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Abstract

COronaVIrus Disease-2019 (COVID-19) is a pandemic respiratory infection caused by a

new betacoronavirus, the Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-

CoV-2). Few data are reported on the gut microbiota in COVID-19 patients. 16S rRNA gene

sequencing was performed to reveal an altered composition of the gut microbiota in patients

with COVID-19 pneumonia admitted in intensive care unit (ICU) (i-COVID19), or in infec-

tious disease wards (w-COVID19) as compared to controls (CTRL). i-COVID19 patients

showed a decrease of Chao1 index as compared to CTRL and w-COVID19 patients indicat-

ing that patients in ICU displayed a lower microbial richness while no change was observed

as for Shannon Index. At the phylum level, an increase of Proteobacteria was detected in w-

COVID19 patients as compared to CTRL. A decrease of Fusobacteria and Spirochetes has

been found, with the latter decreased in i-COVID19 patients as compared to CTRL. Signifi-

cant changes in gut microbial communities in patients with COVID-19 pneumonia with differ-

ent disease severity compared to CTRL have been identified. Our preliminary data may

provide valuable information and promising biomarkers for the diagnosis of the disease and,

when validated in larger cohort, it could facilitate the stratification of patients based on the

microbial signature.

1. Introduction

COronaVIrus Disease-2019 (COVID-19) is a pandemic respiratory infection caused by a new

betacoronavirus infection, the Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS--

CoV-2). It may progress rapidly to acute respiratory distress syndrome with remarkable mor-

bidity and mortality [1]. However, SARS-CoV-2 can be detected in specimens from different
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sites and therefore it could potentially be transmitted in other ways than respiratory droplets

[2]. In this regard, recent studies reported that SARS-CoV-2 RNA has been found in anal

swabs, meaning that the virus could potentially be transmitted also through oral-fecal route

[3]. These findings might suggest that other organs apart from lung might be additional sites

for virus entry, repository and/or replication. Gastrointestinal (GI) symptoms, such as diarrhea

(2%-10.1%), nausea and vomiting (1%-3.6%), are not very common at present in COVID-19

patients [4]. Nevertheless, an important proportion of patients were observed during the global

pandemic showing atypical gastrointestinal symptoms [5].

Recently, several studies have demonstrated that respiratory infections are associated with

changes of the gut microbiota composition [6, 7]. Typically, Bacteroidetes and Firmicutes pre-

vail in the gut microbiota while potentially pathogenic species, such as some of those belonging

to the phylum Proteobacteria, are present in a minor percentage [8, 9]. Current studies evaluate

the relationship between the lung and the GI microbiota but this connection is not completely

understood [10]. Patients with respiratory infections generally have gut dysfunction, which is

related to a more severe clinical course of the disease. This phenomenon can also be observed

in COVID-19 patients [5].

The gut microbiota has been shown to affect pulmonary health through cross-talk between

the gut microbiota and the lungs, which is referred to as the “gut-lung axis” [11]. However, the

“gut-lung axis” is supposed to be bidirectional: the gut microbiota, through microbial products

and immune-modulators released upon recognition of commensals and pathogens by intesti-

nal immune cells, can regulate lung immunity, influence the lung microbiota, and vice versa

[12, 13]. Previous studies have shown that the modulation of the gut microbiota can reduce

the severity of enteritis and ventilator-associated pneumonia by interacting with early replica-

tion of the viruses in the pulmonary epithelium, as in the case of influenza virus [14].

Angiotensin-converting enzyme 2 (ACE2) is the main receptor of SARS-CoV [14] and of

SARS-CoV-2 [15]. This receptor is highly expressed in both the respiratory tract and GI, so it

is possible to consider that SARS-CoV-2 uses ACE2 receptor to get into both body districts

[16, 17].

All these virus characteristics raise a remarkable possibility that the pulmonary disease

caused by SARS-CoV-2 may influence the gut microbiota [5].

