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ABSTRACT
About 100 years ago, the first antibiotic drug was introduced into health care. Since then, antibiotics 
have made an outstanding impact on human medicine. However, our society increasingly suffers 
from collateral damage exerted by these highly effective drugs. The rise of resistant pathogen 
strains, combined with a reduction of microbiota diversity upon antibiotic treatment, has become 
a significant obstacle in the fight against invasive infections worldwide.

Alternative and complementary strategies to classical “Fleming antibiotics” comprise microbiota- 
based treatments such as fecal microbiota transfer and administration of probiotics, live- 
biotherapeutics, prebiotics, and postbiotics. Other promising interventions, whose efficacy may 
also be influenced by the human microbiota, are phages and vaccines. They will facilitate anti-
microbial stewardship, to date the only globally applied antibiotic resistance mitigation strategy.

In this review, we present the available evidence on these nontraditional interventions, highlight 
their interaction with the human microbiota, and discuss their clinical applicability.
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Introduction

The human body harbors a multitude of microor-
ganisms, including bacteria, fungi, archaea, and 
viruses, which exist in a symbiotic relationship 
with their host. The entirety of these commensals 
is referred to as the microbiota, and their collective 
genomic information as the human microbiome.1,2 

Within the microbiota, bacteria play a central role. 
All body surfaces are characterized by their specific 
bacteriome, which describes the bacterial compo-
nent of the microbiome. Over 2000 bacterial species 
have been identified as human commensals, 
a majority of which remain uncultured.3 The gut 
microbiota composition varies between individual 
persons and has been found to consist of a few 
hundred bacterial operational taxonomic units 
(OTU) on average.4–6 They constitute a subset of 
the overall phylogenetic diversity found in the cor-
responding human population.7–9 Most of these 
bacteria reside in the colon10 and occupy different 
functional niches.3

The development of high-throughput sequen-
cing techniques has improved our understanding 
of the role our commensal bacteria play in main-
taining human homeostasis. Their regulatory prop-
erties are central to many physiological processes 
associated with health and disease, and highly 
diverse in nature.11–13 Several functional axes have 
been identified over the last years, e.g., the gut– 
brain axis, the gut–liver axis, the gut–lung axis, 
and the gut–immune axis.14–17 Moreover, direct 
and indirect effects of the human microbiome on 
bacterial infection are varied and complex18,19 

(Figure 1). The human microbiota is increasingly 
recognized as a therapeutic target for infection pre-
vention and treatment.

Direct effects of microbial commensals: 
colonization resistance and pathobionts

Colonization resistance refers to the protection by 
the healthy microbiota against host colonization 
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with pathogenic microorganisms. The search for 
the definition of a healthy microbiota has not 
been concluded, but a multitude of independent 
findings confirm that a high alpha diversity is asso-
ciated with good health.20,21 The microbiota may 
however be a reservoir for potentially pathogenic 
commensals that can turn into causative agents of 
endogenic infections, so-called pathobionts. A loss 
in diversity or a disproportionate increase in one or 
more commensal species often indicates the pre-
sence of a disease state. Such shifts are commonly 
referred to as dysbiosis, even though an exact defi-
nition of this term remains to be established. The 
absence of dysbiosis plays a crucial role in the 
functionality of colonization resistance.

Individuals become colonized with multidrug- 
resistant (MDR) bacteria through contact with the 
healthcare system, the environment, animals, or the 
food chain. Initially, these bacteria may be present 
below the level of detection. However, exposure to 
antibiotics or other substances that exert selection 
pressure on the microbiota facilitates rapid expan-
sion and domination of MDR bacteria. If these 
changes coincide with a breach in host barrier 
functions, e.g., in the context of chemotherapy or 

surgery, bacterial translocation, and infection with 
MDR bacteria become highly likely.

