussed.

The Regular-Pro SRTs were moderately affected by 3
attributes, and 2 attributes had major effects (Table 4). Not
surprisingly, largest effect on Regular-Pro SRT was due to the
Onset Delay; the later the inputs started, the slower the model
was to select a saccade. This was true for Regular-Pro, Correct-
Anti, and Regular-Errors. Also unsurprising, was the effect of the
Voluntary Preparation MaxVal, and Automated Motor MaxVal,
which reduced Regular-Pro SRT when they were stronger.
This confirms that stimulus predictability (as modeled by the
Voluntary Preparation input) and training (as modeled by the
Automated Motor input) reduced SRT. Additionally, an increase
in the Voluntary-Motor RoR moderately decreased Regular-Pro
SRT. Lastly, an elevated Peripheral Inhibition MaxVal had a
moderate slowing effect on Regular-Pro SRT.

The Correct-Anti SRTs were moderately affected by 4
settings, and 5 settings had major effects (Table 4). A larger
Voluntary-Motor RoR and the Inhibitory Gate RoR decreased
the model’s Correct-Anti SRTs. There were also faster SRTs when
the Voluntary FixationMaxVal, the Inhibitory-Gate MaxVal, and
Peripheral Inhibition MaxVal were larger. Lastly, a larger Onset
Delay, Automated Motor MaxVal had a major slowing effect
on SRT, whereas Auto-Motor RoR and Voluntary Preparation
MaxVal had only amoderate slowing effect on Correct-Anti SRTs.

Regular-Errors SRTs were moderately affected by one setting,
and 8 settings had major effects (Table 4). Regular-Errors
occurred later (i.e., a longer competitive process between
the automated and voluntary inputs) when the Onset Delay,
Automated Motor MaxVal, the Voluntary Preparation MaxVal,
and the Peripheral Inhibition MaxVal were larger. However,
Regular-Errors occurred earlier when theAutomatedMotor RoR,
the Voluntary Motor RoR, the Peripheral Inhibition RoR, and
the Inhibitory Gate MaxVal were larger. One rather interesting
aspect about the difference between the model and the human
Regular-Errors SRT distributions is evident in Figures 5A,C.
Just after the 200ms time point, the histogram for the human
data approached zero for Regular-Errors SRTs but the histogram
for the model shows that another group of direction error
saccades were made. A post-hoc investigation addresses this
discrepancy below.

The Origins of Saccadic Action Selection
To measure how the small, medium, and large settings for
the attributes affected which type of saccade was selected a
Chi-Squared analysis was performed (see methods). Figure 7
graphically represents the results from the Chi-Squared analysis
and rows with color indicate which attributes had a significant
(p < 0.001) effect on action-selection.

For Regular-Pro trials (Figure 7A) all attributes had equal
distributions of small, medium, and large values. This established
a baseline and indicated that no single setting was responsible for
selecting Regular-Pro.

For Express-Pro trials (Figure 7B) there were significant shifts
in several of the attribute settings. When the model made
an Express-Pro, the Automated Motor RoR and the Voluntary
Preparation MaxVal were predominantly large values. Whereas
the MaxVal for the Voluntary Fixation, Inhibitory Gate, and
Peripheral Inhibition inputs were predominantly small values. In
fact, when the Voluntary Preparation MaxVal was at its lowest
setting or the Peripheral Inhibition MaxVal was at its highest
setting, this model did not make any Express-Pro. This is in
agreement with the findings that express latency saccades are
facilitated by stimuli that appear in predictable and practiced
locations (Paré and Munoz, 1996; Sparks et al., 2000) and are
associated with a the buildup of preparatory activity (Dorris and
Munoz, 1998). For Express-Errors (Figure 7D), the shifts in the
settings were identical to the Express-Pro results.

For Correct-Anti trials (Figure 7C) the proportions of
attribute settings were not significantly different from the null
hypothesis, although one minor tendency was present. In other
words, the number of correct anti-saccades did not depend on
only one of the inputs. The Voluntary Preparation MaxVal was
more frequently a small setting (p = 0.081, Chi2), showing that
the model was more likely to make a successful anti-saccade if
the anticipatory build up activity for a visual stimulus (i.e., the
Voluntary Preparation input) was reduced.

