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Introduction: Electroconvulsive therapy (ECT) has antidepressant effects, but it also
has possible cognitive side effects. The effects of ECT on neuronal oscillatory pattern
and phase synchronization, and the relationship between clinical response or cognitive
change and electroencephalogram (EEG) measurements remain elusive.

Methods: Individuals with unipolar depressive disorder receiving bilateral ECT were
recruited. Five minutes of resting, eyes-closed, 19-lead EEG recordings were obtained
before and after a course of ECT. Non-overlapping 60 artifact-free epocs of 2-s duration
were used for the analyses. We used exact low resolution electromagnetic tomography
(eLORETA) to compute the whole-brain three-dimensional intracortical distribution
of current source density (CSD) and phase synchronization among 28 regions-of-
interest (ROIs). Paired t-tests were used to identify cortical voxels and connectivities
showing changes after ECT. Montgomery Asberg Depression Rating Scale (MADRS) and
Mini-Mental State Examination (MMSE) were used to evaluate the severity of depression
and the global cognitive function. Correlation analyses were conducted to identify the
relationship between changes in the EEG measurements and changes in MADRS or
MMSE.

Results: Thirteen depressed patients (five females, mean age: 58.4 years old) were
included. ECT increased theta CSD in the anterior cingulate cortex (ACC), and decreased
beta CSD in the frontal pole (FP), and gamma CSD in the inferior parietal lobule (IPL). ECT
increased theta phase synchronization between the posterior cingulate cortex (PCC)
and the anterior frontal cortex, and decreased beta phase synchronization between the
PCC and temporal regions. A decline in beta synchronization in the left hemisphere was
associated with cognitive changes after ECT.

Abbreviations: CSD, current source density; DMN, default mode network; ECT, electroconvulsive therapy; EEG,
electroencephalography; LORETA, low resolution electromagnetic tomography.
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Conclusion: ECT modulated resting-state EEG oscillatory patterns and phase
synchronization in central nodes of the default mode network (DMN). Changes in beta
synchronization in the left hemisphere might explain the ECT-related cognitive side
effects.

Keywords: electroconvulsive therapy, electroencephalography, depressive disorder, low resolution
electromagnetic tomography, current source density, phase synchronization

INTRODUCTION

Electroconvulsive therapy (ECT) is the most effective
antidepressant treatment (Kellner et al., 2012), but it also
has potential cognitive side effects (Semkovska and McLoughlin,
2010). A better understanding of the biological mechanisms
behind ECT-related antidepressant effects and cognitive side
effects may have implications for developing new antidepressant
treatments that have comparable efficacy to ECT without the
cognitive side effects.

The electroencephalogram (EEG) is one of the principal
methods for extracting information from the human brain
noninvasively (Fingelkurts and Fingelkurts, 2015). Studies
investigating the effects of ECT on electrophysiological
measurements date back to the 1930s. Although the results
of early studies using qualitative ratings were not consistent,
quantitative analyses of EEG data have reported ECT-induced
slow-wave increases in the fronto-temporal regions (Sackeim
et al., 1996). Recent studies found that ECT-induced theta
changes in the subgenual anterior cingulate cortex (ACC)
were associated with improvement in psychotic symptoms
(McCormick et al., 2009), and ECT modulated multi-scale
entropy in depressed patients (Farzan et al., 2017). However, the
number of studies examining the electrophysiological effects of
ECT is still small compared to other modalities, such as magnetic
resonance imaging (MRI; Abbott et al., 2014). Moreover,
the relationship between changes in clinical response and/or
cognitive function and changes in EEG measurements remains
elusive.

Depression is now conceptualized as a system-level disorder
(Mayberg et al., 2005), and it has been reported that
depression showed increased resting-state EEG functional
connectivity among multiple brain regions (Fingelkurts et al.,
2007; Leuchter et al., 2012). The effects of antidepressant
medications and transcranial magnetic stimulation (TMS) on
brain electrophysiological measures have been examined by
using a newly developed measurement of EEG functional
connectivity, namely lagged non-linear connectivity or lagged
phase synchronization (Pascual-Marqui et al., 2011; Olbrich
et al., 2014; Iseger et al., 2017; Kito et al., 2017). Because
phase synchronization is considered to be a fundamental
neural mechanism relating to neural plasticity and cognitive
processes (Fell and Axmacher, 2011), this measurement seems
to be ideal for investigating the underlying mechanisms
of ECT.