Different studies support this model of infection 
pathogenesis. Mice gavaged with vancomycin- 
resistant enterococci (VRE) prior to antibiotic 
exposure displayed functional colonization resis-
tance with only minimal amounts of VRE detect-
able in their gut microbiota. If gavaged after 
antibiotic exposure, however, VRE was able to suc-
cessfully colonize the gut even weeks after expo-
sure. Apparently, some antibiotics are able to open 
a niche in the gut that favors the survival of VRE.22 

With respect to Gram-negative MDR bacteria, an 
understanding of the niche required for the growth 
of MDR bacteria is less well established. Recent 
findings suggest that the synthesis of short-chain 
fatty acids (SCFA) by gut commensals may play an 
important role in this setting. While a balanced gut 
microbiota synthesizes enough SCFA to maintain 
an acidic pH in the gut, exposure to antibiotics 
induces a dysbiosis in the gut microbiota that 
leads to decreased SCFA production and an 
increase in pH. Under these circumstances, Gram- 
negative MDR bacteria are more likely to colonize 
and dominate the gut.23

Figure 1. Intervention strategies against multidrug-resistant bacterial pathogens that are mediated or boosted by healthy commensal 
microbiota. In cases of dysbiosis or dysregulation, the microbiota may also contribute to increased pathogen colonization and disease. 
FMT: fecal microbiota transfer.
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Indirect effects of microbial commensals: 
immune system regulation

The microbiome profoundly influences the host’s 
immune system. At birth, the innate and adaptive 
immune system is not yet fully developed. 
Interactions with microbes provide a central role 
in their development process by direct contact with 
commensal symbionts in addition to environmen-
tal antigens.24 During the first years of life of an 
infant, the early microbiota can shape the immune 
system and vice versa.25 The interactions between 
commensal bacteria and the human immune sys-
tem are complex and their study is still in its 
infancy.

On the epithelial surface, the microbiota can 
regulate the integrity of the epithelial barrier, 
thereby preventing the penetration of pathogens 
into the host tissue and blood stream, and help 
respond to epithelial damage and pathogen 
breaches.26,27 This is mediated via pattern- 
recognition receptors (PRR) displayed in epithe-
lial, endothelial, and immune cells, which detect 
microbe-associated molecular patterns (MAMPs) 
such as lipopolysaccharides and flagellin.28,29 

Subsequent production of chemokines recruits 
immune cells, or activates the 
inflammasome.27,30,31 In turn, aspects of the 
inflammasome may influence the commensal 
microbiota.32 MAMPs are, however, not unique 
to pathogens, and it is unclear how commensals 
are distinguished from pathogens.26 Location 
may play an important role: commensals are 
mostly sequestrated on epithelial surfaces, while 
pathogens cross the epithelial barrier.33,34

Metabolites produced by bacterial commensals 
modulate innate and adaptive immune cells.35 

A metabolite may have different effects depending 
on the receptor cell type, such as differentiation, 
activation, inhibition, migration, or production of 
antimicrobial peptides.36–39

Immune tolerance is the state of unresponsive-
ness of the immune system to agents that have the 
potential to induce an immune response.40,41 

Intestinal regulatory T (Treg) cells play pivotal 
roles in the suppression of immune responses 
against harmless dietary antigens and commensal 
microorganisms.42 Differentiation, localization, 
and maintenance of intestinal Treg cells and 

tolerogenic dendritic cells are controlled by signals 
from the intestinal microbiota.43 Molecular 
mechanisms may involve PRR signaling or genera-
tion of microbial metabolites, but are still largely 
unidentified.

Finally, the commensal microbiota can contri-
bute to dysregulation of the immune response. 
Bacterial dysbiosis has been associated with various 
diseases, among them asthma, allergies, obesity, 
chronic inflammatory disorders of the skin, color-
ectal cancer, and cardiovascular disease.44–47 In 
addition, dysbiosis of the commensal microbiota, 
such as caused by antibiotic treatment, has been 
associated with an increased risk of bloodstream 
infection and sepsis.19,48

Alternative interventions against MDR 
pathogens

Microbiota-based treatments

Based on our understanding of the key role of the 
microbiota in the prevention of colonization and 
infection with MDR bacteria, different microbiota- 
based treatments can be envisioned. Efforts to engi-
neer or influence the commensal microbiota can be 
divided into two strategies: administration of live 
microorganisms, and supplementation with factors 
that influence the commensal microbiota.