Regular-Errors trials (Figure 7E) also showed significant shifts
in several of the attribute settings. The Automated MotorMaxVal
and the Voluntary PreparationMaxVal were predominantly large
settings. This shows that the model made more Regular-Errors
when the automated drive to make a saccade to a visual stimulus
was augmented by increased anticipatory build up activity.
Additionally, the MaxVal attribute for the Inhibitory Gate input
was predominantly small, showing that if the inhibition, which
needed to be removed to unmask a motor command, was weak,
then the model was more likely to make Regular-Errors.
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FIGURE 6 | The effects of the 3 values for the 10 variables on saccade selection and latency. Panels (A–J) show the effects of the Controlled Deterministic Variability

for each of the ten manipulated attributes described in the Methods section and Table 1. All blue lines are Regular-Pro, cyan lines are Express-Pro, red lines are

Correct-Anti, brown lines are Regular-Errors, and orange lines are Express-Errors. All direction errors are plotted below the zero line for clarity. Solid lines indicate large

values for each setting, dashed lines indicate medium value for each setting, and dotted lines indicate small value for each setting. Vertical gray areas indicate the

express latency window.

Post-hoc Investigations
The primary simulation was run with the basic assumptions
of the model and without any biases between pro-saccade
trials and anti-saccade trials. However, the results from the
primary simulation lead to several post-hoc simulations and
improved behavioral performance, i.e., better matched human
behavior. Three post-hoc investigations (with several simulations
each) were performed to test findings and improve the model’s
performance. The first investigation addressed the source of the
temporal difference between the pro and anti SRTs. The second

addressed the difference between the frequency of express latency
saccades between the model’s performance and the human
behavior. The final investigation addressed the greater number of
longer latency (>200ms) direction errors exhibited by the model
in comparison to the human data.

Post-hoc Investigation 1
In this model and others (Cutsuridis et al., 2007; Cutsuridis,
2017), the delay of the anti-saccade SRTs was not caused by a
predetermined delay imposed specifically on anti-saccade trials.
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TABLE 4 | Median SRT shift results (1ms).

Attributes Regular-pro Correct-anti Regular-error

Onset delay 37§ 21§ 50§

Auto-motor RoR −7 11* −55§

Vol-motor RoR −11* −56§ −16§

Inhibit-gate RoR −9* −21§ −3

Periph-inhib RoR −8 7 −54§

Auto-motor MAX −13* 32§ 28§

Vol-fixation MAX 9 −18* −3

Vol-prep MAX −20§ 14* 22§

Inhibit-gate MAX 5 −11* −19§

Periph-inhib MAX 17* −20§ 53§

*indicates moderate effect (30–60th percentile)

§indicates major effect (60–100th percentile)

The difference in median SRT between the large setting and the small setting was used

as a measurement of absolute effect size (Sullivan and Feinn, 2012). Any absolute value

greater than 3ms was significant (p < 0.01).

TABLE 5 | Cohen’s d effect size calculations for each behavior large−small
σ .

Attributes Regular-pro

(σ = 22.45)

Correct-anti

(σ = 68.38)

Regular-error

(σ = 38.75)