The aim of this study was to investigate the effects of ECT
on cortical oscillatory activity and EEG phase synchronization
throughout the brain. We also investigated whether changes in

these EEG measurements were associated with clinical response
as well as cognitive change.

MATERIALS AND METHODS

Trial Setting
We performed a longitudinal study to compare changes in
neuronal oscillatory pattern and phase synchronization before
[time point (TP1): time between admission and the first ECT]
vs. after ECT (TP2: within 1 week of the completion of the
ECT series). This study was conducted at Keio University
Hospital from June 2013 through December 2015. Ethical
approval was obtained from the Ethics Committee of Keio
University School of Medicine, and the study was conducted in
accordance with the principles expressed in the Declaration of
Helsinki. Written informed consent was obtained from all the
participants.

Participants
Individuals meeting the following inclusion criteria were
recruited from Keio University Hospital: (1) International
Classification of Disease 10th edition (ICD-10) diagnosis of
depressive disorder (F32, F33; World Health organization,
1994); (2) inpatients at the psychiatric ward; (3) clinical
indications for ECT including treatment resistance and a need
for a rapid and definitive response; and (4) age ≥20 years.
Exclusion criteria were the following: (1) a lifetime history
of neurological or degenerative disorder; (2) unstable or
severe medical illness; (3) ECT treatment within the last
3 months; (4) lifetime history of drug or alcohol misuse;and
(5) difficulty in communication. These participants were
originally collected for a previous study (Hirano et al.,
2017).

Clinical Assessments
The following clinical assessments were performed by trained
psychiatrists who were blinded to the EEG data at TP1 and
TP2. Montgomery Asberg Depression Rating Scale (MADRS;
Montgomery and Asberg, 1979) was used to evaluate the severity
of depression, and Mini-Mental State Examination (MMSE;
Folstein et al., 1975) was used for the assessment of global
cognitive function. We also collected participants’ demographic
and clinical information including age, sex, past medical history,
medications prescribed, and ECT data (e.g., the number of ECT
sessions). Clinical response was defined as a decrease in MADRS
score of at least 50% from baseline (Rush et al., 2003), and
remission was defined as a total MADRS score of 10 or less
(Zimmerman et al., 2004).
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ECT Treatment
ECT was performed with bitemporal electrode placement using
a brief-pulse square-wave device (Thymatron system IV device;
Somatics, Inc., Lake Bluff, IL, USA). The intensity of the first
ECT session was determined based on the half age method.
Treatments were performed three times a week, and treatments
were continued until a plateau was reached and no more
improvement was seen in the last two sessions. EEG seizure
manifestations were monitored to ensure adequate seizure.
When the EEG seizure duration was less than 25 s, the patients
were restimulated at a higher intensity after a 1 min interval.
Thiopental (3.5 mg/kg) was used for general anesthesia, and
succinylcholine (1 mg/kg) was used to induce muscle relaxation
(A Task Force Report of the American Psychiatric Association,
2001).

EEG Recording
The participants underwent EEG before (TP1) and after (TP2)
a series of ECT. The first recording was performed between
admission and the first ECT, and the second recording was
done within 1 week after the last ECT. EEG data was obtained
and digitalized on Nihon Kohden EEG machines (Neurofax
EEG-1200) by trained technicians at Keio University Hospital.
Five minutes of resting EEG was recorded under eyes-closed
conditions from 19 scalp locations according to the international
10/20 system (Fp1/2, F3/4, C3/4, P3/4, O1/2, F7/8, T3/4, T5/6, Fz,
Cz, Pz) referenced to linked ear lobes (A1 and A2). Impedances
were kept below 5 kΩ. Data were collected digitally with a
sampling rate of 500 Hz. Simultaneous video recordings were
used to check each segment for movements and to exclude these
segments.