In this pilot study, we performed the 16S RNA sequencing of fecal samples from COVID-

19 in patients admitted to the National Institute for Infectious Disease (INMI) L. Spallanzani

in Rome, Italy, between April 15, 2020 and May 31, 2020.

2. Methods

2.1. Study design

All the subjects agreed to participate according to the ethical guidelines of the 2013 Declaration

of Helsinki signing an informed consent under the Ethical committee of the National Institute

for Infectious Diseases Lazzaro Spallanzani—IRCCS approval number (n. 9/2020; n. 3

23.12.2019) and followed the same pre-analytical and analytical procedures, including fecal

samples collection and storage. Data were analyzed anonymously.

From April 15 2020 and May 31 2020, rectal swabs were collected from patients hospitalized

to INMI Spallanzani in Rome with confirmed or suspected SARS-CoV-2 infections. Fifteen

out of 23 patients were affected by COVID-19 while 8 patients were COVID-19 negative.

All patients had pneumonia and were classified in three groups: a) COVID-19 patients with

nose-pharyngeal swab positive for SARS-CoV-2, >18 years of age admitted in infectious dis-

ease wards at the time of the rectal swab execution (w-COVID19); b) COVID-19 patients with

nose-pharyngeal swab positive for SARS-CoV-2, >18 years of age admitted in ICU (i-
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COVID19); c) ‘controls’: patients admitted in the same time period with nose-pharyngeal

swab negative for SARS-CoV-2 infections, hospitalized in ICU and/or in infectious disease

ward (CTRL). We performed the rectal swab one or two days after the hospitalization.

Patient data, including laboratory test results and clinical manifestations, were obtained

from Laboratory Information Systems (LIS) and clinical records.

Rectal swabs from COVID-19 patients were processed in the laboratory within 4 hours

after collection or stored at -80˚C until analysis.

2.2. DNA extraction

Samples were treated with 500 μl of Lysis Buffer ATL (QIAGEN, Hilden, Germany) at 56˚C

for 10 min with 20 μl Proteinase K (Darmstadt, Germany) before DNA extraction. Microbial

DNA was extracted from 500 μl of sample using Qiasymphony automatic extractor (QIAGEN,

Hilden, Germany) according to the manufacturer’s protocol.

2.3. S sequencing and analysis

DNA samples were generated from PCR amplicons targeting the hypervariable regions V2, V4,

V8 and V3-6, 7–9 of the 16S gene and libraries were processed using the Ion 16S metagenomics

Kit. Ion Xpress Plus Fragment Library kit was used for libraries obtainment. Sequencing was

performed on Ion 530 chip by Ion S5 sequencer (Ion Torrent-ThermoFisher Scientific).

The sequencing run has generated in total 16x10^6 reads with the 77% of high quality reads

(21% low quality, 2% test fragments). Finally we obtained 5.5x10^5 reads per sample (reads

length were 244 bp mean, 260 bp median and 289 bp mode) and all analyzed specimens showed

a suitable library’s profile. The analysis was performed by 16S Metagenomics GAIA 2.0 software

and DESeq2 package software. Sequence data generated as FASTQ files, were analyzed using the

16S Metagenomics GAIA 2.0 software which performs the quality control of the reads/pairs (i.e.,

trimming, clipping and adapter removal steps) through FastQC and BBDuk. The reads/pairs are

mapped with BWA-MEM against the 16S databases (GAIA based on NCBI). Differential expres-

sion analysis using DESeq2 package to test for differential analysis by use of negative binomial

generalized linear models was used. Only changes with FDR below 0.05 were considered signifi-

cant. The percent similarity used to determine species and genus calls was 93% at genus, 97% at

species. PCoA analysis was obtained with GAIA software based on Bray-Curtis dissimilarities.

2.4. Statistical analysis

To evaluate if any clinical or laboratory variables are significantly different between patient

cohorts, one-way ANOVA test and Kruskal-Wallis rank sum test were performed in R envi-

ronment (www.cran.r-project.org) using aov and kruskal.test functions, respectively. Venn

diagrams were obtained with Venny 2.1.0.

