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The renin-angiotensin-aldosterone system (RAAS) firstly considered as a cardiovascular
circulating hormonal system, it is now accepted as a local tissue system that works
synergistically or independently with the circulating one. Evidence states that tissue RAAS
locally generates mediators with regulatory homeostatic functions, thus contributing, at
some extent, to organ dysfunction or disease. Specifically, RAAS can be divided into the
traditional RAAS pathway (or classic RAAS) mediated by angiotensin II (AII), and the non-
classic RAAS pathway mediated by angiotensin 1–7. Both pathways operate in the heart
and lung. In the heart, the classic RAAS plays a role in both hemodynamics and tissue
remodeling associated with cardiomyocyte and endothelial dysfunction, leading to
progressive functional impairment. Moreover, the local classic RAAS may predispose
the onset of atrial fibrillation through different biological mechanisms involving
inflammation, accumulation of epicardial adipose tissue, and electrical cardiac
remodeling. In the lung, the classic RAAS regulates cell proliferation, immune-
inflammatory response, hypoxia, and angiogenesis, contributing to lung injury and
different pulmonary diseases (including COVID-19). Instead, the local non-classic
RAAS counteracts the classic RAAS effects exerting a protective action on both heart
and lung. Moreover, the non-classic RAAS, through the angiotensin-converting enzyme 2
(ACE2), mediates the entry of the etiological agent of COVID-19 (SARS-CoV-2) into cells.
This may cause a reduction in ACE2 and an imbalance between angiotensins in favor of AII
that may be responsible for the lung and heart damage. Drugs blocking the classic RAAS
(angiotensin-converting enzyme inhibitors and angiotensin receptor blockers) are well
known to exert a cardiovascular benefit. They are recently under evaluation for COVID-19
for their ability to block AII-induced lung injury altogether with drugs stimulating the non-
classic RAAS. Herein, we discuss the available evidence on the role of RAAS in the heart
and lung, summarizing all clinical data related to the use of drugs acting either by blocking
the classic RAAS or stimulating the non-classic RAAS.
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INTRODUCTION

The renin-angiotensin-aldosterone system (RAAS) is first
considered a cardiovascular circulating hormonal system. it is
now accepted also as a local tissue system that works
synergistically or independently with the circulating one
(Labandeira-Garcia et al., 2014; Mascolo et al., 2017). Evidence
states that tissue RAAS locally generates mediators with
homeostatic regulatory functions, thus contributing, to some
extent, to organ dysfunction or disease (Rossi et al., 2016;
Mascolo et al., 2017; Mascolo et al., 2020a; Mascolo et al., 202b).
The RAAS can be divided into the traditional RAAS pathway (or
classic RAAS) mediated by angiotensin II (AII), and the non-classic
RAAS pathway mediated by angiotensin 1–7 (A1-7). Both pathways
are locally present in the heart and lung. In the heart, an
enhancement of classic RAAS, at the expense of non-classic
RAAS, can induce cardiac hypertrophy, fibrosis, and dysfunction
leading to heart failure (HF) and atrial fibrillation (AF) (Rossi et al.,
2016; Mascolo et al., 2020b). In the lung, the classic RAAS also
regulates cell proliferation, immune-inflammatory response,
hypoxia, and angiogenesis, contributing to lung injury and
different pulmonary diseases (Mascolo et al., 2020a; Catarata
et al., 2020). Instead, the local non-classic RAAS counteracts the
classic RAAS effects exerting a protective action on both heart and
lung. However, it is essential to notice that a component of the non-
classic RAAS, the transmembrane angiotensin-converting-enzyme 2

(ACE2), localized on the lung alveolar epithelial cells, is a receptor
mediating the viral entry of the severe acute respiratory syndrome
coronavirus 1 (SARS-COV-1) and SARS-COV-2, responsible for the
SARS and the coronavirus disease 2019 (COVID-19), respectively
(Li et al., 2003; Turner et al., 2004; Hoffmann et al., 2020). Despite
the main symptoms of COVID-19 are respiratory and flu-like
symptoms, which can be complicated by lymphopenia and high
levels of pro-inflammatory cytokines leading to acute respiratory
distress syndrome (ARDS), organ failure, and disseminated
coagulopathy (Guo et al., 2020); some patients also develop
cardiovascular symptoms (Huang et al., 2020). In this view, it
seems pertinent to summarize the evidence on the role of RAAS
in cardiac diseases (such as HF and AF) and pulmonary diseases
with a focus on COVID-19. Notably, drugs blocking the classic
RAAS, well known to exert a cardiovascular benefit, are under
evaluation for blocking AII-induced lung injury together with drugs
stimulating the non-classic RAAS. Herein, we discuss the evidence
on the role of RAAS in the heart and lung, summarizing all clinical
data related to the use of drugs acting either by blocking the classic
RAAS or stimulating the non-classic RAAS.

CLASSIC AND NON-CLASSIC RAAS

The main effector peptide of classic RAAS is the AII, whose
synthesis starts with the cleavage of angiotensinogen into