Fecal microbiota transplantation
Fecal microbiota transplantation (FMT) is the 
transfer of stool from a healthy donor to the 
intestine of a patient. This can either be done 
endoscopically, by rectal enema, by oral ingestion 
of encapsulated preparations or by nasogastric or 
nasoduodenal tube. FMT is currently only 
recommended for the treatment of recurrent 
Clostridioides difficile infection (CDI), with an 
efficacy rate of up to 90%.49,50 How FMT deco-
lonizes C. difficile has not been fully established, 
and microbial predictors of therapeutic outcome 
are not clear. Bile acid metabolism seems to play 
one of the central roles, however; the primary 
bile acid taurocholate, secreted by the liver, 
induces germination of C. difficile spores.51 

Certain members of the commensal microbiota 
are able to metabolize primary bile acids and 
convert them into secondary bile acids, such as 
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deoxycholate. While also able to induce germina-
tion, deoxycholate inhibits the vegetative growth 
of C. difficile.51,52 Other potential mechanisms 
for FMT efficacy may include microbiota modu-
lation by direct interaction or competition 
(including quorum sensing modulation), and 
host immunity modulation.53

FMT is not currently approved for clinical use in 
the USA, but considered an investigational new 
drug.54 It is regulated individually in other 
countries.55 FMT is subject to safety concerns, 
namely transmission of infectious agents, including 
MDR pathogens,56 and unidentified risks asso-
ciated with changes in the patient’s microbiota. 
Improved regulation, manufacturing standards, 
and stool banks are expected to mitigate the former.

In patients who receive FMT, a significant reduc-
tion in fecal bacterial antibiotic resistance genes was 
observed for Gram-positive pathogens,57,58 which 
suggests that FMT may harbor the potential to dis-
place multiresistant bacteria from intestinal 
microbiota.59 Some clinical data are already avail-
able in this respect: in a recent study investigating 
the efficacy of a microbiota preparation as 
a treatment for recurrent CDI, successful VRE 
decolonization was recorded as a side effect.60 

Similar results were documented in another small 
case study.61

With regard to decolonization of Gram-negative 
MDR bacteria, several case reports and uncon-
trolled studies, as well as one randomized trial 
assessing this question, provide mixed results to 
date.62 Application of FMT for MDR pathogen 
suppression in solid organ transplant recipients 
and patients with hematologic malignancies 
resulted in partial or full decolonization in multiple 
cases.63 Other recent anecdotal cases report eradi-
cation of MDR Klebsiella pneumoniae in a critically 
ill patient with endocarditis and sepsis originating 
from an infection of a pacemaker component,64 

and MDR pathogen elimination in the case of cho-
langitis (inflammation of the bile duct system) with 
associated bacteremia.65

FMT is explored for treatment of other intestine- 
associated complications, such as inflammatory 
bowel disease, ulcerative colitis, and Crohn’s 
disease.66 Moreover, insights into the manifold 
effects of microbiota on human metabolism have 

spurred experimental FMT therapy for indications 
such as bipolar disorder (NCT03279224), 
Parkinson's disease (NCT03808389), cirrhosis 
(NCT02862249), and psoriatic arthritis 
(NCT03058900). Randomized controlled trials are 
currently ongoing, as well as experimental treatment 
of other diseases such as autoimmune diseases.67

Probiotics and live biotherapeutics
Probiotics are viable microorganisms which, when 
administered in sufficient quantities, have benefi-
cial effects on the health of the host.68 If used as 
a drug with an associated health claim, they are 
referred to as live biotherapeutic products/agents.69 

While probiotics are traditionally isolated from 
food, live biotherapeutics may be isolated from 
various niches. The latter may also include geneti-
cally modified organisms. Disease targets range 
from cancer, to autoimmune diseases (including 
asthma), to clearance of infectious agents. 
Mechanisms of action are specific to individual 
strains, and generally fall into one or multiple cate-
gories: microbiota modulation by direct interaction 
or competition, host metabolism modification,11,12 

and host immunity modulation.
An example of a direct colonization resistance 

mechanism comes from Staphylococcus lugdunen-
sis, a commensal isolated from the human nose.70 It 
produces lugdunin, a cyclic peptide antibiotic that 
inhibits the growth of various Gram-positive 
pathogens, including VRE and methicillin- 
resistant Staphylococcus aureus. Moreover, lugdu-
nin amplifies the innate immune response by indu-
cing expression of antimicrobial peptides and pro- 
inflammatory chemokines in human 
keratinocytes.71

Efforts are currently being made to identify 
defined bacterial consortia to suppress MDR 
strains.18,72 Importantly, administered strains 
must be free of antibiotic resistance genes.73 