3. Results

3.1. Study population

The study population included 23 hospitalized inpatients; 15 out of 23 were patients with con-

firmed SARS-CoV-2 infection, 9 w-COVID19 and 6 i-COVID19, 8 were CTRL (three hospi-

talized in ICU and five in floor). Clinical data of the study patients are shown in Table 1.

Overall, thirteen patients (56%) were male; median age was 67 (IQR 44–83). All patients pre-

sented pneumonia (for our CTRL six out of eight had bacteria pneumonia while 2 CTRL had

non-COVID-19 viral pneumonia) and none of them had diarrhea when the rectal swab was

performed (one or two days after the hospitalization). ANOVA and Kruskal-Wallis analysis in
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Table 1, showed that the p-values of the variables between our patient cohorts was not signifi-

cant except for ferritin level that is significantly lower in ICU patients.

Eleven patients (48%) were receiving antibiotic therapy one or at most two days before the

rectal swab was collected: 5 w-COVID19, 3 i-COVID19 and 3 CTRL.

Nineteen patients (83%) had one or more comorbidities, mainly cardiovascular and brain

disorders. A concomitant infection (5 patients) and/or colonization (5 patients, although harbor

a potentially pathological bacterium in their intestines namely Enterococcus faecium and Entero-
coccus faecalis, without developing the disease and consequently without the need of therapies

or further tests) was found in seven patients (30%), 5 of them were hospitalized in ICU.

3.2. Microbial richness and diversity indices in COVID-19 patients as

compared to CTRL

To understand the gut microbiota alterations between w-COVID19 and i-COVID19 patients

with CTRL, as a first step we evaluated the richness and Shannon indices among the different

groups. As shown in Fig 1A, Chao1 index was significantly decreased in i-COVID19 as

Table 1. Clinical and serologic data of the 23 enrolled patients.

Variables w-COVID19 i-COVID19 CTRL ANOVA Kruskal-Wallis p-values

p-values�

Number of patients (N = 23) 9 6 8 - -

Median age, years (IQR) 67 (IQR 44–83) 70 (64–74) 69 (51–77) 0.702 0.7165

Male, n (%) 5 (55%) 3 (50%) 5 (62%) - -

Comorbidities, n (%) 7 (78%) 6 (100%) 6 (75%) - -

Coinfections, n (%) 1 (11%) 4 (67%) 0 (0%) - -

Colonization, n (%)‡ 2 (22%) 3 (50%) 0 (0%) - -

E. Faecium, E. Faecalis 2 E. Faecium, 1 E. Faecalis
Antibiotic therapy at swab, n (%) 5 (55%) 3 (50%) 3 (37%) - -

Lymphocytes, mm3 (IQR) 1310 (1190–1480) 810 (437–995) 1400 (950–2070) 0.201 0.1503

C-reactive protein, mg/dl (IQR) 3.25 (0.84–6.54) 10.94 (3.09–12.53) 1.45 (0.92–5.04) 0.228 0.2711

Ferritin, ng/ml (IQR) 393 (169–616) 960 (565–1121) 289 (88–251) 0.0153 0.04481

Fibrinogen, mg/dl (IQR) 529 (422–616) 469 (346–600) 470 (332–527) 0.751 0.6684

D-dimer, ng/ml (IQR) 715 (265–1760) 638 (350–865) 760 (442–1845) 0.309 0.7042

Table 1: w-COVID19: patients affected by COVID-19 hospitalized in ward for highly infectious diseases; i-COVID19: patients hospitalized in intensive care unit; CTRL:

patients admitted in the same time period with nose-pharyngeal swab negative for SARS-CoV-2 infections; IQR: interquartile range.