FIGURE 1 | Classic and non-classic RAAS and its interaction with SARS-COV-2. From Mascolo A, Scavone C, Rafaniello C, Ferrajolo C, Racagni G, Berrino L,
Paolisso G, Rossi F, Capuano A. Renin-Angiotensin System and Coronavirus disease 2019: A Narrative Review. Front Cardiovasc Med. 2020 Aug 11;7:143. doi: 10.
3389/fcvm.2020.00143.
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angiotensin I (AI) by the renin and then its conversion into AII by
the angiotensin-converting enzyme (ACE) (Figure 1) (Unger,
2002). However, AII can also be synthesized through pathways
that involve other enzymes like chymase, chymostatin-sensitive
angiotensin II-generating enzyme (CAGE), and cathepsin G
(Mascolo et al., 2020b). These alternative pathways play a role
in the local production of AII. In fact, in the heart, angiotensin
1–12 can be converted by chymase into AII, and this synthesis is
significant in inducing adverse left ventricular remodeling post-
myocardial infarction (Ahmad et al., 2014). Once synthesized,
AII can interact with three receptors (AT1, AT2, and
nonAT1nonAT2). AT1 and AT2 are G protein-coupled
receptors (Unger, 2002), while nonAT1nonAT2 is an
angiotensinase or an angiotensin clearance receptor
(Karamyan et al., 2010). The stimulation of the AT1 receptor
induces vasoconstriction, increases the release of catecholamines
and the synthesis of aldosterone (Unger, 2002), stimulates fibrosis
and inflammation, and reduces the activity of collagenase and the
expression of mitogen-activated protein kinase (MAPK)
(Mascolo et al., 2017; Mascolo et al., 2020b). The pro-
inflammatory action of AT1 receptors involves the down-
regulation of the NADPH oxidase expression in smooth
muscle cells, the production of reactive oxygen species (ROS),
and the activity of pro-inflammatory transcription nuclear factors
like nuclear factor-kappaB (NF-κB) and E26 transformation-
specific sequence (Ets) (Marchesi et al., 2008; Porreca et al.,
2017). Moreover, these receptors induce the release of tumor
necrosis factor-α (TNF-α), the interleukin-6 (IL-6), and the
monocyte chemoattractant protein-1 (MCP-1) (Dandona et al.,
2007) and shift the macrophage phenotype toward the pro-
inflammatory M1 polarization state (Yamamoto et al., 2011).
On the contrary, the stimulation of AT2 receptors exerts a
protective role by inducing anti-inflammatory, anti-oxidative,
and anti-fibrotic effects (Unger, 2002). Instead, the primary
mediator of non-classic RAAS is the A1-7, whose synthesis
can involve two pathways. One pathway starts with the
cleavage of AII into A1-7 by the carboxypeptidase ACE2. A
second pathway begins with the cleavage of AI into angiotensin
1–9 (A1–9) by ACE2 and its consecutive conversion into A1–7 by
ACE (Figure 1) (Mascolo et al., 2020b). ACE2 is classified into the
soluble form present in the plasma and a transmembrane form
existing locally in both the heart and lung (Mascolo et al., 2020a).
Both forms contribute to the generation of A1-7, which can
interact with the G protein-coupled receptor MAS1, promoting
the nitric oxide release (Fraga-Silva et al., 2008), Akt
phosphorylation (Dias-Peixoto et al., 2008), and anti-
inflammatory effects (da Silveira et al., 2010). Moreover, ACE
and ACE2 participate in the inflammation as components of a
local RAAS at sites infiltrated by monocytes/macrophages. Both
enzymes are expressed by human monocytes where metabolize
AI to multiple angiotensin peptides. In particular, classical
monocytes (CD14++CD16−) produce both AII and A1–9/
A1–7, whereas the non-classical subtype (CD14+CD16++)
produces mainly A1–7 (Rutkowska-Zapała et al., 2015).

Finally, the stimulation of MAS1 receptors on macrophages
can inhibit their polarization to inflammatory phenotype and the
release of pro-inflammatory cytokines (Mascolo et al., 2020b).

Thus, A1-7 can be considered a beneficial axis component that
exerts opposite effects to the classic RAAS (Santos et al., 2013).

THE ROLE OF RAAS IN THE HEART

It is recognized that the classic RAAS is involved in developing
cardiac diseases such as HF and AF, which are closely
interconnected. Atrial fibrillation’s key component is the
structural remodeling that breaks tissue microarchitecture and
disturbs ion currents and physiological cell-to-cell
interconnections, but its importance extends beyond this
arrhythmia. Atrial remodeling frequently corresponds with the
ventricular remodeling in HF, increasing the complexity of the
problem. Moreover, neurohormonal and structural alterations of
HF can increase the probability of developing and advancing AF,
and AF can favor incident HF development (Stewart et al., 2002;
Maisel and Stevenson, 2003). The pathophysiological
mechanisms of RAAS in these diseases are reported below.
The AII stimulates collagen synthesis and fibroblast
proliferation in the heart, inducing cardiac hypertrophy and
fibrosis, which are critical elements of the adverse ventricular
remodeling (Rossi et al., 2016; Mascolo et al., 2020b). Specifically,
the local cardiac production of AII has been associated with an
increase in myocardial mRNA expression of collagen I/III and
fibronectin (Fielitz et al., 2001). Moreover, AII can stimulate the
myocardial generation of aldosterone, which can also contribute
to the synthesis of collagen and to the local production of AII.
These effects drive the characteristics hemodynamics alterations
(Rossi et al., 2016). Additionally, other than inducing fibrosis, AII
can stimulate inflammatory processes and change the heart’s
electrophysiological properties (electrical cardiac remodeling) (Li
et al., 2001; Novo et al., 2008). These processes can influence the
onset of AF. Of note, up-regulation of AT1 receptors was found in
left atrial tissue of patients with lone AF or AF with underlying
mitral valve disease compared to patients in sinus rhythm. In
contrast, no difference was observed in the expression of AT2
receptors (Boldt et al., 2003). AII exerts electrical cardiac
remodeling effects by shortening the atrial effective refractory
period and the action potential duration potentiating the slow
component of delayed rectifier K+ channels in guinea pig atrial
myocytes (Zankov et al., 2006). Finally, a more recent hypothesis
on the role of AII in inducing AF suggests that the classic RAAS
may mediate epicardial fat accumulation and inflammation,
which can, in turn, cause AF (Patel et al., 2016a). Epicardial
fat accumulation can induce AF through direct and indirect
pathophysiological mechanisms (Wong et al., 2017). The
direct mechanism consists of epicardial adipocytes’ infiltration
into the underlying atrial myocardium (Hatem and Sanders,
2014), while indirect mechanisms are: the release of
inflammatory adipokines (such as TNF-α, IL-6, and MCP-1),
ROS, and secrete matrix metalloproteinases 2 and 7, which can
stimulate atrial remodeling and fibrosis (Carnes et al., 2001;
Boixel et al., 2003; Conway et al., 2004; Malavazos et al., 2007;
Kourliouros et al., 2011; Smit et al., 2012; Venteclef et al., 2015);
the switch of macrophages from an anti-inflammatory M2 to a
pro-inflammatory M1 polarization state (Jung and Choi, 2014);
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the activation of ganglionated plexi located in the epicardial fat
(Wong et al., 2017); the stimulation of AF triggers (Nagashima
et al., 2012; Nakahara et al., 2014).

