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Abstract

Forecasting the emergence and spread of influenza viruses is an important public health

challenge. Timely and accurate estimates of influenza prevalence, particularly of severe

cases requiring hospitalization, can improve control measures to reduce transmission and

mortality. Here, we extend a previously published machine learning method for influenza

forecasting to integrate multiple diverse data sources, including traditional surveillance data,

electronic health records, internet search traffic, and social media activity. Our hierarchical

framework uses multi-linear regression to combine forecasts from multiple data sources and

greedy optimization with forward selection to sequentially choose the most predictive combi-

nations of data sources. We show that the systematic integration of complementary data

sources can substantially improve forecast accuracy over single data sources. When fore-

casting the Center for Disease Control and Prevention (CDC) influenza-like-illness reports

(ILINet) from week 48 through week 20, the optimal combination of predictors includes pub-

lic health surveillance data and commercially available electronic medical records, but nei-

ther search engine nor social media data.

Author summary

In the United States, seasonal influenza causes thousands of deaths and hundreds of thou-

sands of hospitalizations. The annual timing and burden of the flu season vary consider-

ably with the severity of the circulating viruses. Epidemic forecasting can inform early and

effective countermeasures to limit the human toll of severe seasonal and pandemic influ-

enza. With a growing toolkit of sophisticated statistical methods and the recent explosion

of influenza-related data, we can now systematically match models to data to achieve

timely and accurate warning as flu epidemics emerge, peak and subside. Here, we intro-

duce a framework for identifying optimal combinations of data sources, and show that

public health surveillance data and electronic health records collectively forecast seasonal

influenza better than any single data source alone and better than influenza-related search

engine and social media data.
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Introduction

Seasonal influenza epidemics annually result in significant global morbidity and mortality [1],

and influenza pandemics can cause catastrophic levels of death, social disruption, and eco-

nomic loss [2]. Early detection and forecasting of both emergence and peak epidemic activity

can inform an effective allocation of resources, surge planning, and public health messaging

[1, 3–5]. Thus, public health and scientific communities have prioritized the development of

influenza forecasting technologies [6–11].

There are a growing number and variety of readily available disease-related data sources

that may ultimately be integrated into or even replace traditional systems. The Center for Dis-

ease Control and Prevention (CDC) relies on data from two primary national influenza sur-

veillance systems: (1) the U.S. World Health Organization (WHO) and National Respiratory

and Enteric Virus Surveillance System (NREVSS) collaborating laboratories (henceforth,

WHO US) and (2) the US Outpatient Influenza-like Illness Surveillance Network (ILINet).

Recently, Meaningful Use [12], a CDC led effort, is advancing the expansion of syndromic sur-

veillance systems such as ESSENCE to address a broader set of infectious disease surveillance

objectives [13–15].

Novel data sources for outbreak surveillance are also arising outside of public health. Nota-

bly, researchers at Google launched the Google Flu Trends service (GFT) in 2008 to provide

real-time estimates of influenza prevalence based on disease-related search activity [16]. They

showed that time series tracking the volumes of influenza-related Google searches closely mir-

rored influenza data from ILINet. However, it failed to capture the emergence of the 2009

H1N1 pandemic and fell short in subsequent influenza seasons [17–21], resulting in the termi-

nation of the program in August 2015 by the company. Epidemic-related data have also been

extracted from not only search engines [22] but also interactive web-based applications (e.g.,

Flu Near You, InfluenzaNet) [23] and online social platforms such as Twitter (e.g., Mappy-

Health) [24, 25], Facebook [24–29], and Wikipedia [30]. While most of these data sources con-

tain broad information, epidemic related data is passively mined and filtered. There are,

however, a few participatory systems that directly solicit health data from voluntary partici-

pants [23]. For example, InfluenzaNet, has over 50 000 volunteers from ten European coun-

tries [23]. While many of these sources have been shown, individually, to estimate and predict

influenza activity, we have yet to build forecasting models based on systematic comparisons

and integration of complementary data.

Given the real-time availability of GFT at multiple geographic scales (from city to continen-

tal), many of the early forecasting methods used GFT as a test bed. Notably, Shaman et al. [8]

pioneers the use of Kalman filters to predict seasonal GFT dynamics from historical GFT and

humidity data and Nsoesie et al. [31] couples a simulation optimization method with a net-

work-based epidemiological model to forecast regional influenza peaks. Another study fore-

casts GFT from a combination of GFT, temperature, and humidity data in a specific

metropolitan area (Baltimore), and demonstrates that the integration of multiple data sources

can improve forecast accuracy [7].

