
METHODS
published: 11 February 2021

doi: 10.3389/fgene.2021.569120

Frontiers in Genetics | www.frontiersin.org 1 February 2021 | Volume 12 | Article 569120

Edited by:

Xian-Tao Zeng,

Wuhan University, China

Reviewed by:

Sarath Chandra Janga,

Indiana University, Purdue University

Indianapolis, United States

Xue-Qun Ren,

Henan University, China

*Correspondence:

Indrajit Saha

indrajit@nitttrkol.ac.in

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 03 June 2020

Accepted: 13 January 2021

Published: 11 February 2021

Citation:

Saha I, Ghosh N, Maity D, Seal A and

Plewczynski D (2021)

COVID-DeepPredictor: Recurrent

Neural Network to Predict

SARS-CoV-2 and Other Pathogenic

Viruses. Front. Genet. 12:569120.

doi: 10.3389/fgene.2021.569120

COVID-DeepPredictor: Recurrent
Neural Network to Predict
SARS-CoV-2 and Other Pathogenic
Viruses
Indrajit Saha 1*†, Nimisha Ghosh 2†, Debasree Maity 3, Arjit Seal 4 and Dariusz Plewczynski 5,6

1Department of Computer Science and Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata,

India, 2Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha

‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, India, 3Department of Electronics and Communication

Engineering, MCKV Institute of Engineering, Howrah, India, 4Cognizant Technology Solutions Pvt. Ltd., Kolkata, India,
5 Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw

University of Technology, Warsaw, Poland, 6 Laboratory of Functional and Structural Genomics, Centre of New Technologies,

University of Warsaw, Warsaw, Poland

The COVID-19 disease for Novel coronavirus (SARS-CoV-2) has turned out to be

a global pandemic. The high transmission rate of this pathogenic virus demands

an early prediction and proper identification for the subsequent treatment. However,

polymorphic nature of this virus allows it to adapt and sustain in different kinds

of environment which makes it difficult to predict. On the other hand, there are

other pathogens like SARS-CoV-1, MERS-CoV, Ebola, Dengue, and Influenza as

well, so that a predictor is highly required to distinguish them with the use of their

genomic information. To mitigate this problem, in this work COVID-DeepPredictor is

proposed on the framework of deep learning to identify an unknown sequence of

these pathogens. COVID-DeepPredictor uses Long Short Term Memory as Recurrent

Neural Network for the underlying prediction with an alignment-free technique. In

this regard, k-mer technique is applied to create Bag-of-Descriptors (BoDs) in order

to generate Bag-of-Unique-Descriptors (BoUDs) as vocabulary and subsequently

embedded representation is prepared for the given virus sequences. This predictor is

not only validated for the dataset using K-fold cross-validation but also for unseen test

datasets of SARS-CoV-2 sequences and sequences from other viruses as well. To verify

the efficacy of COVID-DeepPredictor, it has been compared with other state-of-the-art

prediction techniques based on Linear Discriminant Analysis, Random Forests, and

Gradient Boosting Method. COVID-DeepPredictor achieves 100% prediction accuracy

on validation dataset while on test datasets, the accuracy ranges from 99.51 to

99.94%. It shows superior results over other prediction techniques as well. In addition

to this, accuracy and runtime of COVID-DeepPredictor are considered simultaneously

to determine the value of k in k-mer, a comparative study among k values in k-mer,

Bag-of-Descriptors (BoDs), and Bag-of-Unique-Descriptors (BoUDs) and a comparison

between COVID-DeepPredictor and Nucleotide BLAST have also been performed. The

code, training, and test datasets used for COVID-DeepPredictor are available at http://

www.nitttrkol.ac.in/indrajit/projects/COVID-DeepPredictor/.
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1. INTRODUCTION

The first case of COVID-19 surfaced in Wuhan, China in
December 2019 (Huang et al., 2020; Meng et al., 2020; Yan
L. et al., 2020). In no time it spread to 212 countries and
territories (Worldometer, 2021) worldwide creating a pandemic
in its wake. SARS-CoV-2 falls in the same family as SARS-CoV
and MERS-CoV (all belong to the family of coronavirus) and
mainly targets the respiratory system (Zhou et al., 2020). As of
8th January 2021, over 885 million cases of COVID-19 have been
reported worldwide, with more than 1,906 thousand cases of
death and 63.6 million cases of recovery (Worldometer, 2021).