On the contrary, the non-classic RAAS exerts a protective role
in the heart by reducing inflammation, fibrosis, and cardiac
electrical remodeling along with vasodilation and the
reduction of hypertrophy and thrombosis (Esposito et al.,
2018; Santos et al., 2013). As anti-fibrotic effects, A1–7 has
shown the ability to increase the mRNA expression of
extracellular signal-regulated kinase-1 (ERK)1/ERK2 (Liu et al.,
2010). Moreover, the overexpression of ACE2 has been associated
with a reduction in the expression of transient receptor potential
melastatin 7, which is a Ca2+ channel expressed on fibroblasts that
can contribute to the fibrogenesis mediated by the transforming
growth factor (TGF) (Zhou et al., 2017). In opposition, ACE2
knockout animal models showed a worse left ventricular
remodeling in response to the AII-induced acute injury,
suggesting a protective role of non-classic RAAS in the
myocardium recovery (Kassiri et al., 2009). As mentioned
above, A1-7 inhibits the pro-inflammatory macrophage
polarization state and the release of pro-inflammatory
cytokines (Souza and Costa-Neto, 2012). Moreover, the non-
classic RAAS can reduce the inflammation of the epicardial
adipose tissue. An increase of adipose tissue macrophages,
pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), and iNOS
was observed in ACE2 knockout mice (Patel et al., 2016b).
Finally, A1-7 has shown the ability to prevent the ionic
remodeling of AF in preclinical models (Liu et al., 2011).
Based on the mechanisms mentioned above, a stimulation of
the non-classic RAAS can benefit both AF and HF.

Effects of Classic RAAS Blockers in Cardiac
Diseases
Classic RAAS blockers are renin inhibitors, ACE inhibitors, and
Angiotensin Receptor Blockers (ARBs). Among them, ACE
inhibitors and ARBs are widely used to treat cardiovascular
diseases. Clinical evidence has also shown their potential for
the prevention of AF (Novo et al., 2008; Mascolo et al., 2020b).
Specifically, RAAS blockers effectively prevented primary AF in
patients with early stage of HF and/or not severe hypertension.
This is in accordance with their effect of blocking local
inflammation and cardiac remodeling, which are expected to
be at a maximum in patients in patients at an early stage of the
disease. Therefore, it is not surprising to find a lower efficacy of
these drugs for the secondary prevention of AF and in
populations of patients at a more advanced stage of the
disease (Mascolo et al., 2020b).

The mechanisms mediated by ACE-inhibitors and ARBs for
cardiac protection are the inhibition of atrial fibrosis and
inflammation, the prevention of electrical cardiac remodeling,
and the epicardial adipose tissue’s modulation. Concerning
inflammation, many studies have demonstrated that ARBs and
ACE-inhibitors are associated with anti-oxidative and anti-
inflammatory effects. Specifically, these drugs can reduce pro-
inflammatory mediators such as C-reactive protein, IL-6, MCP-1,
intercellular adhesion molecule-1, vascular cell adhesion

molecule-1, NF-κB, and ROS, and increase anti-inflammatory
mediators such as the inhibitor of κB and IL-10 (Dandona et al.,
2007). Some ARBs exert anti-inflammatory effects because they
are agonists of the peroxisome proliferator-activated receptor γ
(PPARγ). This intracellular nuclear hormone receptor controls
the expression of pro-inflammatory genes through the inhibition
of the AP-1 and NF-κB transcription factors. Among ARBs,
telmisartan (with a biphenyl tetrazole group) has a higher
affinity to PPARγ, followed by candesartan and losartan
(Saavedra, 2012).

Regarding the prevention of electrical cardiac remodeling,
RAAS blockers have shown the ability to prevent the
shortening of the atrial effective refractory period (Nakashima
et al., 2000), improve intra-atrial conduction (Wang and Li,
2018), and prolong the action potential duration (Zankov
et al., 2006). Moreover, a preclinical study of dogs with
ventricular tachypacing-induced congestive HF found that
enalapril, an ACE-inhibitor, can reduce conduction
abnormalities, atrial fibrosis, and ERK activation (Li et al.,
2001; Moccia et al., 2015). Finally, ACE-inhibitors and ARBs
may exert cardiac protection by inhibiting epicardial fat
accumulation and downsizing epicardial adipocytes (Mori
et al., 2007).