EEG Preprocessing
EEG raw data was first analyzed using the EEGLAB (Delorme
and Makeig, 2004). The data were downsampled to 250 Hz
to reduce computing time, filtered at 1.0 Hz (high-pass) and
50 Hz (notch-filter), and segmented in 2-s epocs. Then the
EEG signal was decomposed into independent components (ICs)
by Infomax IC analysis (Bell and Sejnowski, 1995), using the
EEGLAB runica command. Each IC was visually examined and
ICs corresponding to artifactual sources were removed. The
cleaned EEG signal was reconstructed by retro-projecting only
the ICs containing a cerebral signal. The reconstructed signals
were referenced to Cz and the first 60 epocs were entered into the
following analyses.

EEG-Source Localization Analysis
We used exact low resolution electromagnetic tomography
(eLORETA) to compute the three-dimensional (3D) intracortical
distribution of electric neuronal activity for the following
six bands: delta (1.0–3.5 Hz), theta (4.0–7.5 Hz), alpha
(8.0–12.0 Hz), beta 1 (12.5–20.0 Hz), beta 2 (20.5–30.0 Hz),
gamma (30.5–45.0 Hz). The eLORETA method is a discrete, 3D-
distributed, linear, weighted minimum norm inverse solution.
Compared with previous versions, eLORETA has no localization
bias in the presence of structured noise in simulated data
(Pascual-Marqui, 2007a). Numerous studies using functional
MRI (fMRI; Vitacco et al., 2002; Mulert et al., 2004), structural

MRI (Worrell et al., 2000), positron emission tomography (PET;
Pizzagalli et al., 2003; Zumsteg et al., 2005), and intracranial
EEG (Zumsteg et al., 2006a,b) have validated LORETA to
study brain activity. Studies using a relatively small number
of electrodes (i.e., 19 electrodes) have applied LORETA source
localization successfully (McCormick et al., 2009; Thatcher et al.,
2014).

Several previous studies have reported abnormal current
source density (CSD; Pizzagalli et al., 2002, 2004) and EEG
functional connectivity (Olbrich et al., 2014) in depressed
patients, as well as changes in EEG functional connectivity with
antidepressant treatments, including antidepressant medications
(Olbrich et al., 2014; Iseger et al., 2017), and TMS (Kito
et al., 2017). The eLORETA solution space (6,239 voxels; spatial
resolution; 5 mm) is restricted to the cortical gray matter. The
Montreal Neurologic Institute average MRI brain (MNI152;
Mazziotta et al., 2001) is used as a realistic head model for
which the lead field was computed (Fuchs et al., 2002). At each
voxel, LORETA values represent the power of the computed
intracortical current density distribution for each frequency
band. To eliminate variability for the total power changes of each
subject, we used subject-wise data normalization implemented in
LORETA before statistical analyses.

EEG Functional Connectivity Analysis
We selected 28 regions-of-interest (ROIs) covering the whole-
brain based on Brodmann Areas (BAs) provided in the
eLORETA software, as others did in a previous study (Di
Lorenzo et al., 2015; Supplementary Table S1). We selected
a single voxel in the center of each ROI as the representative
voxel. We used lagged phase synchronization (Kito et al.,
2017) as a measure of EEG functional connectivity between
all pairs of ROIs. Lagged phase synchronization quantifies
the non-linear relationship between two ROIs after the
instantaneous zero-lag contribution has been excluded. This
correction is important because zero-lag synchronization is
usually due to non-physiological artifacts, such as volume
conduction and low spatial resolution that usually affect other
connectivity indices (Nolte et al., 2004; Stam et al., 2007).
Details on the lagged phase synchronization algorithm can be
found in several reports (Pascual-Marqui, 2007b; Kito et al.,
2017).