SARS-CoV-2 is defined as an enveloped, positive-sense,
single-stranded RNA virus with a genome of around 30 kilobases
in length (Weiss and Navas-Martin, 2005; Su et al., 2016; Cui
et al., 2019). RNA viruses generally have very high mutation
rates (Jenkins et al., 2002; Woo et al., 2009). Genetic mutation
can occur infrequently between viruses of the same species but of
divergent lineages. The resulting mutated viruses may sometimes
cause an outbreak of infection in humans e.g., the case of
SARS-CoV-2. Coronavirus results from zoonotic transmission to
human and shows symptoms of pneumonia, fever, and breathing
difficulties (Guan et al., 2003; Alagaili et al., 2014). Human
to human transmission has also been confirmed for SARS-
CoV-2 (Chan et al., 2020; Huang et al., 2020). Next-generation
sequencing usingmetagenomic analysis has recently been used to
identify the genetic features of SARS-CoV-2 (Zhou et al., 2020).

There have been several analysis regarding SARS-CoV-
2. This include whole genome analysis of a virus and
viral protein-based comparisons which have resulted in the
conclusion that SARS-CoV-2 is mostly related to two bat
SARS-like coronaviruses (Chan et al., 2020; Lu et al., 2020).
Phylogenetic analysis of full genome alignment and similarity
plot show that SARS-CoV-2 has high similarity with bat
coronavirus RaTG13 (Paraskevis et al., 2020). Furthermore,
another study (Wan et al., 2020) has shown that spike protein
receptor-binding domain (RBD) of SARS-CoV-2 binds with host
receptor angiotensin-converting enzyme 2 (ACE2), just like other
Sarbecovirus strains, thus making the claim that SARS-CoV-2
originated from bat very likely (Letko et al., 2020; Liu and Wang,
2020).

As the genomic structure of SARS-CoV-2 is similar to
the other viruses of the same family, and it shows similar
symptoms like them, the early prediction of SARS-CoV-2 is
a very challenging task. Ozturk et al. (2020) have used deep
neural networks with X-ray images for automated detection
of SARS-CoV-2 cases. The results show that the method has
a prediction accuracy of 98.08% for binary classes (COVID
vs. No-Findings) and 87.02% for multiple classes (COVID vs.
No-Findings vs. Pneumonia). Another work (Yan Q. et al.,
2020) where deep learning has been used to predict age-
related macular degeneration (AMD) which is a leading cause
of blindness among the elderly population. The results show
an average area under the curve (AUC) value of 0.85. On
the other hand, the authors in Koohi-Moghadam et al. (2019)
have used deep learning approach to predict disease-associated
mutation of metal-binding sites in proteins. The prediction

results depict AUC as 0.90 and an accuracy of 0.82. These
encouraging results show that deep learning has the potential
for highly accurate prediction. This led us to devise a predictor
based on deep learning which uses genomic sequences of
pathogenic viruses. In this work, a deep learning technique,
viz. COVID-DeepPredictor based on Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997; Tang et al., 2019)
is developed. Though, LSTM has been profusely used in many
works for text classification (Jin et al., 2019; Liu et al., 2019;
Zhang et al., 2019), to the best of the authors’ knowledge, this
is the first attempt to use LSTM for the prediction of SARS-CoV-
2 using genomic sequences of virus considering alignment-free
approach. For this purpose, k-mer technique is used to generate
Bag-of-Descriptors (BoDs) and consequently Bag-of-Unique-
Descriptors (BoUDs) as vocabulary. Subsequently embedded
representation is prepared for the given virus sequences using
BoDs and BoUDs. It is worth mentioning that, though SARS-
CoV-2 is a single-stranded RNA virus, the genomic information
of a virus is captured in the form of DNA sequence. These DNA
sequences are used in this work to predict SARS-CoV-2 and other
pathogenic viruses viz. SARS-CoV-1,MERS-CoV, Ebola, Dengue,
and Influenza. COVID-DeepPredictor achieves 100% prediction
accuracy on validation dataset while on test datasets, the accuracy
ranges from 99.51 to 99.94%. COVID-DeepPredictor also shows
superior results over the existing prediction techniques based
on Linear Discriminant Analysis, Random Forests, and Gradient
Boosting Method. Moreover, apart from prediction accuracy,
critical analysis like the choice of k in k-mer by considering the
accuracy and runtime of COVID-DeepPredictor simultaneously,
a comparative study of Bag-of-Descriptors (BoDs) and Bag-
of-Unique-Descriptors (BoUDs) for different values of k and
a comparison between an alignment-based technique viz.
Nucleotide Basic Local Alignment Search Tool (BLASTN) and
COVID-DeepPredictor as alignment-free technique.