Effects of Drugs Stimulating the
Non-classic RAAS in Cardiac Diseases
Drugs stimulating the non-classic RAAS, such as the human
recombinant ACE2 and agonists of MAS1 receptors, are under
investigation for cardiovascular diseases (Mascolo et al., 2017).
Preclinical evidence in wild-type mice showed that human
recombinant ACE2 reduced AII-induced cardiac remodeling
and myocardial fibrosis. ACE2 reduced the transcription of
fibronectin, TGF-β1, procollagen type I α 1, and procollagen
type III α 1, the phosphorylation of the Janus kinase 2,
extracellular signal-regulated 1/2, and the levels of protein
kinase C-α and protein kinase C-β1 (Zhong et al., 2010).
Moreover, the human recombinant ACE2 showed the ability
to attenuate diabetic kidney injury, reduced blood pressure and
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
activity in Akita mouse models (Oudit et al., 2010). Finally, its
administration showed a protective effect in murine models of
AII-induced HF with preserved ejection fraction and pressure-
overload mediated HF with reduced ejection fraction (Patel et al.,
2017). Regarding clinical evidence, the human recombinant
ACE2 has completed phase I (NCT00886353) and phase II
(NCT01597635) clinical trials, and its administration was well
tolerated with no evident cardiovascular effect in healthy subjects
(Haschke et al., 2013). Among MAS1 receptor agonists
investigated for treating cardiovascular diseases, there is the
non-peptide compound AVE 0991 and the A1-7. AVE 0991
was studied in combination with a renin inhibitor (aliskiren) in
rats with experimental hypertension and showed a synergistic
effect in lowering the blood pressure (Singh et al., 2013). A1-7 has
been investigated in a vector of hydroxypropyl-β-cyclodextrin.
With this new formulation, designed to protect A1-7 from
degradation and to increase its half-life through a slow-release,
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A1-7 lowered the blood pressure in animal models (Bertagnolli
et al., 2014). Moreover, A1–7 has shown a beneficial
cardioprotective effect in various murine models of HF with
reduced or preserved ejection fraction (Patel et al., 2017). Finally,
clinical data on A1-7 in HF are lacking.

THE ROLE OF RAAS IN THE LUNG

The RAAS seems involved in the development of multiple lung
diseases, such as idiopathic pulmonary fibrosis, sarcoidosis,
pulmonary hypertension, acute respiratory distress syndrome,
lung cancer, and COVID-19 (Catarata et al., 2020; Mascolo et al.,
2020a). An increased expression of ACE was observed in lung
interstitium in several diseases, supporting the notion of a
pulmonary local RAAS and a role for the AII in lung injury
and fibrosis (Marshall, 2005). Both AT1 and AT2 receptors are
present in the normal and pathological human lung (Catarata
et al., 2020). The AT1 receptors were found on vascular smooth
muscle cells, alveolar macrophages and in the stroma underneath
the airway epithelium, while AT2 receptors were detected in
bronchial epithelium and endothelial cells (Bullock et al., 2001).
Physiological and pathophysiological effects of AII are mainly
mediated through the activation of AT1 receptors (Chung et al.,
1996). These receptors mediate vasoconstriction, cell
proliferation, angiogenesis, and inflammation with increased
pro-inflammatory cytokines, oxidative stress and fibrosis,
inflammatory cell chemotaxis, and epithelial cell apoptosis
(Kaparianos and Argyropoulou, 2011). Moreover, in vitro
studies have demonstrated that the epithelial to mesenchymal
transition (EMT) induced by TGF-β1 was associated with an
increased expression of angiotensinogen and AT1 receptor in
human lung fibroblasts (Abdul-Hafez et al., 2009; Renzoni et al.,
2004; Uhal et al., 2007). Finally, the expression of TGF-β1 in
human lung myofibroblasts was reduced by AT1 receptor
blockade and associated with collagen synthesis inhibition
(Uhal et al., 2007). In contrast, AT2 receptors were associated
with opposite effects, although some pro-inflammatory effects
were observed through the NF-kB pathway activation
(Kaparianos and Argyropoulou, 2011). The impact of the
classic RAAS in lung pathophysiology was also evident in
studies that found inhibition of bleomycin-, γ irradiation-,
amiodarone- and paraquat-induced pulmonary fibrosis with
the administration of ACE inhibitors (captopril, enalapril,
lisinopril, and perindopril) in rats (Mohammadi-Karakani
et al., 2006; Molteni et al., 2007; Wang et al., 2000). Moreover,
a post hoc analysis of data from a phase 3, placebo-controlled,
clinical trial showed a slower disease progression in patients with
idiopathic pulmonary fibrosis treated with ACE inhibitors
(Kreuter et al., 2019). Because AII and TGF-β1 may influence
each other’s activity or act in synergy, the inhibition of both local
mediators could delay the progression of lung fibrosis.

Regarding the non-classic RAAS, ACE2 was found in
endothelial and smooth muscle cells, alveolar epithelial type I
and II cells, and bronchial epithelial cells (Catarata et al., 2020). In
the lung, ACE2 has multiple physiological roles: it exerts
opposing effects to the classic RAAS as a negative regulator,

and it is the receptor for SARS-COV-1 and SARS-COV-2 entry
(Figure 1) (Gheblawi et al., 2020). As the negative regulator, the
non-classic RAAS can reduce lung injury and prevent acute
respiratory distress (Wösten-Van Asperen et al., 2011; Chen
et al., 2013; Meng et al., 2015). As the SARS-COV-2 receptor,
ACE2 binds the SARS-COV-2’s glycosylated spike (S) protein.
This bond is mediated by the human androgen-sensitive
transmembrane serine protease type 2 (TMPRSS211) (Mascolo
et al., 2020a; Hoffmann et al., 2020) that cleaves the S protein into
S1 and S2 subunits (South et al., 2020). The S1 subunit binds the
ACE2 and facilitates the viral attachment, whereas the S2 subunit
drives the membrane fusion and viral internalization in the
pulmonary epithelium (Hoffmann et al., 2020). An important
consideration that needs to be done for the pathophysiology of
COVID-19 is related to the ACE2 internalization mediated by
SARS-COV-2 that could potentially induce a reduction of ACE2
on cell surface and then determine the absence of a key factor
important for the local pulmonary synthesis of A1-7. Indeed, an
imbalance between AII and A1-7 levels may exacerbate the lung
injury caused by SARS-COV-2, contributing to the reduction of
the pulmonary function and the increase of fibrosis and
inflammation (Triassi et al., 2019; South et al., 2020).