More recent forecasting efforts have directly targeted CDC ILINet, rather than GFT, using

a variety of predictor data sources. Brooks et al. [6] apply a novel simulation-based Bayesian

forecasting framework to forecast one season of ILINet from prior ILINet data. Their method

first constructs prior distributions of seasonal flu curves by stochastically combining and trans-

forming features of past flu seasons. As a season emerges, it updates the posterior distribution

based on real-time observations and uses importance sampling to generate forecasts. Two

other studies forecast ILINet from alternative data sources—one evaluates the predictive per-

formance of Google, Twitter, and Wikipedia, individually [32], and the other considers a
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multi-linear combination of internet source, digital surveillance, and electronic medical rec-

ords data [33].

Such data sources vary considerably in both availability and reliability. Some are available

in near-real time, whereas others are lagged by days or weeks; some deeply sample geographic

or socioeconomic slices of a population, whereas others provide representative but sparse sam-

ples of an entire population. In particular, internet and social media data can be misleading,

particularly during newsworthy epidemiological events [34–36], but potentially provide a valu-

able real-time window into emerging events when combined with validated public health or

medical data sources. Optimization allows us to systematically balance such trade-offs and

quantify the informational content and complementarity of different categories of data. We

argue that, for a given forecasting task, candidate data sources should be evaluated and inte-

grated based on clear performance metrics, which may include, for example, measures of fore-

cast accuracy or precision at one or across multiple time points.

Here, we introduce an optimization method for designing robust multi-source epidemic

forecasting systems and apply it forecasting seasonal flu in the US. Our framework is intended

to be plug-and-play, allowing researchers to evaluate large combinations of data sources with

respect to their own forecasting model and performance metrics. In our case study, the candi-

date data sources include thousands of time series data sources from public health surveillance

systems, electronic health records systems (EHR), search engines, and other website and social

media applications. Our forecasting model is an extension of the flexible Bayesian machine

learning method introduced in [6], modified to combine multiple predictors. Finally, our

objective function considers overall similarity between historical data and out-of-sample fore-

casts, averaging across 16 recent flu seasons. Unlike recent multi-source forecasting studies

(such as [33]), we present a framework to rigorously evaluate much larger sets of candidate

data sources both at the national and regional level and select complementary combinations

that maximize forecast performance metrics. This approach not only yields more accurate

forecasts, but provides quantitative insight into the relative utility of data sources.

Materials and methods

Data sources

Forecasting target data. Our forecasting target is the aggregate flu data from ILINet, the

CDC national sentinel surveillance system [37]. ILINet tracks weekly counts of patients seek-

ing care for influenza-like-illness, as reported by a sample of health-care providers throughout

the US. We obtained national reports between 10/03/1997 and 05/16/2014 from CDC FluView

website [12]. We report results on forecasting national-scale ILINet in our main text, and

report several state-level forecasts for comparison in Table in S1 Table.

Predictor data sources. We consider multiple public health, clinical, and internet data

sources as candidate predictors for forecasting seasonal flu, including the CDC ILINet data

described above. Below is a brief description of the other data sources included in our study.

Lab-confirmed influenza cases (WHO US): This data includes the percentage of positive

tested laboratory analysis of all respiratory specimens reported to CDC from over 400 clini-

cal laboratory facilities located throughout the US and its territories. We use the national-

level percentages of all respiratory specimens that test positive for influenza. We obtained

this data for the time interval between 05/23/2003 and 05/16/2014 through the FluNet web-

site [38].

Athena Health flu-related electronic health records data (Athena): athenahealth, a for-profit

company providing cloud-based services for healthcare providers, supplied weekly data on flu-

related patient visits throughout the US from 05/27/11 to 5/16/14. Specifically, we obtained
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separate time series for six quantities: the numbers of patient visits that included (1) a flu vacci-

nation, (2) flu diagnosis, (3) ILI diagnosis, (4) a flu test (regardless of result), (5) a positive flu

test and (6) a flu-related prescription. The data were aggregated at the state-, Health and

Human Services (HHS) region-, and national-levels, totalling 435 different influenza-related

Athena time series.

Wikipedia flu-related activity (Wiki Flu): This data includes the number of page accesses for

the influenza page on Wikipedia, a collaboratively written, online, free encyclopedia [30]. Simi-

lar to previous studies [36, 39], we collected this data for the time interval between 05/23/2007

and 05/16/2014. Wikipedia receives millions of hits on a weekly basis. We normalized the time

series for the influenza page hit values to obtain a standard deviation of one.