2. MATERIALS AND METHODS

In this section, description of dataset preparation that has been
used in this work are elucidated, a brief description of Long-Short
Term Memory (LSTM) and the detailed discussion of proposed
COVID-DeepPredictor are put forth.

2.1. Data Preparation
The datasets of SARS-CoV-1, MERS-CoV, Ebola, Dengue, and
Influenza have been downloaded from NCBI (National Center
for Biotechnology Information)1. Dataset for SARS-CoV-2 has
been downloaded from NCBI and GISAID (Global Initiative on
Sharing All Influenza Data)2. The total number of complete or
near-complete genomic sequences of all the pathogenic viruses
amounted to 4,643, named as Initial dataset. Additionally, the
recent complete or near-complete SARS-CoV-2 sequences of
3,030 during January 2020 to August 2020 are taken from NCBI
whereas 2,410 (from February 2020 to July 2020) and 4,000
(from June 2020 to December 2020) sequences are considered

1https://www.ncbi.nlm.nih.gov/genome/viruses
2https://gisaid.org/CoV2020
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from GISAID. For our training purpose, 1,500 samples from
4,643 sequences are taken randomly for training. To ensure that
representatives from all the six pathogenic viruses are available
and to avoid imbalance class problem, 250 samples from each
pathogenic viruses are taken in the training dataset. In order
to perform testing, five different test datasets are created and
named as Testdata-1, Testdata-2, Testdata-3, Testdata-4, and
Testdata-5. It is important to mention that Testdata-1 consists
of the remaining 3,143 sequences out of 4,643 sequences, while
Testdata-2 contains 200 sequences each for MERS-CoV, SARS-
CoV-2, Ebola, Dengue, and Influenza and 90 sequences of SARS-
CoV-1 from different sources. Moreover, Testdata-3, Testdata-
4, and Tetsdata-5 comprise of recent SARS-CoV-2 sequences
fromNCBI andGISAID respectively along with other pathogenic
viruses. The statistics of Initial dataset as well as training and
testing datasets are given in Table 1. It is worth mentioning that
in this work more than 10,000 SARS-CoV-2 genomic sequences
have been used from January 2020 to December 2020 considering
different sources in order to develop COVID-DeepPredictor.

All the experiments are performed with the training and
testing datasets as mentioned in Table 1. For the visualization of
all the virus sequences (SARS-CoV-1, MERS-CoV, SARS-CoV-2,
Ebola, Dengue, and Influenza), t-distributed Stochastic Neighbor
Embedding (tSNE) (Hinton and Roweis, 2003) is applied on
4,643 sequences after generating the count vector (Khattak et al.,
2019) using k-mer technique (Manekar and Sathe, 2018; Solis-
Reyes et al., 2018). In this regard, the number of clusters
known apriori is six and such embedded representation of virus
sequences is shown in Figure 1A along with the distribution
of initial SARS-CoV-2 sequences in 56 countries in Figure 1B.
It is to be noted that COVID-DeepPredictor is developed in
MATLAB R2020a.