�p-value, P <0.05 are considered statistically significant. ± Enterococcus faecium and Enterococcus faecalis.

https://doi.org/10.1371/journal.pone.0247041.t001

Fig 1. Box-plots of Chao1 index of species richness (A) and Shannon index of species diversity (B) in w-COVID19, i-

COVID19 patients and CTRL. Triangles indicate the medians and Q1 and Q3 are reported.

https://doi.org/10.1371/journal.pone.0247041.g001
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compared to w-COVID19 (p = 0.02) and CTRL (p = 0.006). The same trend was also observed

for Shannon index without reaching the statistical significance (Fig 1B).

Principal coordinates analysis (PCoA) was performed to cluster the microbial communities at

the Family operational taxonomic unit (OTU) level based on Bray-Curtis distances. Fig 2 displayed

distinct patterns among the three groups CTRL (red) w-COVID19 (green) and i-COVID19 (blue).

3.3. Microbiota profiles of w-COVID19 and i-COVID19 patients as

compared to CTRL

At the Phylum level, Proteobacteria were significantly increased in w-COVID19 patients as

compared to CTRL (17.1% vs 11.3% respectively FDR = 0.03) while Spirochaetes and

Fig 2. Principal coordinates plot (PCoA) based on Bray-Curtis distances at family level showing a clustering pattern among samples obtained

from controls (red), w-COVID19 (green) and i-COVID19 (blue).

https://doi.org/10.1371/journal.pone.0247041.g002
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Fusobacteria were decreased (0% vs 0.08% FDR = 0.00 and 0.02% vs 0.04% FDR = 0.00 respec-

tively). When comparing w-COVID19 and i-COVID19 patients’ microbiota no significant

changes were observed at the Phylum level (Fig 3 and S1–S3 Tables).

At the Family level, a number of potential pathogenic bacteria such as Peptostreptococca-
ceae, Enterobacteriaceae, Staphylococcaceae, Vibrionaceae, Aerococcaceae, Dermabacteraceae,
Actinobacteria and others were increased in w-COVID19 as compared to CTRL while Nitros-
piraceae, Propionibacteriaceae, Aeromonadaceae, Moraxellaceae, Mycoplasmataceae were sig-

nificantly reduced together with others reported in Fig 3 and S4 Table. When considering the

i-COVID19 as compared to CTRL, in addition to some bacteria in common with w-COVID19

patients (i.e. Staphylococcaceae, Aerococcaceae, Dermabacteraceae, Actinobacteria and so on

Fig 4, and Fig 8A and S5 Table) Erysipelotrichaceae, Microbacteriaceae, Mycobacteriaceae,
Pseudonocardiaceae, Brevibacteriaceae, and others reported in S5 Table were significantly

increased while Carnobacteriaceae, Coriobacteriaceae and Mycoplasmataceae were signifi-

cantly reduced.

Nevertheless Staphylococcaceae, Microbacteriaceae, Micrococcaceae, Pseudonocardiaceae,
Erysipelotrichales and others reported in S6 Table were significantly higher in i-COVID-19 as

compared to w-COVID19. Carnobacteriaceae, Pectobacteriaceae, Moritellaceae, Selenomona-
daceae, Micromonosporaceae, Coriobacteriaceae and few others were significantly decreased in

i-COVID19 as compared to w-COVID19. Individual microbiota profiles are provided in Figs

5 and 6 at the Phylum and Family level.

Moreover, unsupervised hierarchical analysis at the family level (Fig 7) revealed a character-

istic microbial signature in CTRL segregated from that one of COVID-19 positive patients.

Strikingly, a distinct profile can be distinguished between i-COVID19 and w-COVID19 with

the latter being closer to CTRL. Microbiota analysis at lower taxonomic levels (genera and spe-

cies, reported in S7–S12 Tables).

3.4. Differences in microbial populations of w-COVID19 and i-COVID19

patients in comparison to CTRL

At lower taxonomic levels, many differences with CTRL group emerged in both i- and w-

COVID19 patients. VENN diagrams showed the number of families (Fig 8A) genera (Fig 8B)

and species (Fig 8C) shared or distinctive of the two different groups as compared to CTRL

used as reference. Although w-COVID19 and i-COVID19 patients share a number of

increased and decreased bacteria, a distinctive bacteria profile can be also observed when com-

pared to CTRL (S13 Table).