WordPress flu-related blogs (WordPress Flu): This data includes the number of new

posts related to influenza in each week on WordPress, a free blogging platform with almost

60 million new posts per month [40, 41]. On this platform, users tag posts with keywords to

relate them to certain topics. We used a crawling algorithm to count the number of new

posts that were tagged with “influenza” for the time interval between 05/23/2003 to 05/16/

2014.

Twitter flu activity (HT US): This data includes the percentage of tweets related to influenza

infections identified by HealthTweets.org [42] using a simple machine learning classifier [43].

We use their data and categorization to obtain the percentage of influenza-related tweets at the

national-level in each week between 05/25/2012 and 05/16/2014.

HMAthena: Santillana et al. [33] provide national estimates of the number of patients seek-

ing medical attention for ILI, estimated from athenahealth data. We included this curated data

for the time interval between 05/25/2012 and 05/16/2014.

Hierarchical model selection

We use greedy optimization with forward selection to iteratively identify combinations of pre-

dictor data sources that collectively result in the most accurate forecast for a target data source.

Our approach consists of three steps, as shown in Fig 1. First, we individually forecast candi-

date data sources using an empirical Bayesian framework. Second, we use linear models to

combine such individual forecasts into grand forecasts of a target time series. Finally, we build

an optimal forecasting system (i.e., collection of predictor data sources) by sequentially adding

candidate data sources that most improve the accuracy of historical out-of-sample forecasts of

the target. Next sections describe these steps in detail.

Forecasting candidate data sources. The target data source is a time series in which dis-

tinct epidemics (seasons) can be identified and extracted. In our case, the target is ILINet or

one of the other influenza-related time series listed above. Each predictor data source is a his-

torical time series that can be aligned with the target. When forecasting a season, we assume

that all predictor data sources can only be observed for the first w weeks of the season, and

then make n week long forecasts beginning with the w + 1st week of the season. The target

data source is assumed to be unobserved for the focal season, unless it is also serving as a

predictor.

We use the empirical Bayes framework proposed by Brooks et al. [6] to forecast each pre-

dictor time series (from itself). It assumes that future seasons will resemble past seasons with

pre-defined transformations. Let f denote the seasonal curve for a given data source and sea-

son. We assume that the value for the ith week is fðiÞ≜ f ðiÞ þ �i, where f is an underlying sea-

sonal trend and �i * N(0, σ) is a Gaussian error term.

We build prior distributions for future seasons by combining five key characteristics of

observed seasonal time series:

Optimal multi-source forecasting of seasonal influenza
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1. Shape—the baseline seasonal curve (i.e., f)

2. Peak height—the maximum value of a seasonal curve (i.e., max(f))

3. Peak week—the week number during which the peak occurs (i.e., arg max (f))

4. Pace—the duration that a seasonal curve remains above the baseline before and after its

peak

5. Noise—the standard deviation of the Gaussian error distribution (i.e., σ).

When forecasting season s from data source d, we estimate prior distributions for each of

these characteristics from historical observed seasonal data, using all seasons of d except s: a set

of possible shape curves, a range of peak height values, a range of peak week values, and a set

of noise values. For example, when making an out-of-sample forecast of the 2007-2008 flu sea-

son, we build our prior distributions using all seasons for which data are available preceding

and following 2007-2008. For ILINet, this would include all seasons between 2003 and 2014,

except 2007-2008; for Athena, this would include only seasons between 2011 and 2014.

We generate (i.e., sample) a curve, f̂ s, from the prior distribution, following five steps. First,

we randomly select a shape f0 from the prior distribution of shapes, which consists of all histor-

ical curves smoothed by piecewise quadratic trend filtering [44]. Second, we randomly sample

a peak height, θ, from U(Θm, ΘM) where Θm is the minimum observed peak height and ΘM is

the maximum observed peak height, and adjust the peak height of the sample curve using

Fig 1. Multi-linear forecast of a historical influenza season. When evaluating a candidate data source, we combine it with

previously selected data sources and perform a series of leave-one-out forecasts. Each forecast involves three steps. (1) Align data and

remove the focal season from all time series (gray band). (2) Make separate Bayes forecasts for each predictor, using the method

introduced in [6] (green curves indicate observed weeks and blue curves indicate forecasts). The forecasts are derived from

distributions of prototypical curves generated by perturbing and combining characteristics of historic seasons for each candidate

data source (shape, pace, peak timing and peak height). (3) Integrate the predictor forecasts into a target forecast (red curve) using

the multi-linear model g fit to the historical predictor and target data. We evaluate this approach by comparing our target forecasts

with the true values of the focal season (black curve).