Onset delay 1.65 0.32 1.29

Auto-motor RoR −0.31 0.17 −1.42

Vol-motor RoR −0.49 −0.84 −0.41

Inhibit-gate RoR −0.40 −0.32 −0.08

Periph-inhib RoR −0.36 0.11 −1.39

Auto-motor MAX −0.58 0.48 0.71

Vol-fixation MAX 0.40 −0.27 −0.08

Vol-prep MAX −0.89 0.21 0.57

Inhibit-gate MAX 0.22 −0.17 −0.49

Periph-inhib MAX 0.76 −0.30 1.37

Here, the temporal delay in anti-saccade SRT was caused by a
conflict between voluntary and automated processes. To validate
this finding, we ran additional simulations withmodified settings.
In the first post-hoc simulation, the Automated Motor input was
removed by setting its RoR = 0 (it never rose above zero).
This caused the model to perform both tasks perfectly (i.e., zero
direction errors) and drastically reduced the difference between
the Regular-Pro and the Correct-Anti SRT distributions (mean
Regular-Pro SRT: 220ms, mean Correct-Anti SRT: 227ms). In
this first post-hoc simulation, some Correct-Pros were earlier
due to some residual activity from the Visual Transient. This
does not mean that the Visual Transient caused the saccades,
merely that the residual effects of the visual stimulation raised
the Neural Field to a higher state of excitability at the location
of the stimulus. Thus, the subsequent motor commands toward
the stimulus started at a slightly higher level, which pushed
them across the threshold earlier. However, subsequent motor
commands on the opposite side of the stimulus started at a
slightly lower level of excitability, which forced them to cross the
threshold later. The second version of this simulation removed

both the Automated Motor and the Visual Transient inputs by
setting their RoR= 0. With both of these inputs reduced to zero,
the Regular-Pro and the Correct-Anti SRT distributions were
identical to the millisecond (mean SRT: 225ms), as they both
were solely driven by voluntary motor commands and the model
contained no noise.

Post-hoc Investigation 2
In the human data there were more Express-Pro than Express-
Errors (Figure 5A). For our model, however, the number
of Express-Errors was identical to that of the Express-Pro
(Figure 5C) because the settings that caused these behaviors
were equally present in both tasks by design. In a trained
participant, however, there has been shown to be a difference
in the “intentional state” between pro and anti-saccade tasks in
the FEF, SEF, and IntraParietal Sulcus (IPS) of humans (Curtis
and D’Esposito, 2003; Ford et al., 2005) and in single unit
recordings in both FEF and SC (Everling et al., 1999; Munoz
et al., 2000). Everling et al. (1999) showed that anti-saccade trials
had enhanced activity over pro-saccade trials in fixation neurons
whereas anti-saccade trials had less activity than pro-saccade
trials in saccade neurons.

In an effort to recapitulate an “intentional state” task-
dependent strategy (or bias) in our dataset, we removed trials
with specific settings for fixation and inhibitory inputs. The
removal of pro-saccade trials with large MaxVal settings for the
Voluntary Fixation, Inhibitory Gate, and Peripheral Inhibition
inputs emulated a reduction in average fixation and inhibition
activity during pro-saccade trials. We also removed the anti-
saccade trials with the small MaxVal settings for the same three
inputs to emulate an increase in average fixation and inhibition
activity during anti-saccade trials. This dramatically changed
the percentages of express latency saccades from being equal
at 7.03% for both Express-Pro and Express-Errors and 12.10%
Regular-Errors with full settings, to 20.95% for Express-Pro, 0%
for Express-Errors, and 6.05% Regular-Errors. In fact, removing
the pro-saccade trials with the large MaxVal setting and the anti-
saccade trials with the small MaxVal setting for any one of these
inputs resulted in there being more than twice as many Express-
Pro than Express-Errors. The Voluntary Fixation MaxVal
manipulation resulted in 10.13% Express-Pro vs. 4.58% Express-
Errors, and 12.52% Regular-Errors. The Inhibitory Gate MaxVal
manipulation resulted in 9.72% Express-Pro vs. 3.96% Express-
Errors, and 7.26% Regular-Errors. The Peripheral Inhibition
MaxVal manipulation resulted in 10.54% Express-Pro vs. 1.85%
Express-Errors, and 11.53% Regular-Errors. These modified
results better matched the human results, with 17.6% Express-
Pro vs. 2.9% Express-Errors and 4.3% Regular-Errors. Although
the manipulation of each of these three inputs improved the
model’s performance, it was theVoluntary Fixationmanipulation
that was most specific to express latency saccades as it had the
least effect on the percentage of Regular-Errors and the Regular-
Errors SRT. For comparison, the standardmodel’s Regular-Errors
SRT was 195ms (STD = 39ms), and the Voluntary Fixation
manipulation’s mean Regular-Errors SRT was 196ms
(STD = 39ms), but the Peripheral Inhibition manipulation’s
mean Regular-Errors SRT was 204ms (STD= 39ms).
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FIGURE 7 | A visualization of the results of the Chi2 test for the 10 manipulated attributes. Panels (A–E) represent how the ten manipulated attributes, described in

the Methods section and Table 1, influenced each behavior’s probability. Within each behavior, the proportion of small, medium, and large settings should be equal if

that input’s setting had no effect on saccade selection. Colored rows indicate which settings had results that were significantly different from the expected proportions

of 1/3 for each setting (p < 0.001, chi2 test).

