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Muscling in on the third
dimension
The development of a functional three-dimensional model of human

skeletal muscle tissue could accelerate progress towards new and

personalized treatments for skeletal muscle disorders.
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Image The cells in muscle tissue are aligned

with one another and embedded within

a dense web of proteins that acts as

a scaffold

W
hen building a house, ‘framing’ involves

fitting together wooden or steel

supports to give the house shape and

to establish the dimensions of the space within it.

The extracellular matrix—a dense web of

proteins—serves a similar scaffolding role for

tissues in the body. And having height, width

and depth also really matters when it comes to

tissues.

In the laboratory it is common to grow cells in

a single two-dimensional layer on a plastic

culture dish. This strategy has expanded our

understanding of cells, but has often failed to

lead to new therapies to treat the diseases and

disorders that can afflict our tissues. In contrast,

three-dimensional culture models of human skin,

lung, cardiac tissue and liver faithfully mimic the

responses of living tissue, and can be used to

predict how these tissues might respond to

potential therapies (Bhatia and Ingber, 2014).

This is because being three-dimensional provides

tissue with stability, acts as a scaffold for repair,

and even seems to be involved in the progression

of certain diseases (Pampaloni et al., 2007;

Lancaster and Knoblich, 2014). It is not a surprise

that there is a push within the tissue-engineering

community to establish three-dimensional culture

models of each and every human tissue.

Skeletal muscle is the most abundant tissue in

the human body and is needed for moving limbs,

blinking, swallowing, breathing and maintaining

a constant body temperature. It is composed of

many muscle cells that are aligned with one

another and embedded within an extracellular

matrix scaffold. Human muscle cells form as a

result of many single cells fusing with one another

to create a single long cylinder; this process was

first recreated in two-dimensional culture dishes

in the early 1980s (Blau and Webster, 1981).

However, skeletal muscle contracts in response to

electrical signals from the brain, and it has been

notoriously difficult to grow human muscle fibers

that have this property.

Now, in eLife, Nenad Bursac of Duke Univer-

sity and colleagues—including Lauran Madden as

first author—report the first three-dimensional

culture model of human skeletal muscle that

responds to electrical and biochemical

stimulation just like the real thing (Madden

et al., 2015). First, Bursac, Madden and

co-workers placed human muscle cells (which

had been collected from biopsies of patients) in

a two-dimensional culture dish and allowed them

to undergo many rounds of cell division

(Figure 1). They then mixed the cells into

a protein-rich scaffold and transferred the

mixture into a custom-made silicone rubber mold

where it formed a soft porous gel (similar to jello
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[US] or jelly [UK]). A nylon frame included in the

mold provided two attachment points for the gel,

mimicking the sites where skeletal muscle

attaches to bone via tendons. Within just two

weeks, the cells had fused together to form long

aligned muscle fibers. What’s more, these muscle

fibers could twitch and contract!

Prior attempts by other researchers using

similar devices to mimic tendons had failed to

contract in response to electrical stimulation

(Powell et al., 2002; Chiron et al., 2012). The

secret to success seems to be in the list of

ingredients used to make the protein-rich

scaffold. Most laboratories had previously used

collagen, a protein that is abundant in skeletal

muscle. However, Madden et al. used fibrin—a

product of blood clotting found in skeletal

muscle undergoing repair—and found that it

worked better. Fibrin had previously been

shown to also be the best choice for engineering

three-dimensional muscle from mouse muscle

cells (Hinds et al., 2011).

Madden et al. went on to show that, when

stimulated electrically or chemically, the engineered

Figure 1. Bioengineered skeletal muscle that responds like human muscle tissue. In the early 1980s scientists figured

out how to grow muscle fibers from single cells (shown in red) in a two-dimensional plastic culture dish. However,

it was necessary to expose the 2D cell culture (left) to a complex mixture of molecules to make it responsive to

electrical stimulation. Madden et al. have now overcome this long-standing challenge; by using a custom three-

dimensional culture device (right) and with just the right protein-rich scaffold (in yellow), they generated muscle

fibers that respond to electrical and biochemical cues just like normal skeletal muscle tissue.
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skeletal muscle responds much like normal tissue:

first it releases calcium ions (Ebashi and Endo,

1968) and then it starts twitching. Furthermore,

three classes of pharmaceutical drugs had similar

effects on the engineered muscle as they do on

normal muscle tissue in clinical settings. These

results validate the potential application of the

engineered skeletal muscle as a preclinical platform

for drug testing.

Skeletal muscle has an amazing capacity for

repair due to the presence of a small popula-

tion of stem cells residing within the tissue

(Mauro, 1961). However, muscle mass and

function can be lost as result of degenerative

conditions, like aging, and genetic conditions,

such as Duchenne muscular dystrophy. The

availability of a three-dimensional model of

human skeletal muscle provides hope for the

identification of new drugs that improve

muscle strength in a diverse range of clinical

settings. Moreover, it opens the door to the

possibility of creating muscle tissue in a dish

from a patient’s own cells and then using this

model to identify the most effective treatment

for the patient’s condition: so-called skeletal

muscle personalized medicine.

With every scientific advance come new

challenges. It is still unclear whether the culture

system developed by Madden et al. is suitable

for modeling disorders such as Duchenne

muscular dystrophy. Furthermore, for pharma-

ceutical companies to switch to a three-

dimensional tissue model, the new model must

first uncover important biological findings that

are obscured in standard two-dimensional

cultures. And in order to integrate the new

culture device with high-throughput drug

screening platforms, it will be necessary to

make it smaller, while also establishing simple,

cost-effective metrics that can rapidly assess

health of the tissue. Regardless, the advance by

Bursac, Madden and co-workers has pushed

the field one step closer to achieving the goal

of maintaining muscle strength and health

throughout life.
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