Results of randomized trials for MDR decoloniza-
tion are mixed to date: two studies using 
Lactobacillus rhamnosus GG showed success in 
decolonizing patients with VRE.74,75 No effect 
on colonization was achieved against various 
Gram-negative MDR pathogens using 
a combination of Lactobacillus bulgaricus and 
L. rhamnosus.76
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Prebiotics and postbiotics
Prebiotics are non-digestible food components that 
favorably influence human health by modulating 
the growth and/or activity of one or more species 
of commensals. Metabolites and cell components 
derived from probiotic strains, which influence the 
microbiota and host health, are referred to as 
postbiotics.77

Among the most commonly used prebiotics are 
oligosaccharides such as inulin, fructo- 
oligosaccharides and galacto-oligosaccharides: 
their fermentation by gut microbiota results in 
SCFA. Other classes of prebiotics are human milk 
oligosaccharides (HMO), conjugated linoleic acid 
and polyunsaturated fatty acids, polyphenols, and 
fermentable dietary fibers.78,79 The health benefits 
of prebiotics mostly depend on microbial utiliza-
tion and the metabolites produced, rather than on 
parent compounds.80

Prebiotics may help prevent dysbiosis. In healthy 
volunteers, who were exposed to antibiotics, 
synthetically produced HMO positively influenced 
restoration of a balanced microbiota by selectively 
stimulating the growth of certain species, e.g., 
Actinobacteria and Bacteroidetes, while suppres-
sing others, e.g., Firmicutes.81 HMO can also influ-
ence the innate immune response, and directly 
prevent adhesion of pathogens to the intestinal 
epithelium.82,83

Postbiotic metabolites comprise enzymes, pro-
teins and peptides, lipids, polysaccharides, and 
organic acids. Postbiotic components include pep-
tidoglycan, cell-surface proteins, exopolysacchar-
ides, and teichoic acids. Postbiotics can act 
directly on the host (e.g. immunomodulation), the 
microbiota, or colonizing pathogens. In mice, 
extracellular vesicles from Akkermansia mucini-
phila and probiotic Escherichia coli increased the 
integrity of the epithelial gut barrier, contributing 
to one of the crucial factors that prevents systemic 
infection.84,85

Phage-mediated therapies

Phages are viral bodies that infect bacteria via 
attachment to bacterial surface-proteins and intro-
duce their own DNA into the bacterial genome. 
They exploit the bacterial transcription and transla-
tion machinery for the production of infectious 

particles. After assembly, phages exit via lysis,86 

leading to cycles of reinfection and phage- 
mediated genome exchange between bacterial 
hosts. Microbiomes and phages are directly depen-
dent on each other and in a state of continuous co- 
evolution.87 Coinfections of bacteria with multiple 
phages are the norm, resulting in a dynamic net-
work of horizontal gene transfer that includes anti-
biotic resistance genes. While these gene transfers 
may result in the spread of resistance genes within 
a host, the mechanisms and the clinical relevance of 
these dynamics are topics of controversial 
discussions.88–90

The principle of bacterial genome-modification 
and lysis also holds therapeutic promise. D’Herelle 
et al. showed first-in-human application in Vibrio 
cholerae infection in the early twentieth 
century.91,92 Since then, the characterization of 
phages and phage–host interactions have been stu-
died in depth to enable the translation of these 
findings into clinical practice.93–95 A key feature 
of phages is their high host specificity.96 Most 
known phages infect only a few strains of closely 
related bacterial populations, which leaves most of 
the commensal bacteria undisturbed. A variety of 
animal studies were able to show that phages can be 
used to eliminate MDR bacteria, including MDR 
P. aeruginosa, A. baumannii, and VRE.97–99

A number of smaller randomized controlled 
trials assessing the efficacy of phages in the treat-
ment of bacterial infections have been published. 
While none of these studies reported any problems 
with respect to safety, response to treatment was 
inconsistent between studies.100–105 Next to further 
improvement of efficacy, a regulatory framework 
for phage therapies needs to be put in place.

