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Abstract

Evolutionary genetic models predict that the cumulative effect of rare deleterious mutations across the genome—
known as mutational load burden—increases the susceptibility to complex disease. To test the mutational load
burden hypothesis, we adopted a two-tiered approach: assessing the impact of whole-exome minor allele load
burden and then conducting individual-gene screening. For our primary analysis, we examined various minor allele
frequency (MAF) thresholds and weighting schemes to examine the overall effect of minor allele load on affection
status. We found a consistent association between minor allele load and affection status, but this effect did not
markedly increase within rare and/or functional single-nucleotide polymorphisms (SNPs). Our follow-up analysis
considered minor allele load in individual genes to see whether only one or a few genes were driving the overall
effect. Examining our most significant result—minor allele load of nonsynonymous SNPs with MAF < 2.4%—we
detected no significantly associated genes after Bonferroni correction for multiple testing. After moderately
significant genes (p < 0.05) were removed, the overall effect of rare nonsynonymous allele load remained
significant. Overall, we did not find clear support for mutational load burden on affection status; however, these
results are ultimately dependent on and limited by the nature of the Genetic Analysis Workshop 17 simulation.

Background
The advent of next-generation sequencing technology has
enabled researchers to detect rare genetic variation.
Despite this technological advance, detecting low-
frequency susceptibility alleles that underlie common dis-
orders has inherent difficulties. In general, detection of a
true signal is statistically challenging when any given var-
iant is observed in only one or a few individuals. Further-
more, many variants of large effect and/or complete
penetrance, such as those underlying Mendelian disorders,
are more likely to be identified using traditional linkage
methods. This poses a serious challenge to the discovery
of any particular causal variant, because rare variants of
small effect and/or incomplete penetrance will be difficult
to detect using traditional association methods.

An alternative approach is to test overall mutational load
across individuals, because variation observed in complex
disorders may be partly explained by the cumulative
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effects of rare deleterious mutations scattered across a
large number of genes [1-4]. Although any single mutation
might be present in only one or a few individuals in a
given sample (e.g., a rare allele, a single-nucleotide poly-
morphism [SNP] with low minor allele frequency [MAF])
and likely has a negligible effect (if any) on the overall trait
variation, the overall load of mutations is much more
likely to disrupt traits that rely on the proper functioning
of many genes. Support for this approach comes from evo-
lutionary genetic models of mutation-selection balance,
where the equilibrium between the introduction of dele-
terious mutations in the population and their eventual
removal by natural selection may take hundreds of genera-
tions [5-7]. For the purposes of this study, our mutational
load model makes two specific predictions for analyzing
sequence data: (1) Trait disorder will associate most
strongly when the total load of rare variants is assessed,
and (2) this association will not be explained by variants in
just one or a few genes.

To examine mutational load, we assessed the cumula-
tive effect of minor alleles associated with affection status
among unrelated individuals in the Genetic Analysis
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Workshop 17 (GAW17) mini-exome data set. In contrast
to traditional association analyses that test the effect of
an individual allele on a phenotype, our approach col-
lapses across the overall load (or sum) of minor alleles
carried by an individual. Such analyses are also referred
to as pooled association tests [8], which is a subtype of
broader collapsing methods [9]. Our hypothesis is that
individuals with a higher load of minor alleles will be
associated with disorder-related phenotypes, and alleles
with a lower MAF and increased functional effects will
largely contribute to this association. Because there is no
specific MAF threshold that distinguishes mutations
from the full set of polymorphisms, we use two thresh-
olds (MAF < 0.05 and MAF < 0.01) to assess whether
increasingly rare SNPs show a stronger association with
affection status. Our analysis uses various techniques
from Price et al. [8] to conduct minor allele load tests on
the entire exome data set. This is followed by a minor
allele load analysis within individual genes to check
whether detected overall effects, particularly those of rare
functional SNPs, can be explained by a single gene or a
small subset of genes in the sample.

Methods

Data

All analyses were carried out using R statistical software,
version 2.11.1 (http://www.r-project.org), and PLINK, ver-
sion 1.07 [10]. To simplify the approach, we examined
only data from unrelated subjects (n = 697; 327 males and
370 females). We reformatted the genotype and phenotype
data to assemble the input files required by PLINK.
Because the data were imputed for SNP missingness and
because most SNPs occur at low frequency, we did not
conduct any data cleaning procedures.