In conclusion, a complete understanding of the role of RAAS
in the pulmonary inflammation and fibrosis is fundamental and
may open new therapeutic possibilities for the treatment of
respiratory diseases, including COVID-19.

Effects of Classic RAAS Blockers in the
COVID-19
The use of RAAS blockers (ACE-inhibitors and ARBs) in
COVID-19 patients has been object of discussion during the
last year. First, evidence suggested that RAAS blockers may
contribute to more adverse health outcomes by increasing the
expression of ACE2mRNA and then potentiating the virulence of
SARS-COV-2 (Vaduganathan et al., 2020; Zheng et al., 2020).
However, today, there is no study suggesting this association.
Even if there was such association, there is no evidence
demonstrating a causal relationship between the ACE2 activity
and the SARS-COV-2 associated mortality (Kuster et al., 2020).

Another hypothesis considers the ability of SARS-COV-2 to
enter any tissue expressing the ACE2, including the heart or other
cardiovascular tissues (South et al., 2020). By this mechanism,
SARS-COV-2 can induce a reduction of ACE2 in favor of the
classic RAAS (increase in AII) that can cause heart damage, which
might be even worse in patients with underlying cardiovascular
diseases (South et al., 2020; Yousif et al., 2012). However, in this
scenario, the RAAS blocker could be protective and beneficial for
preventing AII-induced cardiac damage. As RAAS blocker are
known to determine clinical benefits, another vital aspect to be
considered is the potential damage when a RAAS blocker therapy
is stopped in a patient with a stable cardiovascular condition
(Mascolo et al., 2020a).

Data available on this topic come from observational studies
that found no association between the use of ARBs or ACE-
inhibitors with COVID-19 diagnosis (Gnavi et al., 2020; Mancia
et al., 2020), admission to hospital for COVID-19 (de Abajo et al.,
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TABLE 1 | Characteristics of ongoing clinical trials on the continuation or suspension of RAAS blockers in patients with COVID-19, and on the efficacy of ACE inhibitors,
ARBs, angiotensin 1-7, and ACE2 for COVID-19.

Clinical trial
number

Clinical
phase

Study design Arms Estimated
enrollment

Primary outcome Estimated study
completion date

NCT04351581 Not
specified

• Randomized, single
mask, parallel
assignment trial

• Experimental: Continuation. The
enrolled patients will continue their
prescribed ACEi/ARB in the same
dose. The clinicians will be
encouraged to continue the
medication throughout the hospital
admission but it will be permissible
for the clinician to stop treatment if
necessary e.g., due to
hypotension.

215 1. Days alive and out of hospital
within 14°days after recruitment

December 2020

• Experimental: Discontinuation.
The enrolled patients will
discontinue their prescribed ACEi/
ARB. If hypertensive treatment is
necessary during hospital
admission the clinicians will first be
encouraged to start non-ACEi/
non-ARB treatment.

NCT04353596 4 • Randomized, open
label, parallel
assignment trial

• Experimental arm: Stopping/
replacing ACEI/ARB. Chronic
treatment with ACEI or ARB will be
stopped or replaced.

208 1. Combination of maximum
sequential organ failure
assessment (SOFA) score and
death at 30°days

May 15, 2022

• Control arm: No intervention,
which means further treatment
with ACEI or ARB.

2. Composite of admission to an
intensive care unit (ICU), the use
of mechanical ventilation, or all-
cause death at 30°days

NCT04329195 3 • Randomized, open
label, parallel
assignment trial

• Experimental arm: discontinuation
of RAAS blocker therapy.

554 1. Time to clinical improvement
from day 0 to day 28
(improvement of two points on a
seven-category ordinal scale, or
live discharge from the hospital,
whichever comes first)

August 9, 2020

• Active Comparator arm:
continuation of RAAS blocker
therapy

NCT04351724
substudy

2/3 • Randomized, open
label, parallel
assignment trial

• Experimental arm: candesartan at
4 mg once daily and titrated to
normotension

500 1. Sustained improvement
(>48°h) of one point on the WHO
Scale within 29°days (daily
evaluation)

December 31,
2020

• Active Comparator arm: non-
RAAS antihypertensive agents
titrated to normotension. Those
with normal blood pressuremay be
controlled without further
treatment.

NCT04312009 2 • Randomized,
quadruple mask,
parallel assignment
trial

• Experimental arm: losartan (50 mg
daily, oral)

200 1. Difference in Estimated Positive
End-expiratory Pressure (PEEP
adjusted) P/F Ratio at 7°days.
Outcome calculated from the
partial pressure of oxygen or
peripheral saturation of oxygen by
pulse oximetry divided by the
fraction of inspired oxygen (PaO2

or SaO2: FiO2 ratio). PaO2 is
preferentially used if available. A
correction is applied for
endotracheal intubation and/or
positive end-expiratory pressure.
Patients discharged prior to day 7
will have a home pulse oximeter
send home for measurement of
the day 7 value, and will be
adjusted for home O2 use, if
applicable. Patients who died will
be applied a penalty with a P/F
ratio of 0

April 1, 2021

• Control arm: placebo
(microcrystalline methylcellulose,
gelatin capsule, oral)

(Continued on following page)
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TABLE 1 | (Continued) Characteristics of ongoing clinical trials on the continuation or suspension of RAAS blockers in patients with COVID-19, and on the efficacy of ACE
inhibitors, ARBs, angiotensin 1-7, and ACE2 for COVID-19.