Statistical Analysis
We conducted paired t-tests to compare differences in CSD
and lagged phase synchronization between TP1 and TP2.
We used statistical nonparametric mapping (SnPM; Nichols
and Holmes, 2002). This method determined the critical
probability threshold values for the actually observed t-values
with correction for multiple comparisons across all voxels and
all frequencies. A total of 5,000 permutations were conducted
to calculate the critical threshold tcrit for p = 0.05 with
correction for multiple comparisons among all voxels and
frequencies. The omnibus null hypothesis was rejected if at
least one t-value (i.e., voxel tmax) was above the tcrit. The use
of SnPM in eLORETA has been validated in several studies
(Pascual-Marqui et al., 1999; Canuet et al., 2012). To investigate
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associations between EEG changes and clinical changes, we
extracted individual eLORETA values and connectivity values
from identified brain regions and connectivities using the above-
mentioned paired t-tests, and we conducted correlation analyses
as exploratory analyses. Clinical changes included MADRS
reduction volume (post MADRS score − pre MADRS score) and
MMSE reduction volume (postMMSE score− preMMSE score).
Statistical analyses were performed using SPSS ver 24.0 (IBM
Inc., Armonk, NY, USA). Statistical significance was defined by
a p-value of <0.05 (two-tailed). Multiple testing corrections were
not conducted for the correlation analyses, as these analyses were
exploratory.

RESULTS

Demographic and Clinical Characteristics
Demographics and clinical characteristics of the participants are
summarized in Table 1. Thirteen individuals [five females, mean
age: 58.4 (Standard Deviation: 13.6) years old] with unipolar
depressive disorder completed this study. After ECT, the total
MADRS score was significantly reduced from TP1 to TP2 [TP1:
30.3 (8.6), TP2: 6.5 (6.3), df = 12, t = 9.04, p < 0.001], whereas
the total MMSE score did not change [TP1: 27.0 (3.0), TP2: 26.3
(2.9), df = 11, t = 0.76, p = 0.46]. Remission and response rate
were 69.2% (9/13) and 92.3% (12/13), respectively. The number
of ECT was mean 9.9 (SD: 1.8).

Longitudinal Effects of ECT on Whole
Brain CSD
Whole-brain analyses using eLORETA showed the following
changes in oscillatory cortical activity patterns after ECT
(tcrit = 1.52, p < 0.05): increased theta (t = 1.70) in the
ACC and the medial prefrontal cortex (MPFC); decreased
beta 2 (t = −1.75) in the frontal pole (FP), and decreased

TABLE 1 | Clinical characteristics of the participants.

Number of patients 13
Age, years 58.4 (13.6)

Female, n (%) 5 (38.5%)
Psychotic features, n (%) 5 (38.5%)
Age at onset, years 48.2 (7.7)

Number of depressive episodes 2.5 (1.4)

Duration of current episode, months 10.2 (12.4)

Number of prior antidepressants 4.0 (1.8)

Number of ECT treatments 9.9 (1.8)

Time between the pre-EEG and the first ECT, days 9.1 (7.8)

Time between the last ECT and post-EEG, days 3.1 (1.7)

MADRS total score
pre-ECT (TP1) 30.3 (8.6)

post-ECT (TP2) 6.5 (6.3)

Clinical Remitters, n (%) 9 (69.2%)
Clinical Responders, n (%) 12 (92.3%)
MMSE total score

pre-ECT (TP1) 27.0 (3.0)

post-ECT (TP2) 26.3 (2.9)

Data are number or mean (standard deviation) unless stated otherwise. Abbreviation:
TP1, pre-ECT series (baseline); TP2, post-ECT series (endpoint); ECT, Electroconvulsive
therapy; EEG, Electroencephalogram; MADRS, Montgomery Asberg Depression Rating
Scale; MMSE, Mini-Mental State Examination.

gamma (t = −1.74) in the right inferior parietal lobule (IPL;
Figure 1).

Longitudinal Effects of ECT on Lagged
Phase Synchronization
Analyses of changes in lagged phase synchronization between
TP1 and TP2 (tcrit = 5.37, p < 0.05) revealed that there was
a significant increase in theta phase synchronization between
the right anterior PFC (APFC) and the right posterior cingulate
cortex (PCC; t = 5.48). There were significant decreases in the
beta 1 phase synchronization between the right insula (INS)
and the right superior parietal lobule (SPL; t = −5.85), between
the left PCC and the left INS (t = −6.60), and between the
left PCC and the left lateral temporal lobe (LTL; t = −5.55;
Figure 2).