Post-hoc Investigation 3
The “Voluntary Override Time” analysis (Figure 8) indicated
that the model took longer than the human participants to get the
voluntary signals to override the automated signals. The human
participants averaged only a 168ms delay where as the model
averaged 204ms delay. This was due to the greater number of
longer latency (>200ms) direction errors in the anti-saccade
task for the model (Figure 5C) than for the human population
(Figure 5A). As discussed earlier, regular latency saccades have
been described as “fast-regular” saccades and “slow-regular”
saccades. We hypothesized that the “early” direction errors
could be due to a lack of general inhibition, whereas the “late”
direction errors could be due to a lack of specific inhibition
of the automated signal. For the model, the Automated Motor
input was fashioned after signals with an initial response that
was not informative as to whether or not a saccade was going
to be made to a specific stimulus, and we initially emulated the
simplest form of this concept. However, in most situations the
firing patterns of neurons carrying this early component alter

their firing patterns to reflect intended motor plans (Snyder et al.,
1997; Gold and Shadlen, 2007; Andersen and Cui, 2009; Bisley
and Goldberg, 2010) and even perceived value (Sugrue et al.,
2004). This response inhibition and modulation is fundamental
in performing complex tasks (Funahashi, 2001; Alahyane et al.,
2014) and we posit that voluntary signals help reshape the
automated response.

Our final post-hoc investigation included something similar
to “crosstalk” between the Voluntary Motor input and the
Automated Motor input prior to the summation of all inputs. At
each iteration (or time point), a response inhibition instruction
was created by horizontally flipping the array that represented
the Voluntary Motor input and subtracting 25% of those values
from the Automated Motor input. Any values below zero in the
adjusted Automated Motor input were set to zero, as this input
was not designed to be inhibitory. This response inhibition used
an inverted Voluntary Motor input because it would commence
with Onset Delay, as all other voluntary inputs did, and its
strength would vary with the strength of the Voluntary Motor

Frontiers in Systems Neuroscience | www.frontiersin.org 16 February 2019 | Volume 13 | Article 3

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Coe et al. Modeling Saccadic Action Selection

FIGURE 8 | Voluntary Override Time was calculated to estimate when

voluntary signals started to override automated signals. The lines in Figure 8

are subtractions of the Red and Orange/Brown lines in Figures 5B,D.

input. This had the effect of reducing the strength of the
Automated Motor input only after the Onset Delay but had no
effect on the Voluntary Motor input. This method was chosen
because it was simple and followed the assumption that any
such response inhibition would be driven by dynamic voluntary
signals, both in timing and in strength, and theoretically could be
implemented using a process similar to inhibitory interneurons.
This inhibitory crosstalk had the effect of reducing the Regular-
Errors specifically. Most importantly, this effect was more
pronounced for the Regular-Errors after 200ms and resulted in
behavior that better approximated the human data. To quantify
this, the ratio between early (140–199ms SRT) and late (200–
259ms SRT) Regular-Errors was calculated using the count of
all saccades in the two time windows. For the human data there
was a 3:1 ratio of “early” to “late” Regular-Errors. In the original
simulation there was a 1.8:1 ratio of “early” to “late” Regular-
Errors whereas with the inhibitory crosstalk simulation there was
a 3.1:1 ratio of “early” to “late” Regular-Errors.

Figure 9 shows how the final two post-hoc investigations
improved the model’s performance to better emulate the human
data. Figure 9A shows cumulative histograms of the model’s
performance with original, the individual manipulations, the
combined manipulations, and the human data. Only anti-
saccades are shown as there was only a miniscule change to the
pro-saccades. Figure 9B quantifies the error rates and shows how
the simulation that used both modifications better resembled the
human behavioral results.