Clinical trial
number

Clinical
phase

Study design Arms Estimated
enrollment

Primary outcome Estimated study
completion date

NCT04311177 2 • Randomized,
quadruple mask,
parallel assignment
trial

• Experimental arm: losartan (25 mg
daily, oral)

580 1. Hospital Admission within
15°days. Outcome reported as
the number of participants per
arm admitted to inpatient hospital
care due to COVID-19-related
disease within 15°days of
randomization

April 1, 2021

• Comparator arm: placebo
(microcrystalline methylcellulose,
gelatin capsule, oral)

NCT04328012 2/3 • Randomized,
quadruple mask,
parallel assignment
trial

• Experimental arm: lopinavir/
ritonavir (400 mg/200 mg, oral,
BID X 5–14°days depending on
availability)

4000 1. National Institute of Allergy and
Infectious Diseases COVID-19
Ordinal Severity Scale (NCOSS)
at 60°days. Difference in NCOSS
scores between the different
treatment groups

April 1, 2021

• Experimental arm:
hydroxychloroquine (400 mg BID
on Day 0, and 200 mg BID Days
1–4, days 1–13 if available)

• Experimental arm: losartan
(25 mg, oral, daily X 5–14°days
depending on availability)

• Comparator arm: placebo (BID X
14°days)

NCT04335786 4 • Randomized,
quadruple mask,
parallel assignment
trial

• Experimental arm: valsartan for
14°days at a dosage and
frequency titrated to blood
pressure with 80 mg or 160 mg
tablets up to a maximum dose of
160 mg b.i.d

651 1. First occurrence of intensive
care unit admission, mechanical
ventilation or death within
14°days. Death is defined as all-
cause mortality

December 2021

• Comparator arm: placebo for
14°days (matching 80 mg or
160 mg placebo tablets at a
dosage and frequency titrated to
systolic blood pressure)

NCT04360551 2 • Randomized, triple
mask, parallel
assignment trial

• Experimental arm: telmisartan
(40 mg, oral, daily X 21°days)

40 1. Maximum clinical severity of
disease over the 21°day period of
study. Based on amodifiedWorld
Health Organization (WHO)
COVID-19 7-point ordinal scale

June 30, 2021

• Comparator arm: placebo (once
daily X 21°days)

NCT04428268 2 • Randomized, double
mask, parallel
assignment trial

• Experimental: chloroquine
phosphate 450 mg orally every
12°hrs plus losartan 25 mg orally
every 12°hrs

20 1. All-cause mortality up to
28°days after randomization in
Non-Critically ill Patients with
SARS-COV-2 Pneumonia

August 30, 2020

• Comparator arm: chloroquine
phosphate 450 mg every 12 h
orally

NCT04643691 2 • Randomized, open
label, parallel
assignment trial

• Experimental arm: losartan 50 mg
and spironolactone 25 mg (oral)

90 1. Organ failures assessed on the
SOFA score on day 7 post-
inclusion

October 30, 2022

• Comparator arm: usual care of
COVID-19 infection in intensive
care

NCT04606563 3 • Randomized, open
label, parallel
assignment trial

• Experimental arm: losartan 25 mg
oral increased to 50 mg after 24 h
and then increased to a max dose
of 100 mg after another 24 h,
dependent on tolerance (for up
max of 3°months)

1372 1. Mortality at 28°days June 30, 2021

• Comparator arm: usual care for
duration of hospitalization for up to
3°months if still hospitalized

(Continued on following page)
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TABLE 1 | (Continued) Characteristics of ongoing clinical trials on the continuation or suspension of RAAS blockers in patients with COVID-19, and on the efficacy of ACE
inhibitors, ARBs, angiotensin 1-7, and ACE2 for COVID-19.

Clinical trial
number

Clinical
phase

Study design Arms Estimated
enrollment

Primary outcome Estimated study
completion date

NCT04447235 2 • Randomized, double
mask, parallel
assignment trial

• Experimental arm: a single dose of
12 mg of ivermectin on the day of
the confirmeddiagnosis ofCOVID-19,
followedby losartan50 mgorally once
daily for 15 consecutive days

176 1. Incidence of severe
complications due COVID-19
infection at 28°days

February 2021

• Comparator arm: ivermectin-
placebo single dose on the day of
confirmed diagnosis of COVID-19,
followed by losartan-placebo daily
for 15°days

NCT04340557 4 • Randomized, open
label, parallel
assignment trial

• Experimental arm: standard of
care plus losartan to be taken orally
twice daily for up to 10°days or until
discharged from the hospital,
whichever occurs first. Investigator
may increase dose on days 210 if
confident the subject will tolerate

200 1. Number of subjects requiring
transfer into ICU for mechanical
ventilation due to respiratory
failure at 45°days

December 31,
2020

• Comparator arm: standard of care
NCT04335123 1 • Open label, single

group trial
• Experimental arm: losartan 25 mg
once daily on study day 0. If
parameters are met the dose of
losartan will be increased to 50 mg
once daily on study day 3.
Participants will continue losartan
until they experience resolution of
respiratory failure (normal oxygen
levels on room air), are discharged
from the hospital, meet stoppage
criteria or complete 14°days of
therapy

50 1. Number of participants with
treatment-related adverse events
as assessed by protocol
definition of adverse event at
14°days

August 17, 2020
(results not
published yet)

NCT04355936 4 • Randomized, open
label, parallel
assignment trial

• Experimental arm: 80 mg
telmisartan twice daily plus
standard care

400 1. Serum C rective protein levels
at days 5 and 8

November 30,
2020 (results not
published yet)

• Comparator arm: standard care
NCT04359953 3 • Randomized, open

label, parallel
assignment trial

• Experimental arm: 200 mg of
hydroxychloroquine twice a day
during 14°days

1600 1. Two-weeks survival rate June 1, 2021

• Experimental arm: 250 mg of
azithromycin twice a day during
14°days

• Experimental arm: 40 mg of
telmisartan twice a day during
14°days

• Comparator arm: usual Care (no
intervention)

NCT04510662 2 • Randomized, open
label, parallel
assignment trial

• Experimental arm: telmisartan
40 mg daily plus standard care

60 1. Death as all-cause mortality at
30°days.