Vaccines and antibodies

Vaccines and antibodies are designed to prevent 
infection or to decrease disease severity. Effective 
vaccines deliver antigens to elicit a prophylactic 
immune response to generate disease-specific anti-
bodies with their corresponding memory cells, and 
provide long-term protection against invading 
pathogens.106,107 Externally administered antibo-
dies are agents of passive immunization, act faster 
than vaccines (hours or days), and bestow short- 
term protection.108
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Neither vaccines nor antibody preparations spe-
cifically act against MDR bacterial strains to date, 
but they can reduce the spread of targeted patho-
genic strains.109 This may decrease the number of 
antibiotics used, which reduces the selection pres-
sure on antibiotic resistance, aligns with antimicro-
bial stewardship measures, and forgoes antibiotic 
de-colonization of commensal microbiota. By 
avoiding antibiotic treatment, vaccines can poten-
tially reduce bystander selection of resistance ele-
ments in the commensal microbiota: the 
proliferation of bacteria carrying resistance genes 
upon targeted antibiotic removal of a neighboring 
pathogenic species.110,111

Resistance development to vaccines is relatively 
infrequent compared to the emergence of antibiotic 
resistance,112 but serotype replacement followed by 
the spread of new MDR serotypes have been 
observed,113 as well as an increase in invasive, non- 
vaccine serotype strains of targeted pathogens (e.g. 
Haemophilus influenzae, Streptococcus 
pneumoniae).114–116 Pathogenic strains are often 
heterogeneous and diverse, which increases the 
complexity of vaccine development.117 Moreover, 
antibiotic resistance mechanisms are frequently 
encoded in mobile genetic elements and horizon-
tally transferred.118,119 Vaccines directed at the 
effectors of drug resistance, such as penicillin- 
binding proteins and β-lactamases, are being stu-
died in animal models.120,121 Vaccines against gut- 
associated bacterial pathogens are currently avail-
able for Vibrio cholerae (Vaxchora), Salmonella 
typhi (Vivotif Berna), as well as Bacillus anthracis 
(BioThrax).

The commensal microbiota was shown to influ-
ence vaccine efficacy. Flagellin derived from com-
mensal microbiota, for instance, may play an 
adjuvant role and enhance immune response in 
response to vaccination.122,123 Components of lipo-
teichoic acid and peptidoglycan appear to have 
similar effects.124,125

Mitigating antibiotic collateral damage

Approximately, a quarter of all inpatients treated at 
hospitals receive antibiotics. One-third to one-half 
of antibiotic prescriptions in inpatient settings are 
insufficient with regard to the indication and/or 
duration of therapy.126,127 This fosters selection 

for antibiotic resistance and the spread of nosoco-
mial MDR strains. The use of broad-spectrum anti-
biotics can devastate the beneficial commensal 
microbiota, thus rendering a patient temporarily 
more susceptible to opportunistic infections, 
induce dysbiosis, and even cause long-lasting com-
plications such as asthma and inflammatory bowel 
disease.128–130 Potential solutions to address this 
issue are the development of treatment options 
with increased specificity or confined activity. 
Examples are narrow-spectrum antibiotics,131 

selective pathogen-targeting phages96 or antibody- 
antibiotic conjugates,132 localized antibiotic deliv-
ery using nanoparticle formulations,133 and strate-
gies to protect the gut microbiota with orally 
administered beta-lactamases134 or slow-release 
formulations of activated charcoal that absorb anti-
biotics as soon as they reach the large intestine.134

Antimicrobial stewardship

Antimicrobial stewardship (AMS) programs consti-
tute a vital strategy to address antimicrobial resis-
tance. They are designed to improve the quality of 
antimicrobial prescriptions in terms of substance 
selection, dosage, route of administration, and dura-
tion of therapy. AMS has been shown to reduce 
adverse events such as sepsis, results in lower mortal-
ity rates and improves patient outcomes, and 
decreases the rate of colonization and infection with 
MDR bacteria.135–138 The above outlined potential 
alternative therapies are not only fully compatible 
with AMS strategies, but would facilitate its imple-
mentation and potentially enhance its effectiveness.

Conclusion and outlook

As the antibiotic resistance crisis is unfolding, it has 
become clear that we cannot rely on classic anti-
biotics alone to suppress the rise of MDR bacterial 
pathogens. While antibiotic stewardship and the 
development of single-component molecule anti-
biotics are of utmost importance, we will increas-
ingly have to rely on alternative strategies to 
support or even replace conventional antibiotic 
treatment. Vaccines and phages have already 
shown great promise in past applications and 
proof-of-concept studies. Our greatest ally may 
yet become the human commensal microbiota. 
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While it is only recently that we began to system-
atically uncover the myriad ways in which these 
microorganisms contribute to health and disease, 
it is already evident that they offer many interven-
tion points to combat infectious agents directly or 
in tandem with the human host. We have a lot of 
work ahead of us to attain safe and efficacious 
treatments, and it is most certainly exciting and 
promising.
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