https://doi.org/10.1371/journal.pcbi.1006236.g001
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f1ðiÞ ¼ bþ y� b
y0 � b
ðf0ðiÞ � bÞ where θ0 is the height of f0 and b is the baseline level for data source

d (e.g., 2% for ILINet). Third, we randomly sample an integer valued peak week υ from U(ϒm,

ϒM) where ϒm is the earliest observed peak week and ϒM is the latest observed peak week, and

shift the values in the sample curve by f2(i) = f1(i − υ + υ1) where υ1 is the peak week of f1.

Fourth, we sample a pace π from U[0.75, 1.25] and make our last adjustment to the sample

curve with f̂ ðiÞ ¼ f2 i� u

p
þ u

� �
, following Brooks et al. [6]. Finally, we sample a standard

deviation value, ŝ, for the error distribution, �ðiÞ � Nð0; ŝÞ from the set of historical

noise terms. The noise from historical season j is estimated by comparing the actual curve zj

to the smoothed curve fj (using quadratic piecewise trend filter [44]), as given by

sj≜
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
i
vgðzjðiÞ � fjðiÞÞ

2
q

. This five-step sampling process yields a curve from the prior defined

by ðf̂ ; ŝÞ.
Given observed values for the first w weeks of the season, the posterior distribution for a

season is determined via importance sampling. We sample K values from the prior in the form

of ðf̂ k; ŝkÞ and calculate the importance, Ik, of each by:

Ik ¼
Yw

i¼1

PðlðiÞjNðf̂ kðiÞ; ŝkÞÞ ð1Þ

where l(i) is the observation at week i of the focal season. We calculate the posterior expected

values for the remaining seasonal time series, as given by

� ¼ E½fsjlð1Þ; lð2Þ; :::; lðwÞ; ff̂ 1; f̂ 2; :::; f̂ Kg� ¼

PK
k¼1

Ik � f̂ k
PK

k¼1
Ik

: ð2Þ

To obtain credible intervals, we assume that error is distributed normally around the

expected values, with posterior standard deviation for week i given by

rðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

Ik � ðf̂ kðiÞ � �ðiÞÞ
2

PK
k¼1

Ik

s

: ð3Þ

For each candidate data source, we separately forecast each season s and form the prior dis-

tribution for s using data from all available seasons before and after (but not including) s. The

uncertainty and quality of forecasts depend on the prior sample size K. We used K = 100, 000

for optimizing the forecasting systems described herein.

Forecasting a target time series. After obtaining forecasts for predictor data sources

using the above Bayesian empirical method, we combine them via a linear model to predict

the target data source, as given by

Fðs; tÞ≜b1 � D̂1ðs; tÞ þ b2 � D̂2ðs; tÞ þ :::þ bn � D̂nðs; tÞ ð4Þ

where F(s, t) is the value of the target data source in season s and time t and D̂i refers to the

expected forecasted values of predictor i. The β coefficients are obtained by fitting a regression

model to complete historical time series for the target and predictor variables.

To obtain the credible intervals for the target data source, we generate an additional N = 10,

000 separate target forecasts, each based on an independent sample from the posterior curves

of each of the candidate predictors. The 95% credible interval is then constructed using the

2.5th and 97.5th percentile value at each week of the forecast.

Data source selection. We start by choosing the candidate data source that provides the

best forecasts on its own. During subsequent rounds of selection, we evaluate each remaining

Optimal multi-source forecasting of seasonal influenza
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candidate data source by (a) combining it with the previously selected data sources, (b) fitting

a new linear model to the combined set of data sources, (c) for each season, calculate individual

Bayesian empirical forecasts for each of the predictors, (d) for each season, derive a target fore-

cast from the predictor forecasts using the fit linear model, (e) calculate the average RMSE (as

defined in Eq 5) of the resulting forecasts across all seasons. We then select the data source

that, when combined with the previously selected data sources, produces the minimum aver-

age RMSE. In this way, we can sequentially build a set of complementary predictors that collec-

tively predict the target time series. (See Algorithm in S1 Algorithm for our data selection

procedure).