April 2021

• Comparator arm: standard care 2. Occurrence of mechanical
ventilation at 14°days

(Continued on following page)
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TABLE 1 | (Continued) Characteristics of ongoing clinical trials on the continuation or suspension of RAAS blockers in patients with COVID-19, and on the efficacy of ACE
inhibitors, ARBs, angiotensin 1-7, and ACE2 for COVID-19.

Clinical trial
number

Clinical
phase

Study design Arms Estimated
enrollment

Primary outcome Estimated study
completion date

NCT04466241 2/3 • Randomized, open
label, parallel
assignment trial

• Experimental arm: lopinavir
boosted by ritonavir 200°mg/
50°mg (2 tablets morning and
evening from Day 1 to Day 10) plus
telmisartan 40 mg (1 tablet daily
from Day 1 to Day 10))

294 1. Proportion of patients with
undetectable nasopharyngeal
swab SARS-CoV-2 PCR and
C-reactive protein (CRP) <
27 mg/L at Day 11

March 26, 2021

• Experimental arm: lopinavir
boosted by ritonavir 200°mg/
50°mg (2 tablets morning and
evening from Day 1 to Day 10) plus
atorvastatin 20 mg (1 tablet daily
from Day 1 to Day 10)

• Comparator arm: lopinavir
boosted by ritonavir 200°mg/
50°mg (2 tablets morning and
evening from Day 1 to Day 10

NCT04356495 2/3 • Randomized, open
label, parallel
assignment trial

• Experimental arm: telmisartan
(20 mg) during 10°days

615 1. Proportion of participants who
had a Grade 3 or 4 adverse event
at day 14

August 31, 2021

• Experimental arm: ciclesonide
(160 µg) during 10°days

2. Proportion of participants with
an occurrence of death at day 14

• Comparator arm: vitamin
supplement during 10°days

3. Proportion of participants who
had an indication for oxygen
therapy at day 14
4. Proportion of participants who
had an indication for
hospitalization at day 14

NCT04583228 1 • Randomized,
quadruple mask,
sequential
assignment trial

• Experimental arm (sequence 1):
HLX71 2.5 mg/kg (IV, single dose),
or placebo (IV, single dose) of
which 2 receive intravenous
injections of placebo and 8 receive
intravenous injections of the
HLX71

40 1. Number of participants with
adverse events, serious adverse
event and infusion-related
reactions as assessed by CTCAE
v5.0 at 28° days

May 31, 2021

• Experimental arm (sequence 2):
HLX71 5 mg/kg (IV, single dose),
or placebo (IV, single dose) of
which 2 receive intravenous
injections of placebo and 8 receive
intravenous injections of the
HLX71

2. The proportion of subjects
undergoing DLT events in each
dose cohorts during the DLT
observation period a days 1–7

• Experimental arm (sequence 3):
HLX71 10 mg/kg (IV, single dose),
or placebo (IV, single dose) of
which 2 receive intravenous
injections of placebo and 8 receive
intravenous injections of the
HLX71

• Experimental arm (sequence 4):
HLX71 15 mg/kg (IV, single dose),
or placebo (IV, single dose) of
which 2 receive intravenous
injections of placebo and 8 receive
intravenous injections of the
HLX71

NCT04332666 2/3 • Randomized, triple
mask, parallel
assignment trial

• Experimental arm: A1-7 infusion
(venous) of 0.2°mcg/Kg/h for 48°h

60 1. Composite outcome of
mortality and necessity of
mechanical ventilation at 28°days

June 15, 2021

• Comparator arm: placebo
NCT04605887 2 • Randomized, triple

mask, parallel
assignment trial

• Experimental arm: A1-7
subcutaneously 500°mcg/kg/day

120 1. Need for mechanical ventilation
from randomization to 30°days

April 2024

• Comparator arm: NaCl 0.9%
subcutaneously 2.0°cc once a day
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2020), or COVID-19 severity (Reynolds et al., 2020). Moreover,
another large observational study that compared the use of ACE-
inhibitors and ARBs with active control (calcium channel blockers,
and thiazide or thiazide-like diuretics) found no association between
COVID-19 diagnosis and ACE-inhibitor or ARB use, and no
significant difference between drug classes for the risk of hospital
admission with COVID-19, hospital admission with pneumonia,
acute respiratory distress syndrome, acute kidney injury, or sepsis
across all comparisons (Reynolds et al., 2020). Finally, a cross-
sectional, observational, multicenter, nationwide Italian study
found that ACE inhibitors or other antihypertensive agents did
not affect the outcome of COVID-19 (Iaccarino et al., 2020).

Regarding mortality, two observational studies found similar
mortality rates between the use of RAAS blockers and non-RAAS
blockers in COVID-19 patients (Gao et al., 2020; Jung et al.,
2020). One retrospective study showed a lower risk of COVID-19
mortality in hospitalized patients with COVID-19 and
hypertension who received ACE inhibitor/ARB than those
who did not receive this treatment (Zhang et al., 2020).
However, as recently reported in the preliminary results of a
randomized trial (BRACE CORONA, NCT04364893), presented
at the European Society of Cardiology Congress, the use of RAAS
blockers was not associated with a beneficial effect, but
considering that mortality was very low (2.7–2.8%) in the trial
its validity is under question (de Abajo, 2020).