4. Discussion

It is nowadays well recognized that virus infections can alter the host’s microbiota at different

sites [18, 19], however is less clear whether changes of microbiota have direct or indirect effects

i.e. limiting or promoting viral infections. Microbiota’s products such as short chain fatty

acids, metabolites or bacteriocine may directly interact with viral particles to alter infectivity or

responses to therapy [20, 21].

In our pilot study we demonstrated that SARS-CoV-2 infection is associated with major

changes in gut microbiota profile of the patients. The main findings are the reduction of

microbial richness in i-COVID19 as compared to CTRL and w-COVID19 indicating that

patients in ICU displayed a lower microbial richness as measured by Chao1 index. For the

Shannon index the same trend was also observed, but without reaching statistical significance.

Our results are in line with those recently obtained by Zuo et al, in which enrichment of

opportunistic pathogens and loss of beneficial bacteria was observed [22].
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Fig 3. Microbiota composition of w-COVID19, i-COVID19 patients and CTRL, at the phylum level. The mean value of all the detected taxa is

represented.

https://doi.org/10.1371/journal.pone.0247041.g003
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Moreover, ANOVA and Kruskal-Wallis analysis reveal that the variables between our

patient cohorts was not noteworthy except for ferritin level that is significantly lower in ICU

patients.

Ferritin is a marker of inflammation and the high levels of ferritin detected in i-COVID19

patients in comparison to w-COVID19, may be associate with a greater severity of the disease

and adverse outcomes. Normally, ferritin is able to activate macrophages that when stimulated

begin to secrete cytokines that at low concentrations, help to protect the body from viruses

and bacteria. On the other hand, high levels of ferritin activate more macrophages that pro-

duce the so-called "cytokine storm" which can be lethal for the body [23].

As for gut microbiota, antibiotics use can obviously determine a further loss of heterogene-

ity and composition, leading to down regulation of beneficial symbionts and exacerbation of

gut dysbiosis, and for this reason the avoidance of unnecessary antibiotics use in the treatment

of viral pneumonia is strongly suggested, as antibiotics can eliminate beneficial bacteria and

weaken the gut barrier [24]. Although an increase of pro-inflammatory and potential patho-

genic bacteria such as Peptostreptococcaceae, Enterobacteriaceae, Staphylococcaceae, Vibriona-
ceae, Aerococcaceae, Dermabacteraceae, Actinobacteria [25–27], is confirmed in w-COVID19

and i-COVID19 patients, with some of them found in both groups, hierarchical analysis shows

a distinct profile between i- and w-COVID19 with the latter being closer to CTRL (Fig 4).

Notably, a profound dysbiosis (Fig 5) was observed in one ward patient (90-year-old patient

with diabetes, meningioma and osteoporosis in association with an increase of C-Reactive Pro-

tein (CRP) and lymphocytes), with a significant increase in Proteobacteria and a relevant

reduction in Bacteriodetes, reflecting an important inflammatory state. Growing evidence has

shown that perturbation of the gut microbial community may fuel blooms of otherwise low

abundance and harmful bacteria which can further exacerbate the intestinal inflammation.

Indeed, dysbiosis in the distal gut is often characterized by a decrease in the prevalence of strict

anaerobes and an increased relative abundance of facultative anaerobic bacteria.