The RMSE objective function favors forecasts that resemble the target ILINet data through-

out entire seasons. We initially evaluated other objective functions, including minimization of

(1) peak week error, (2) peak magnitude error, (3) both peak week and peak magnitude errors,

and (4) RMSE values in a sliding window around the peak week. We found that overall RMSE

minimization achieves not only the best season-long accuracy, but comparable predictions of

peak timing and magnitude as the more targeted objective functions.

Evaluating forecasts

We use RMSE to evaluate forecasts and thereby select informative combinations of data

sources. It measures the difference between predicted and actual time series, as given by

RMSEs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

w¼1

ðxw � ywÞ
2

s

ð5Þ

where xw and yw denote the observed and predicted values of the target data source, respec-

tively, at week w of the season, for w = {1, 2, . . ., n}. Post selection, we evaluate the quality of

the forecasts using two additional metrics that address the timing and magnitude of the epi-

demic peak. Specifically, the peak week error (PWE) of a given season is the absolute difference

between predicted and actual peak week, as given by

PWEs ¼ jp � ~pj ð6Þ

where p and ~p denote the weeks during which the observed and predicted time series, respec-

tively, hit their maximum values. The peak magnitude error (PME) of a given season is the

ratio of the absolute difference between the maximum observed and predicted values of the

time series and the maximum observed value, as given by

PMEs ¼
jh � ~hj

h
ð7Þ

where h and ~h denote the maximum values reached by the observed and predicted target time

series, respectively.

Computing resources. We performed these analyses using Python and R programming

languages on a Macintosh HD computer with seven 3.1 GHz Intel Core processors and 16 GB

RAM. We also used the Stampede supercomputer cluster in Texas Advanced Computing Cen-

ter (TACC) to parallelize the computation of Bayesian forecasts of candidate data sources.

Results

We analyzed several different sets of candidate data sources, with the goal of identifying sub-

sets of data sources that provide accurate and timely forecasts of ILINet. For each round of

data evaluation, we separately predicted each season between 1997 and 2014, excluding the

Optimal multi-source forecasting of seasonal influenza
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2009-2010 H1N1 pandemic. For simplicity, we assumed that all 16 seasons span from the 40th

calendar week of a given year to the 20th calendar week of the subsequent year. For each sea-

son in each data source, we assume that we observe values during the first nine weeks of the

season (i.e., the 40th through 48th calendar week) and then forecast ILINet levels for the

remainder of the flu season.

Each experiment resulted in an optimized surveillance system, that is, a list of data sources

prioritized by the order in which they were selected during optimization. We compare the

optimized surveillance systems using three metrics that evaluate the accuracy of the overall

(RMSE) and peak (PWE and PME) forecasts.

First, we consider an optimized system consisting of five data sources selected from among

all 453 local, regional and national data sources, and compare it to two baseline systems–one

using only ILINet to forecast itself and another using a combination of ILINet and WHO labo-

ratory data to forecast ILINet (Table 1). ILINet is selected as the single most informative pre-

dictor when evaluated in conjunction with only WHO laboratory data or with all 453 available

sources. The fully optimized system combines ILINet with WHO and three Athena state- and

regional-level data sources (no internet-based data sources is chosen), suggesting that proprie-

tary electronic medical record data may provide a more reliable source of real-time epidemio-

logical data than freely available internet source data. In comparing the ILINet plus WHO

Table 1. Performance of baseline and optimized surveillance systems.

Candidate sources Selected sources RMSE (%ILI) PWE (weeks) PME (%ILI)

Mean [Min, Max] Mean [Min, Max] Mean [Min, Max]

ILINet 1. ILINet US 0.66 [0.26,1.10] 2.43 [0, 6] 0.24 [0.008,0.71]

ILINet & WHO 1. ILINet US

2. WHO US

0.63 [0.26,0.98] 2.31 [0, 6] 0.24 [0.009,0.66]

All 1. ILINet US

2. WHO US

3. Athena FluResultVisit IL

4. Athena FluResultVisit GA

5. Athena PositiveResult% HHS 08

0.56 [0.21,0.96] 1.75 [0, 6] 0.19 [0.04, 0.39]

All national (US) 1. ILINet US

2. WHO US

3. Athena ILIVisit US

4. Athena ILI% US

5. WordPress Flu

0.60 [0.26,0.98] 2.12 [0, 6] 0.21 [0.02, 0.40]

All national without ILINet 1. WHO US

2. Athena FluResultVisit US

3. Athena FluRXVisit US

4. Athena FluVisit US

5. Athena ILIVisit US

0.64 [0.18, 1.30] 2.37 [0, 8] 0.21 [0.002,0.45]