Correlation Between Changes in EEG
Measurements and Clinical Changes
There were no correlations between changes in CSD in three
identified regions (theta CSD in the ACC/MPFC, beta2 CSD in
the FP, and gammaCSD in the right IPL) and changes inMADRS
or MMSE (Supplementary Table S2). However, connectivity
changes between the left PCC and the left INS (r = −0.68,
df = 10, p = 0.015) as well as connectivity changes between the
left PCC and the LTL (r = −0.64, df = 10, p = 0.024) had negative
associations with changes in MMSE.

DISCUSSION

The current study revealed that ECT increased theta activity
in the ACC/MPFC, decreased beta activity in the FP, and
decreased gamma activity in the IPL. ECT increased theta
phase synchronization between the PCC and the APFC, and
decreased beta phase synchronization between the PCC and the
temporal regions. We could not find any associations between
clinical response and any EEG measurements, but we found
a relationship between decreased beta phase synchronization
and cognitive change after ECT. This is the first study to show
the correlation between ECT-related cognitive change and beta
phase synchronization.

Longitudinal Effect of ECT on Neural
Oscillations
We found that ECT increased theta oscillations in the
ACC/MPFC and decreased high frequency oscillations in the FP
and the right IPL. Since the 1930s, many studies have reported
ECT-induced slow wave oscillations in the frontal lobe (Krystal
et al., 2000; Farzan et al., 2014), and a recent EEG study reported
that ECT decreased high frequency oscillations, especially in
patients who responded to ECT (Farzan et al., 2017). Our results
are in line with these previous findings, which may support the
validity of our findings.

According to fMRI and EEG studies, frontal medial theta
activity was negatively correlated with blood oxygen level
dependent (BOLD) signals in the default mode network (DMN)
regions, namely medial frontal, inferior frontal, precuneus/PCC,
inferior parietal, middle temporal cortices, and the cerebellum
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FIGURE 1 | Brain regions showing change in oscillatory patterns after a course of electroconvulsive therapy (ECT). Our analyses revealed the following changes
after ECT: (A) increased theta (4.0–7.5 Hz) in the anterior cingulate cortex (ACC) and the medial prefrontal cortex (MPFC); (B) decreased beta 2 (20.5–30.0 Hz) in the
frontal pole (FP); and (C) decreased gamma (30.5–45.0 Hz) in the right inferior parietal lobule (IPL). Red regions correspond to significantly increased CSD after ECT,
and blue regions correspond to significantly decreased CSD after ECT. Abbreviation: CSD, current source density.

(Scheeringa et al., 2008). In addition, high-frequency bands,
including beta (Laufs et al., 2003) and gamma (Mantini
et al., 2007), were positively correlated with DMN BOLD
signals. Considering these previous findings, the current results
(increased theta in the ACC/MPFC, decreased beta in the MPFC,
and decreased gamma in the IPL) may indicate that ECT
decreased resting-state electrical activity in nodes of the DMN.
A recent meta-analysis of PET studies investigating the effect of
treatments for depression (i.e., antidepressant medications and
ECT) on brain metabolism revealed that ECT decreased activity

in central nodes of the DMN (Chau et al., 2017). Given that
electroencephalographic oscillations are a relatively more direct
measure of neuronal activity than other modalities (e.g., PET,
MRI), the current study may provide additional evidence for the
results from previous PET studies.

We could not find any correlations between oscillatory
changes in nodes of the DMN regions and ECT and MADRS
reduction. One potential interpretation is that an ECT-induced
reduction in DMN activity may be just a by-product of electrical
stimulation or seizure, and not related to clinical response.
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FIGURE 2 | Results of analyses of changes in lagged phase synchronization with ECT. (A) There was a significant increase in theta phase synchronization between
the right APFC and the right PCC. (B) There were significant decreases in the beta 1 phase synchronization between the right INS and the right SPL, between the left
PCC and the left INS, and between the left PCC and the left LTL. Abbreviation: APFC, anterior prefrontal cortex; PCC, posterior cingulate cortex; INS, insula; SPL,
superior parietal lobule; LTL, lateral temporal lobe.