We focused on affection status as the primary phenotype
of interest. To avoid any bias that may arise from any sin-
gle replicate of the phenotypes, we aggregated affection
status for each individual across all 200 phenotype repli-
cates. We then designated the top 30% of aggregated
scores as affected (just as the top 30% of latent liability
scores are designated as affected in each phenotype repli-
cate) to return the phenotype to a case-control paradigm.
Because the three quantitative phenotypes were used to
construct the affection status scores, we did not take into
account their unique effects in this study.

Before data analysis, we examined the distribution of
overall minor allele load for possible outliers. We used the
—profile command in PLINK to compute the minor allele
load. This command provides a count of minor alleles per
individual along with a scoring procedure to give various
weights to certain SNPs. We also used the —profile com-
mand in subsequent pooled association analyses. Figure 1
shows the distribution of minor allele load in the data.
There is one clear outlier, NA19237, which was about 10
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standard deviations above the mean minor allele load. We
removed the data for NA19237 before our analysis.

We were also interested in the relationship of affection
status to the fixed covariates of Age, Sex, and Ethnicity
(smoking status was excluded because it varied across phe-
notype replicates). Table 1 shows the correlation matrix of
affection status with the three covariates. The strong rela-
tionship between Age and affection status raised concerns
about colinearity with affection status, so Age was
excluded as a covariate in our analysis.

Whole-exome minor allele load analysis

The whole-exome analyses consisted of both threshold
and weighting procedures to test the association of
minor allele load to affection status across the entire
exome. Table 2 lists the various procedures used, many
of which are adopted from Price et al. [8].

Each of the procedures used the PLINK —profile com-
mand to calculate allele counts or scores for each indivi-
dual. The inverse weighting scheme used the weighting
algorithm 1/[¢(1 - q)]""* for each variant, where g is the
allele frequency of the minor allele in the sample. For the
variable threshold procedure, we examined all possible
MATF thresholds to find the most significant threshold.
To verify the significance of this procedure, we permuted
affection status 1,000 times, selecting the most significant
MATF threshold p-value from each permutation to build a
distribution of empirical p-values. To incorporate func-
tional classifications, we partitioned the data into nonsy-
nonymous and synonymous SNP sets. In addition, we
included a functional weighting algorithm that used the
block substitution matrix (BLOSUM), giving a predefined
score for each possible amino acid change based on the
magnitude of protein divergence expected from the
change [11]. Using the reference human genome build
36, we developed a program in C++ to implement the
BLOSUM for the entire exome. For each functional ana-
lysis, we also incorporated a variable threshold procedure
for a combined MAF threshold/functional classification
minor allele load test.

We used logistic regression for each testing procedure,
regressing affection status against the minor allele count
or score along with Sex and Ethnicity as covariates. Ethni-
city was collapsed from 17 different categories to 7 based
on the larger population affiliations of each ethnic group.

Individual-gene analysis

As a follow-up to the whole-exome load analysis, we con-
sidered each gene individually using the most significant
procedure from the whole-exome analysis to examine
whether any observed overall effect was being driven pri-
marily by a single gene or small subset of genes. The indi-
vidual-gene analysis used the same logistic regression
model as the whole-exome analysis, with an additional
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Figure 1 Distribution of minor allele load One subject, NA19237, was found to have a minor allele load about 10 standard deviations above
the mean minor allele load. The asterisk indicates this outlier. After the outlier was removed, the mean allele count was 1,496 (SD = 224).
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check on the accuracy of our top gene hits matching simu-
lated causal genes. To check whether these genes were
explaining the overall effect, we repeated the whole-exome
test, removing significant genes, and thus determined
whether the earlier effect persisted in the remaining
exome.

Results

Whole-exome minor allele load

Table 3 shows the results from the logistic regression
analysis on affection status using the whole-exome SNP
set. Table 4 shows the results using the variable thresh-
old method, where the most significant MAF threshold
was used and validated with empirical p-values from a
permutation distribution of affection status. In each
table, the odds ratio for minor allele load is the standar-
dized odds of being affected for each standard deviation
from the mean allele count or score in the sample. The
strong effect of ethnicity in the data was unexpected but

Table 1 Correlation matrix of affection status and fixed
covariates

Affected Sex Age
Sex 0.03
Age 0.75* 0.01
Ethnicity 0.17* 0.00 0.20%
* p < 0.001.

likely stems from differences in allele frequencies of cau-
sal SNPs in some ethnic groups, because there is no
mention of simulated ethnicity effects in the GAW17
answers.