DISCUSSION

Our model helps to shed insight into how the spatial and
temporal aspects of multiple afferent signals, from numerous
brain areas, can coalesce in the SCi and interact to guide saccadic
action selection and response inhibition. The model not only
accrued information for complex decision-making processes,
but also reacted quickly in response to sensory information
to select automated, or even reflexive, saccades. The model
replicated the well-known effect of correct anti-saccades having
slower SRTs than correct pro-saccades (Fischer andWeber, 1992;

Munoz et al., 1998; Peltsch et al., 2011). This difference was an
emergent property of the internal competition, vs. collaboration,
between the automated and voluntary commands, which either
slowed or quickened SRT, respectively. With the introduction
of multiple “signal-inspired” inputs, our model outperformed
the previous version (2001) in its ability to match human
behaviors, specifically in producing express and regular latency
direction errors in the anti-saccade task as well as express and
regular latency pro-saccades. This strategy of using numerous
inputs is less parsimonious, but the improved performance
and the added ability to modulate inputs individually, testing
specific hypotheses, we believe justify the added complexity.
More complicated models exist and some can replicate express
and regular latency pro-saccades (Heinzle et al., 2007; Wiecki
and Frank, 2013; Lo and Wang, 2016) but to the best of
our knowledge, the only other model to simulate more robust
behavioral diversity is an intricate model of spiking neural
circuits (Lo and Wang, 2016). This intricate decision-making
model simulated express and regular latency for correct pro-
saccades and direction errors as well as modulating behavior by
changing tasks and input strength parameters.

The relatively simple nature of our inputs and controlled
variably of the attribute settings enabled us to trace backwards
from a particular behavior to understand what caused each
behavior. This in turn led to post-hoc simulations that further
improved performance via themodulation of the inputs and were
based on neurophysiologically inspired hypotheses. Preliminary
post-hoc investigations provided a rationale for why anti-saccades
were slowed and why pro-saccades were sped up, and the
sources of express latency pro-saccades and direction errors (both
express and regular latency). Further simulations showed how
a pre-emptive bias affected express saccade prevalence for each
task, and how an inhibitory crosstalk between inputs not only
improved direction error rates, but also improved the similarity
between human and model behaviors.

There are still numerous ways to further test and improve the
model and its inputs that are too expansive for this introductory
setting. One behavior that was not emulated was a corrective anti-
saccade after a direction error, which has been modeled before
(Cutsuridis et al., 2007). In the current rendition, the Voluntary
Motor input was quenched once a saccade was made but this
could be altered to be dependent on the outcome of the saccade.

What Drives Express Latency Saccades?
The model’s results showed that express latency saccades involve
the same mechanisms in both tasks, but it was the difference in
“preparatory bias” between tasks that affected their frequency,
as has been seen in human fMRI (Connolly et al., 2002).
The model recreated the well-known bi-modality of express
latency and regular latency saccades in the pro-SRT distribution
(Fischer and Weber, 1993), and is also in agreement with
previous work, which showed that express latency saccades are
produced via separate mechanisms than the regular latency
saccades in both single unit recordings (Fischer and Weber,
1992; Paré and Munoz, 1996) and modeling (Cutsuridis et al.,
2007). Although the original simulation of the model failed to
emulate the imbalance in Express-Pro and Express-Errors seen
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FIGURE 9 | Results from the different simulations of the model. (A) Cumulative histograms of SRTs for the results from the original settings and for the post-hoc

manipulations are compared to the human data. A clear progression of improvement is noticeable. (B) To better clarify the specific results from the manipulations bar

graphs of the different direction errors are presented. Here we show how modulation of the levels of fixation activity modulated the frequency of express latency

saccades and how the results from the “cross-talk” modulation that emulated a cancel contribution specifically targeted the later (>200ms) direction errors. The

simulation with both modulations better emulates the human data.