Another potential explanation is that a change in DMN activity
due to ECT may be related to a change in specific psychiatric
symptoms, and not related to a change in the entirety of
depressive symptoms (i.e., total HAM-D scores). Since DMN
activity is considered to be associated with rumination and
autobiographical memory (Zhu et al., 2012), a future study
should focus on the relationship between ECT-induced changes
in DMN activity and specific symptoms (e.g., rumination) or
autobiographical memory, which is known as ECT-related side
effects (Semkovska and McLoughlin, 2013).

Longitudinal Effect of ECT on Lagged
Phase Synchronization
ECT-induced EEG slowing suggests that synchronization occurs
in the synaptic activity of large neuronal populations, with a
reduction in firing rate (Sackeim et al., 1996). Our observed
results of ECT-induced increased phase synchronization in theta
frequency between the PCC and the APFC (BA9, 10) support
this notion. These two regions (PCC and BA9/10) are located in
the posterior and anterior central nodes of the DMN, suggesting
that ECT may increase phase synchronization within the DMN.
Since there were no correlations between changes in theta
phase synchronization and those in MADRS and MMSE, the
implication of our findings still remains unclear. Therefore,
to elucidate the clinical relevance of changes in theta phase
synchronization due to ECT, a large sample study that focuses
on specific symptoms related to the DMN is needed.

Additionally, the current study revealed that ECT decreased
beta phase synchronization between the PCC and the temporal
regions. This is in line with a previous EEG study using
graph theoretical analysis, which reported that a single session
of seizure therapy decreased the phase synchronization in
the beta frequency band (Deng et al., 2015). Furthermore,
we found a significant correlation between changes in beta
synchronization and changes in MMSE scores, which may
suggest that depressed patients who present a larger decrease
in beta synchronization after ECT show more cognitive decline
after ECT. A prior study has also reported that lower beta band
synchronization is associated with lower MMSE scores (Stam
et al., 2003). Furthermore, the PCC has an important role in
autobiographical memory (Leech and Sharp, 2014), which is one
of the cognitive functions largely affected by ECT (Semkovska
and McLoughlin, 2013). In addition, our finding was restricted
to the left hemisphere. The short-term cognitive side effects of
ECT change depending on the electrode placement (i.e., bilateral
vs. unilateral). Right unilateral electrode placement has been
shown to have less cognitive side effects than bilateral electrode
placement (Kolshus et al., 2017), and left unilateral electrode
placement tended to have more verbal memory impairment
than right unilateral electrode placement (Kellner et al., 2017).
The interpretation of these results is understandable based on
the theory that the left hemisphere is dominant for language
and verbal processing for most people. Left-lateralized results
in the current study are consistent with this evidence. We
used only bilateral electrode placement in the study because
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our participants were severely depressed patients who needed
rapid improvement, but future studies should compare the
effects of ECT on neurophysiological and neuropsychological
measurements between different electrode placements to test
our hypothesis. Taken together, our findings of a decrease
in beta synchronization between the left PCC and the left
temporal regions may reflect the underlying electrophysiology of
ECT-induced cognitive impairments.

LIMITATIONS

The current study should be interpreted with the following
limitations. First, the number of participants was limited. A
larger study is needed to confirm our preliminary results.
Second, all patients continued their psychopharmacological
medications, which may affect the EEG oscillatory pattern and
phase synchronization. However, a previous study reported
that antidepressant medications increased beta band phase
synchronization as calculated by LORETA (Olbrich et al., 2014).
The effects of ECT on EEG phase synchronization (i.e., ECT
decreased beta band phase synchronization) may be stronger
than the effects of antidepressant medications. Third, we did
not conduct multiple testing corrections for correlation analyses,
as the analyses were exploratory. The observed relationship
between beta synchronization and cognitive change needs to
be replicated. In addition, MMSE includes multiple cognitive
domains, so future studies should focus on specific cognitive
domains that relate to ECT. Fourth, our sample includes only
depressive disorder to avoid heterogeneity, but this also limits the
generalizability of our results.

CONCLUSION

ECT reduced resting-state EEG oscillatory activity in central
nodes of the DMN regions and increased phase synchronization

within the DMN. An ECT-induced reduction in beta phase
synchronization was associated with the cognitive side effects
experienced by patients after a series of ECT.
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