In general, the various thresholds and weighting proce-
dures show a consistent main effect of minor allele load
associated with affection status. The direction of effect is
also consistent across procedures, with the probability of
affection (control = 0, case = 1) slightly increasing with
higher load and/or score. Although no procedure shows
a markedly stronger effect above the others, the most sig-
nificant effect is observed for the variable threshold pro-
cedure using nonsynonymous SNPs with MAF < 0.024
(OR = 1.401, observed p = 7.1 x 10™*, empirical p =
0.001). BLOSUM functional scoring shows a similar
effect to nonsynonymous SNPs, which is not surprising
because the GAW17 answers do not incorporate the
magnitude of nonsynonymous amino acid changes into
their effect sizes. Considering only MAF threshold, we
find that the variable threshold effect is maximized at a
MATF below 5%, but lowering the MAF threshold does
not consistently increase the effect of minor allele load,
as noted by the slightly lower p-value of the MAF < 0.05
threshold (p = 0.001) compared to the MAF < 0.01
threshold (p = 0.002). Contrary to the predictions of a
mutational load model, we do not see a marked increase
in the strength of association when looking specifically at
rare SNPs (MAF < 0.01), functional SNPs, or a
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Procedure Analytic description

All SNPs All minor alleles counted

MAF > 0.05 Only alleles with MAF > 0.05 counted (T)
MAF < 0.05 Only alleles with MAF < 0.05 counted (T)
MAF < 0.01 Only alleles with MAF < 0.01 counted (T)

Inverse weighting

Variable threshold
Nonsynonymous/synonymous
Functional weighting

Exponentially increasing weight to rarer alleles (W)
Empirically defined MAF level used as threshold. Significance drawn through permutation analysis (T)
Nonsynonymous and synonymous SNPs examined separately (F)
SNPs weighted by degree of amino acid change derived from BLOSUM (WF)

T, threshold procedure; W, weighting procedure; F, function-based procedure.

combination of both; we find only a marginal increase in
association strength with low-MAF nonsynonymous
SNPs using the variable threshold procedure.

All the simulated causal SNPs in the GAW17 answers
are nonsynonymous SNPs, so it is interesting to observe
a slightly stronger effect in overall synonymous minor
allele load (p = 1.81 x 1072) relative to overall nonsy-
nonymous minor allele load (p = 2.36 x 107°). Further-
more, the large discrepancy in optimal MAF when using
the variable threshold procedure (optimal synonymous
MAF = 0.404; optimal nonsynonymous MAF = 0.023)
suggests that different mechanisms underlie the
observed effects. Given that power to detect an effect
increases with higher MAF and that linkage disequili-
brium creates associations with nearby noncausal SNPs,
it is possible that synonymous SNPs with higher MAF
are in linkage disequilibrium with causal SNPs and are
driving the observed effect. A comparison of nonsynon-
ymous SNP allele frequencies (mean MAF = 0.025) with
synonymous SNP allele frequencies (mean MAF =
0.037) shows a significant difference: £(23,683) = 11.24,
p < 2 x 107'°, Although this difference suggests that a
higher average MAF may be causing the synonymous
minor allele load effect, fine-scale haplotype and single-
SNP linkage disequilibrium patterns provide more con-
clusive evidence that high-MAF synonymous SNPs in

Table 3 Whole-exome minor allele load results

linkage disequilibrium with causal SNPs are driving the
observed signal.

Individual-gene minor allele load

Given that significant association is found between over-
all minor allele load and affection status, we wanted to
test whether this result was driven by the cumulative
effect of minor alleles or whether it was the result of a
few genes. Using the strongest result, the variable
threshold procedure within the nonsynonymous SNP
set, we analyzed minor allele load within each individual
gene. To maintain the consistency of each test, we did
not look for the optimal MAF threshold for each gene
but used the overall MAF < 0.024 threshold for all
genes. We found that 1,009 genes did not contain any
nonsynonymous SNPs and that an additional 341 genes
did not contain any SNPs with MAF < 0.024, so we lim-
ited the analysis to the remaining 1,855 genes. Using the
Bonferroni-corrected p-value for multiple testing, we set
the genome-wide significance threshold at 0.05/1,855 =
2.7 x 107°.