All national without ILINet & WHO 1. Athena ILI% US

2. Wiki Flu

3. HM Athena

4. WordPress Flu

5. Athena FluResultVisit US

0.87 [0.29,1.75] 10.81 [0, 19] 0.44 [0.15,0.71]

Data sources were selected based on accuracy (RMSE) of 16 out-of-sample retrospective flu season forecasts (1997-2014, excluding the 2009-2010 H1N1 pandemic), and

listed in order of selection. All and National (US) includes 453 and 13 candidate data sources, respectively. Mean, minimum, and maximum values are calculated over

the 16 seasons.

https://doi.org/10.1371/journal.pcbi.1006236.t001
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system to the fully optimized system (All), we find that Athena data improves performance

only marginally relative to the addition of all four data sources, which together reduce the his-

torical RMSE by roughly 15%.

The optimization selected Athena data from HHS region 8, Illinois, and Georgia, from

among all 435 Athena candidate time series. To assess the value of such local, state and regional

data, we conducted an additional experiment, restricting the selection to only US-level candi-

date data sources. The resulting system includes two national Athena data sources (i.e., abso-

lute and percent ILI visits across all facilities) and WordPress flu activity (Table 1). It yields

better forecasts than the public health baselines, but is inferior to the optimized system that

includes state and regional data.

While ILINet and WHO data are consistently selected as the most informative data sources,

they tend to have greater time lags than some of the other real-time candidate data sources. To

evaluate the viability of a real-time system using alternative national-level data, we optimized

two additional systems, one excluding ILINet and the other excluding both ILINet and WHO

data. Without ILINet, WHO is selected as the single most informative source and combined

with four different national-level Athena data sources tracking flu-related visits and prescrip-

tions (Table 1). The forecasts decline only slightly relative to systems that include ILINet. How-

ever, when both ILINet and WHO data are excluded, the expected performance drops

considerably. For comparison, we optimized systems for forecasting state-level ILINet (Cali-

fornia, New York, and Texas), and found that national-level surveillance data (ILINet and

WHO US) are always selected among the top three most informative data sources, with fore-

casts enhanced by a variety of state and regional athenahealth variables. (See Table in S1 Table)

Forecasting accuracy

The best five-source system (optimized from all available data sources) consistently produces

accurate historical out-of-sample forecasts, as shown in Fig 2. After observing only the first

nine weeks of the flu season, the system is able to predict the remaining 24 weeks of the season

with an average RMSE under 1%. The forecasted 95% credible interval contained the historical

ILINet value in 87% of all weeks across all 16 forecasts. However, the 2002-2003 and 2003-

2004 forecasts capture the peaks but considerably overestimate prevalence towards the ends of

the seasons (12 weeks out of 24 lie outside the 95% credible interval). Excluding these two sea-

sons, 92.9% of all historical weeks fall within the forecasted 95% interval. In the system

Fig 2. Forecasts of historical flu seasons from 1997-1998 through 2013-2014 (excluding 2009-2010) by the optimized five-

source surveillance system. The system includes ILINet, WHO, and three Athena data sources. Forecast performance is

summarized in top rows of graphs, by RMSE (red), PWE (green), and PME (blue). The bottom row compares the forecasted (red)

and actual (black) times series with 95% credible intervals (gray). Vertical dashed lines indicate the last week of the observational

periods, after which all predictor and target data are forecasted.

https://doi.org/10.1371/journal.pcbi.1006236.g002
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optimized from all national-level data sources except ILINet, accuracy drops to 66% of all his-

torical weeks contained in the credible intervals. (See S1 Fig for detailed results).

Although these systems were optimized solely to minimize RMSE, the resulting forecasts

perform quite well with respect to predicting the timing and magnitude of the epidemic peak.

In over 85% of the seasons, the forecasts predict the peak to occur within two weeks of the

actual peak; in over 85%, the predicted height of the peak is within 20% of its actual height.

Since the Athena predictors are only available between 2011 and 2014, they provide no infor-

mation for the first 13 of the 16 seasons. Consequently, we see a reduction in RMSE for the

three most recent forecasts.

Performance curves for this optimized system indicate that additional data sources, beyond

the five included, are not expected to improve performance considerably, according to our

empirical results show in Fig 3. On their own, ILINet and WHO are the strongest predictors of

future ILINet activity. Although the Athena data sources exhibit poor individual performance,

they substantially improve forecast accuracy when combined with ILINet and WHO. The hier-

archical selection method was thus able to integrate complementary data sources into a multi-

source system that is expected to provide more reliable forecasts than single-source systems.