This could also contribute to the lower severity of symptoms of w-COVID19 as compared

to patients admitted to ICU. This evidence is confirmed by our three CTRL patients hospi-

talzed in ICU that had a nasopharyngeal PCR negative for SARS-CoV2. The latter, showed an

Fig 4. Microbiota composition of w-COVID19, i-COVID19 patients and CTRL, at the family level. The mean

value of all the detected taxa is represented.

https://doi.org/10.1371/journal.pone.0247041.g004
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increase in Erysipelotrichaceae which are involved in inflammation-related disorders of the GI

tract [28]. These data are in agreement with a previous study [29] where Erysipelotrichaceae
were found associated with COVID-19 severity. Noteworthy a strong decrease of

Fig 5. Taxonomy bar plot showing the individual microbiota profile at phylum levels.

https://doi.org/10.1371/journal.pone.0247041.g005

Fig 6. Taxonomy bar plot showing the individual microbiota profile at family levels.

https://doi.org/10.1371/journal.pone.0247041.g006
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Faecalibacterium (which is associated to Crohn’s disease, colonrectal tumor, diabetes and non

alcoholic steatohepatitis) [30] in i-COVID19 patients was detected together with a reduction

of Ruminococcaceae, Clostridiaceae which are involved in Short Chain Fatty Acids (SCFAs)

production among which butyrate presents potent antinflammatory properties [31]. Among

the species (S9 Table), it is worth of note the decrease of Bacteroides dorei, Bacteroides thetaio-
taomicron in w-COVID19 as compared to CTRL which are known to down-regulate ACE2

expression in the murine gut [19].

There are several limitations to this study. First, this is a pilot study conducted in a single

center in urban area in central Italy with a limited number of enrolled patients. Our prelimi-

nary observations on the likely impact of SARS-CoV-2 infection on gut microbiota need to be

confirmed in larger comparative trial including paucysimptomatic or asymptomatic COVID-

Fig 7. Heatmap of one-way hierarchical clustering of differentially abundant families among the three cohorts. A

dual-color code counts for species up- (red) and down-represented (blue), respectively.

https://doi.org/10.1371/journal.pone.0247041.g007

Fig 8. Venn diagrams showing the number of distinct and shared families (A), genera (B) and species (C) up and

decreased between subjects grouped by w-COVID19, i-COVID19 patients as compared to CTRL used as referenced.

https://doi.org/10.1371/journal.pone.0247041.g008
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19 patients a part from those admitted with severe or critical disease. Moreover, another limit

of our work was related to our ICU patients; as reported in several papers in literature, the

long stay of ICU patients can change the microbiota gut composition [32]. Definitely more

patients should be included to evaluate the microbiota composition in non-COVID-19 ICU

patients in comparison with w-COVID19 and i-COVID19. However, among our CTRL, three

subjects were non-COVID-19 ICU patients and rectal swabs were performed one or two days

after the hospitalization. Furthermore, the antibiotic treatment for ICU patients could have

affected the microbiota profile, but the antibiotic therapy was administered a few days after the

hospitalization in ICU, so could be assumed that this effect may not be significant. As for the

link between clinical data and microbiota profiles, we are aware that age, gender and co-mor-

bidities are factors that strongly influence the microbiota profiles, however in our study popu-

lation these demographic features were not statistically significant different among the three

groups.

The use of rectal swabs for gut microbiota analysis instead of standard fecal samples is not

fully endorsed. Currently, feces or mucosal biopsy specimens are the biological samples most

commonly used for standard 16S analysis [33]. However, as shown in several studies, stool and

rectal swab are highly similar, indicating that these sampling methods could be used inter-

changeably to assess the community structure of the distal GI tract [34, 35]. Finally, no data on

the molecular detection of SARS-CoV-2 in rectal swabs are presented in our patients. Current

knowledge on whether fecal transmissibility (either orally, through fomites, or by aspiration of

fecal contaminated droplets) is likely to be an important mode of COVID-19 transmission, is

still limited [36]. Although out of our objective, this is an interesting research topic, particu-

larly in health care facilities with incontinent residents.

In conclusion, significant changes in gut microbial communities in patients with COVID-

19 pneumonia with different disease severity compared to CTRL have been identified. Specific

microbial signatures in COVID-19 patients and roles of gut microbiota in different phase of

disease and hospital setting are needed to be investigated and validated in larger cohorts.
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