We did not find any genes that surpassed Bonferroni
correction; the top gene, PIK3C2B (OR = 1.33, p = 3.5 x
10™%), reached significance at an order of magnitude
below Bonferroni correction. Although this gene and
the second top hit, FLTI (OR = 1.31, p = 6.6 x 107%),

Procedure Number of SNPs Minor allele load Sex Ethnicity
Odds ratio p-value Odds ratio p-value Odds ratio p-value

All SNPs 24,487 1.296 205 x 107 1.096 0.28 1.405 715 x 107
MAF = 0.05 3,126 1.247 863 x 10°° 1.093 0.30 1514 159 x 107°
MAF < 0.05 21,361 1338 125 % 1073 1.088 0.32 1.289 612 %107
MAF < 0.01 18,175 1.326 268 x 107 1.093 0.30 1274 0.018
Inverse weighting 24,287 1.329 122 %1073 1.095 0.29 1323 171 %1073
Nonsynonymous 13,572 1.287 236 x 1072 1.090 0.31 1426 317 x 107
Synonymous 10,113 1311 181 x 107 1.099 0.27 1.360 406 x 107*
BLOSUM weighting 24,487 1.296 200 x 107 1.094 0.29 1404 738 x 107

Each row represents a different minor allele load procedure. The number of SNPs analyzed depends on the inclusion threshold or functional category for each

procedure.
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Table 4 Whole-exome variable threshold results
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Minor allele load

Procedure MAF threshold Number of SNPs Odds ratio Observed p-value Empirical p-value
All SNPs 0.0065 17,207 1.350 751 x 107* 0.002
Nonsynonymous 0.023 11,647 1.401 345 x 10°° 0.001
Synonymous 0405 9,951 1321 149 x 1073 0.004
BLOSUM weighting 0.144 22,759 1355 810 x 107* 0.002

The variable threshold procedure examines all MAF thresholds to find the most significant threshold. Empirical p-values are derived from 1,000 permutations of

affection status.

were both simulated as causal genes, only 4 of the 36
simulated causal genes were detected among the 96
genes with p < 0.05. This corresponds to a false-positive
rate of 96% and a missing rate of 89%, showing that the
most promising minor allele load procedure is highly
underpowered to detect effects at the individual-gene
level.

The lack of individual-gene effects also suggests that
the whole-exome signal is not being driven by the action
of a few genes. To confirm this, we reanalyzed the vari-
able threshold procedure within the nonsynonymous
SNP set after removing the 96 genes with p < 0.05. After
removal, there was a markedly reduced but still signifi-
cant effect in association with affection status (OR =
1.26, p = 0.01). However, given that most simulated cau-
sal genes were not identified in our individual-gene ana-
lysis, this result was not surprising.

Discussion

We find that minor allele load is significantly associated
with affection status across the entire exome; however, our
results do not clearly support a mutational load model
because the strength of association does not markedly
increase when we look at only rare functional SNPs.
Regardless, the strongest effect is found using nonsynon-
ymous SNPs with MAF < 0.024, which is consistent with a
model predicting that the cumulative effect of low-MAF
functional SNPs is a contributing factor to the genetic var-
iance underlying affection status. Applying this model to
individual genes shows that no single gene or small subset
of genes explains the whole-exome results. However, a
comparison of individual-gene results with the GAW17
answers shows that minor allele load analysis of individual
genes performs poorly for detecting the simulated causal
genes.

Conclusions

We designed our study with the expectation of a poly-
genic phenotype with knowledge of the nature of the
phenotype simulation. We selected affection status as our
phenotype of interest because it was influenced by all the
simulated causal SNPs. In addition, we used information
from all 200 phenotype replicates to form an affection

status phenotype that was well suited to reflect the simu-
lated effects of the entire suite of simulated causal SNPs.
Given this approach, the significance and power of each
procedure are both biased to our designed phenotype
and relative to the nature of the simulation. As a conse-
quence, the focus of this study was to assess the method
for testing a mutational load model on genetic sequence
data rather than significance of the association results.
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