This is also true for systems which exclude ILINet and WHO as candidate predictors. (See

S2 Fig for detailed results).

We also build out-of-sample forecasts of ILINet using ILINet and WHO as predictors,

using only (1) three years (2011-2014) and (2) five years of training data (2008-2014) to build

the Bayesian prior distributions. In the original out-of-sample forecasts, we used 15 of the 16

available seasons to build priors for forecasting the remaining season. (See S3 and S4 Figs for

more details). Performance increased with the duration of the training data, with average

RMSE decreasing from 0.69 to 0.64 to 0.56 as we increase the training period from three to five

to fifteen years. However, even the poorest set of forecasts (based on three years of training)

are decent. In addition, we note that the original experiments selected Athena Health data as

highly informative predictors, despite only being available for three years (2011-2014).

Fig 3. Performance curves for the first ten selected data sources. The system was built through the sequential addition of data

sources to minimize RMSE, as listed from left to right along the x-axis. Graphs show the changing performance of the growing

system, where points indicate the quality (mean RMSE, PWE, or PME) of forecasts made using all data sources to the left of and

including the given x-axis label. Circles indicate individual performance of selected data sources; shading indicates performance

range across the 16 seasons tested.

https://doi.org/10.1371/journal.pcbi.1006236.g003
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Discussion

There are a growing number of powerful methods for forecasting seasonal and pandemic flu

(e.g. [6, 45]). To achieve earlier and more accurate predictions of epidemic emergence, growth,

peaks and burden, researchers are developing sophisticated statistical methods–some adapted

from mature forecasting sciences like meteorology [8]–and creatively leveraging diverse

sources of predictor data. The increasing public availability of disease-related data sources is

promising yet daunting, with annually, hundreds of thousands of influenza-related tweets

[42], several millions of page hits on Wikipedia to influenza-related pages [30], thousands of

influenza-related blog posts on Wordpress [40] and hundreds of thousands of hospital and

clinic visits. While many studies have demonstrated the promise of surveillance [46] and fore-

casting from novel data sources [33], we do not yet have rigorous methods for evaluating the

utility of such data or identifying effective combinations of data for particular models and fore-

casting goals.

Over several years, we have developed a general framework for addressing exactly this chal-

lenge [20, 46, 47]. For any public health surveillance goal, the approach is designed to system-

atically evaluate up to thousands of candidate data sources and identify complementary

combinations of predictors that achieve the stated goal. For example, we have identified opti-

mal zip codes for seasonal flu surveillance and early detection of pandemic flu in Texas [48],

selected informative clinics for dengue surveillance in Puerto Rico [47], and developed soft-

ware for optimal selection and integration of surveillance data sources for the Defense Threat

Reduction Agency’s (DTRA’s) Biosurveillance Ecosystem (BSVE) [49].

In this study, we have used this framework to design multi-source surveillance systems for

accurate forecasting of seasonal influenza, and, in the process, rigorously assess the perfor-

mance and complementarity of diverse data sources. To do so, we combined two previously

published methods. The first is an empirical Bayes strategy for forecasting seasonal flu from a

single data source [6]. Rather than imposing strong assumptions about transmission dynamics,

it assumes that the forecasting target (typically, the currently emerging flu season) will roughly

resemble past seasons in terms of the shape, peak week, peak magnitude, and pace of the epi-

demic curve. By combining and perturbing these features from prior seasonal data, we simu-

late distributions of plausible (hybrid) flu curves. Then, as a season unfolds, we predict future

weeks by extrapolating from variates that most resemble recent activity. To forecast flu (target)

from multiple data sources (predictors), we make empirical Bayes forecasts of each predictor

separately and combine them into a target forecast using a linear model previously fit to histor-

ical predictor and target data. The second method is a greedy optimization that sequentially

selects a maximally informative set of data sources to achieve a specified goal [47, 50]. In our

case, the candidate providers are a diverse set of public health, commercial health-care, inter-

net query and social media data sources. Our public health goal is accurate forecasting of sea-

sonal flu starting in calendar week 48.