in the human data (Figures 5A,C), post-hoc simulations did. We
emulated task-dependent strategies to imitate an “intentional
state” bias between pro- and anti-saccade tasks (Everling and
Munoz, 2000; Curtis and D’Esposito, 2003) by removing certain
settings for fixation and inhibition inputs. This bias recapitulated
Express-Pro being more prevalent than Express-Errors similar
to the human population data. In other words, the mechanisms
behind Express-Pro and Express-Errors are the same, but it is
the “intentional state” bias that determines their difference in
frequency. The manipulation to induce an “intentional state” bias
also influenced Correct-Anti SRT. This effect can also be seen
in Figures 6I,J, solid lines; the more inhibition, the smaller the
difference between pro-SRT and anti-SRT. Similar findings have
been published in human studies (Olk and Kingstone, 2003).
The model also showed that this “intentional set” bias can be
produced by modulating either fixation or inhibition inputs.
However, fixation inputs affected the express saccade rates with
less effect on overall direction error rates. It is well known in
the literature that a blank period between the disappearance of
the fixation point and the peripheral stimulus is the best way to
elicit express latency saccades [i.e., the gap effect, (Saslow, 1967;
Fischer and Boch, 1983; Fischer and Ramsperger, 1984), which
further supports that adjusting the fixation input was the most
appropriate way to modify express latency saccade rate. This
model explains how “reflexive” express latency saccades are the
culmination of: preparatory build-up activity, reduced inhibition,
lowered fixation activity, and of course a sensory response. All of
which must coalesce in the SCi; without which reflexive express
saccades cannot be made (Schiller et al., 1987).

The Anti-saccade Task: Competition
Between Automated And Voluntary
Saccade Plans
In the anti-saccade task, the model’s Voluntary Motor and
Automated Motor inputs vied for saccadic control between two
mutually exclusive actions. A strongerAutomatedMotor not only

increased Correct-Anti SRT but caused Regular-Errors when the
Automated Motor command won.

Another way to compare anti-saccade performance for human
and model data was the “Voluntary Override Time” analysis.
The anti-saccade difference curves (Figure 8) illustrated why our
model had a higher direction error rate, specifically Regular-
Errors. The effects of the Automated Motor input persisted too
long as demonstrated by the delayed recovery of the model
curve vs. the human curve. An actual “cancel” signal may not
be necessary to perform the anti-saccade task, as shown in
the original simulation, but it appears necessary in order to
improve performance, especially for Regular-Errors after 200ms
post-stimulus. Such a cancel signal may come in the form of a
reshaping of automated signals via voluntary signals in frontal
and parietal cortices, or it might be a spatially focused inhibitory
signal sent to the SCi from the basal ganglia (Watanabe and
Munoz, 2011; Amita et al., 2018; Hikosaka et al., 2018b). A
focused inhibitory signal sent to the SCi from the basal ganglia
would more likely occur in a situation like the Stop-Signal
saccade task, when there is a need to cancel a voluntary motor
plan. For the anti-saccade task, we hypothesize that the voluntary
signals of the frontal-parietal network are crucial for quenching
the automated signals. Thus, we implemented a “crosstalk” style
inhibition from the Voluntary Motor input on the Automated
Motor input just prior to input summation and entry to the main
model. This had a very specific effect of reducing later (>200ms)
direction errors in the anti-saccade task and further improving
the model’s performance.

Some remaining differences between the human data and
the model data are in the variability and the delayed voluntary
inputs. This made the model incapable of simulating Correct-
Anti prior to 200ms; evident in the human data. For these
simulations there was a desire to investigate the express latency
saccades independent of very fast automated or even voluntary
saccades, thus we kept the voluntary inputs delayed. Another
issue is the difference in variability in Regular-Pro SRT. Again, the
desire to investigate the express latency saccades independently
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barred us from introducing a greater number of settings for the
Onset-Delay, voluntary, and automated inputs.

CONCLUSION

This platform of using separate “component-based” inputs has
numerous possibilities for future work. Here, the age range
of the non-clinical human data was from 18 to 39 years but
future work could involve modulating the inputs to emulate child
development (by modulating inhibition and fixation inputs),
aging (by modulating accuracy of voluntary inputs), and neural
degeneration (by modulating dis-inhibition regulation), to name
a few. In fact, the inspiration to create this model was to set it up
for testing a large range of hypotheses about the formation and
degeneration of neural pathways and circuits.
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