Scientific Societies recommend continuing the treatment with
the usual anti-hypertensive agent in patients with COVID-19 and
not stopping the RAAS inhibitor therapy as no evidence suggests
so (American Heart Association, 2020; European Society of
Cardiology, 2020; Italian Society of Cardiology, 2020; Italian
Society of Hypertension, 2020; Italian Society of
Pharmacology, 2020).

Several clinical trials (ClinicalTrials.gov identifier,
NCT04351581, NCT04353596, NCT04329195, NCT04351724)
are ongoing to evaluate the clinical benefit of continuing or not
the treatment with RAAS blockers in patients with COVID-19.
Besides, based on the organ protective effects of RAAS blockers,
many studies are ongoing to investigate their efficacy in patients
with COVID-19. The beneficial effects of ACE inhibitors and
ARBs is hypothesized to be related to the block of the classic
RAAS in favor of the ACE2/A1-7 pathway as demonstrated in
experimental studies (Chappell, 2016; Santos et al., 2019). In this
regard, several clinical trials are ongoing to investigate the role of
losartan (NCT04312009, NCT04311177, NCT04328012,
NCT04428268, NCT04643691, NCT04606563, NCT04447235,
NCT04340557, NCT04335123), valsartan (NCT04335786), and
telmisartan (NCT04360551, NCT04355936, NCT04359953,
NCT04510662, NCT04466241, NCT04356495) for the
treatment of COVID-19 (Table 1).

Effects of Drugs Stimulating the
Non-classic RAAS in the COVID-19
Considering the beneficial effects of the non-classic RAAS in the
heart and lung, which seems in part lacking in patients with
COVID-19, hypotheses were advanced on the potential
therapeutic approach of restoring the ACE2/A1-7 pathway.
Preclinical evidence showed that the infusion of A1-7
improved oxygenation, and reduced inflammation and fibrosis
in two ARDSmodels (Wösten-Van Asperen et al., 2011; Zambelli
et al., 2015; Cuomo et al., 2017). Moreover, the therapy with the
soluble human recombinant ACE2 reversed the lung-injury
process induced by other viral infections (Zou et al., 2014; Gu
et al., 2016). It is crucial to notice that by administering the

TABLE 1 | (Continued) Characteristics of ongoing clinical trials on the continuation or suspension of RAAS blockers in patients with COVID-19, and on the efficacy of ACE
inhibitors, ARBs, angiotensin 1-7, and ACE2 for COVID-19.

Clinical trial
number

Clinical
phase

Study design Arms Estimated
enrollment

Primary outcome Estimated study
completion date

NCT04401423 2 • Randomized, triple
mask, parallel
assignment trial

• Experimental arm: A1-7 at one 3°h
dosage (0.5 mg/kg), intravenously,
for 10°days consecutively

100 1. Change of serum creatinine at
day 1 and day 10

December 2021

• Comparator arm: placebo at one
3°h dosage (0.5 mg/kg),
intravenously, for 10°days
consecutively

2. Number of participants
requiring intubation and
ventilatory support at day 10

NCT04570501 1/2 • Randomized, double
mask, parallel
assignment trial

• Experimental arm: A1-7 for
7°days, administered by
continuous intravenous (IV)
infusion

160 1. Time to recovery up to 29°days June 2021

• Comparator arm: placebo for
7°days

NCT04633772 1/2 • Randomized,
quadruple mask,
parallel assignment
trial

• Experimental arm: A1-7
intravenous

130 1. Supplemental oxygen-free
days (SOFDs) at 28°days

February 28, 2021

• Comparator arm: placebo
(NaCl 0.9%)

NCT04364893 Not
reported

• Randomized, open
label, parallel
assignment trial

• Experimental arm: maintenance of
ARBs and ACE-inhibitors

700 2. Median days alive and out of
the hospital at 30°days

December 1, 2020

• Comparator arm: suspension of
ARBs and ACE-inhibitors
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soluble ACE2, it is possible to stimulate the protective non-classic
RAAS without increasing the transmembrane ACE2, avoiding
potentiating the viral entry into cells.

Clinical evidence on the role of the non-classic RAAS in
COVID-19 is scarce. A phase 2 clinical trial showed that the
infusion of ACE2 safely reduced the level of AII in patients with
ARDS. However, this trial had no enough power to show efficacy in
pulmonary function improvement (Khan et al., 2017). There is an
ongoing phase 1 clinical trial (NCT04583228) aiming to evaluate
safety, tolerability, pharmacodynamics, pharmacokinetics, and
immunogenicity of the human recombinant ACE2-Fc fusion
protein (HLX71) in healthy subjects. Finally, several clinical trials
are ongoing to assess efficacy and safety of A1-7 infusion in COVID-
19 patients (NCT04332666, NCT04605887, NCT04401423,
NCT04570501, and NCT04633772). Characteristics of the
aforementioned ongoing studies are shown in Table 1.

CONCLUSION

The classic RAAS plays an important role in the pathophysiology
of cardiac diseases, while the non-classic RAAS exerts
cardioprotective effects. Classic RAAS blockers are widely used
for their efficacy in cardiovascular diseases and benefit from
preventing primary AF. These drugs are also under

consideration for preventing AII-induced lung injury. Indeed,
many clinical trials are ongoing to evaluate their use in
COVID-19. The rationale for using such drugs in COVID-19 is
related to the imbalance between AII and A1-7 in favor of AII that
can be caused by SARS-COV-2 internalization. A reduction in
ACE2 can indeed further contribute to pulmonary function
deterioration and myocardial damage. Moreover, for patients
with COVID-19 already in treatments with RAAS blockers,
Scientific Societies recommend not to suspend this treatment.
Finally, clinical trials are ongoing to evaluate the beneficial
pulmonary effect of restoring the ACE2/A1-7 pathway in
COVID-19 patients.
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