The field has primarily focused on the development of statistical models that predict sea-

sonal dynamics on multiple geopolitical scales, and only secondarily considered the quality of

predictor data. Test bed data are often selected based on convenience. Until recently, Google

Flu Trends data was free and abundant at multiple scales, and thus a popular choice [7, 10, 20,

31]. A few studies have integrated multiple different types of data and shown that, for short-

term forecasting (one to three weeks ahead), the combination of all independent flu predictors

performs better than using single source [33]. However, they have not systematically optimized

the combination of data sources or quantified their relative contributions to forecast accuracy,

as we have done here. Our study confirms that multi-source forecasting can outperform
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single-source forecasting, but only when complementary sources are identified and systemati-

cally integrated.

We optimized forecasting models from three classes of data–traditional public health sur-

veillance data, electronic health records (EHR) from a data services company, and data aggre-

gated from the influenza-related internet search and social network activity. A priori, each has

pros and cons. Official surveillance systems are designed for the purpose of monitoring and

predicting flu activity, and thus may provide more accurate and robust signals than the alter-

natives. However, surveillance data tends to be sparse and time-lagged. Internet source data

can be abundant and immediately available, but provides only correlated activity that can be

highly susceptible to extrinsic perturbations such as media events and modifications to source

websites [34, 35]. EHR data has the combined advantages of real-time availability and access to

multi-dimensional flu data at various geographic scales. However, it is not freely available and

may require statistical corrections for sampling biases.

Our analyses provide quantitative insights into harnessing these trade-offs for forecasting.

First, when data sources are evaluated individually, we find that public health surveillance data

yields the most accurate forecasts, followed by EHR data, and internet-source data trailing far

behind. Second, optimized combinations of data sources (with or without ILINet) provide far

better forecasts than any individual data source alone. Third, EHR data are always selected

before internet-source data to augment public health data, suggesting that EHR’s provide a

more valuable source of complementary information. Forth, when CDC and WHO data are

excluded, the optimal EHR and internet-source systems are unable to achieve comparable

forecasting performance. Fifth, state-level EHR data improves forecasts significantly more

than national-level EHR data.

While we believe that these insights are robust, they may reflect specific assumptions of our

model, and not apply to other diseases, forecasting methods, or objective functions. First, the

superior performance of the public health data source is likely biased by our choice of ILINet

as the gold standard forecasting target. If we had instead sought to forecast athenahealth or

GFT time series, these data sources may have been selected as their own top predictors. How-

ever, we believe that this choice of target is justified, as it is the only data source specifically

designed to estimate flu prevalence in the US. Along with WHO it always selected as a top pre-

dictor for selected level forecasts. Second, we follow Brooks et al. [6] in assuming uniform dis-

tributions for peak height and peak week, constrained by historical observations. This might

limit forecasting accuracy for seasons with atypically high, low, early or late peaks. To address

this, one could assume distributions that include low probability extreme departures from past

seasons.

We emphasize that this framework is designed to select optimal combinations of data

sources for any combination of predictor data sources, multi-linear forecasting method and

objective function. As a case study, we built optimal combinations of data sources for forecast-

ing seasonal flu using a published univariate Bayesian empirical framework ([6]) that we

extended to forecast with multiple data sources. The optimized systems provide reliable fore-

casts of the overall seasonal trends and epidemic peak, in most of the 16 historical out-of-sam-

ple evaluations. The data-driven selection of informative predictors revealed that public health

surveillance data is invaluable for flu forecasting, and that, when rigorously integrated into

forecasting models, proprietary electronic health record data can significantly increase accu-

racy, to a greater degree than freely available internet data. The same optimization framework,

forecasting method and RMSE objective function could be readily applied to designing high

performing multi-linear forecasting systems for other diseases, for which we have amble his-

toric data, such as Dengue [51–54] and Chikungunya [55]. By modifying the objective
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function, we can alternatively build systems for forecasting early transmission dynamics or

clinical severity of emerging outbreaks.
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The system was built through the sequential selection of data sources that minimize average
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S3 Fig. Forecasting ILINet from ILINet and WHO predictors, based on a three-year train-

ing period (2011-2014). In the original forecasts, we used 15 of the 16 available seasons to

build Bayesian priors and then forecasted the remaining season. Here, we use only three sea-

sons to train the model and then forecast the preceding 13 seasons. The average RMSE across

these forecasts is 0.69, which is considerably poorer than the average RMSE of 0.56 achieved

with the original fifteen-year training periods.
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S4 Fig. Forecasting ILINet from ILINet and WHO predictors, based on a five-year training

period (2008-2014). In the original forecasts, we used 15 of the 16 available seasons to build

Bayesian priors and then forecasted the remaining season. Here, we use only five seasons to
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