2.2. Long-Short Term Memory
Long-Short Term Memory (LSTM) is a type of recurrent neural
network (sub-branch of deep learning) which is capable of
learning order dependence in sequence prediction problems.
The main components of an LSTM network are sequence input
layer and an LSTM layer. A sequence input layer provides
text as an input into the LSTM network. An LSTM layer
learns long-term association between steps of sequence data.
Elaborately speaking, an LSTM network acquires a context
vector from previous time step and an input vector from the
given data. This is used to calculate the next context and
gate vectors to control memory cell state vector (Kim et al.,
2018). With an input data at time t and a context vector h,
a raw cell vector and input vectors for each gate are created
by one hidden layer. At the input gate, the cell vector is then
multiplied by the input vector. The cell input is added to given
previous cell vector weighted by the forget vector. Then the
resultant vector is controlled by the output vector. The update
of the cell is controlled by the control gate. LSTM is mainly
trained using Back-propagation Through Time and mitigates
the vanishing gradient problem that is quite rampant in RNN.
In LSTM, the memory cells and the gates can store time
and thus can eliminate old observations overcoming vanishing
gradient problem.

To sum up, LSTM consists of four gates, input gate (it), forget
gate (ft), control gate (Ct), and output gate (ot). Considering a
sentence S = x1, x2, ..., xK , where K is the length of a sentence,
the equations for LSTM can be depicted as:

it = sigm(Wi × [ht−1, xt]+ bi) (1)

ft = sigm(Wf × [ht−1, xt]+ bf ) (2)

C̃t = tanh(Wc × [ht−1, xt]+ bc)

Ct = ft × Ct−1 + it × C̃t

(3)

ot = sigm(Wo × [ht−1, xt]+ bo)

ht = ot ∗ tanh(Ct)
(4)

Here, W are weight matrices, ht−1 is the hidden layer which
is used updated by the output layer and is also responsible for
updating the output and tanh and sigm, respectively represent the
tanh-activation and sigmoid-activation functions.

2.3. COVID-DeepPredictor
The main objective of COVID-DeepPredictor is to correctly
predict the virus classes based on the given genomic sequences
of the different pathogenic viruses using an alignment-free
technique. To achieve this, the entire genomic sequence is
initially divided into descriptors of sequences called as Bag-of-
Descriptors (BoDs) using the popular k-mer technique. Here,
descriptors are patterns of the genomic sequences of length k.
Thereafter, Bag-of-Unique-Descriptors (BoUDs) as vocabulary
are created using such BoDs. With the use of BoDs and BoUDs,
an embedded representation is created of size N × M where N
is the number of genomic sequences and M is the indices of
the descriptors in vocabulary. This embedded representation is
then used to train COVID-DeepPredictor. Since we have divided
the genomic sequences into descriptors and represented in the
form of tokens, they behave like texts, thus boiling down to a
text classification problem. The pipeline of the proposed COVID-
DeepPredictor is shown in Figure 2.

3. RESULTS

To validate COVID-DeepPredictor, experiments are conducted
on genomic sequences of different pathogenic viruses. In this
regard, MATLAB R2020a is used on an Intel Core i5-8250U
CPU @ 1.80 GHz machine with 8 GB RAM and Windows 10
operating system. The parameters of the underlying predictor,
LSTM of COVID-DeepPredictor have been set experimentally.
In this regard, the number of hidden units for LSTM layer
is set as 80. Next, to use the LSTM layer for a sequence-
to-label prediction problem, the output mode is set to “last.”
Finally, a fully connected layer with the same size as the
number of classes, a softmax layer and a prediction layer are
added as well. Mini-batch gradient descent is used to train
LSTM. The mini-batch size is specified as 16 and the gradient
threshold is set to 2. The COVID-DeepPredictor is compared
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TABLE 1 | Description of initial, training, and test datasets.

Dataset Virus name Number of Max. length Avg. length Source

sequences of sequence of sequence of sequence

Initial dataset

SARS-CoV-1 340 30,311 29,515 NCBI-SARS-CoV-1

MERS-CoV 291 30,150 29,983 NCBI-MERS-CoV

SARS-CoV-2 2,402 29,986 29,507 GISAID-SARS-CoV-2

Ebola 300 19,897 18,976 NCBI-Ebola

Dengue 300 11,195 10,746 NCBI-Dengue

Influenza 1,010 2,347 2,322 NCBI-Influenza

Training dataset

SARS-CoV-1 250 29,765 29,520 NCBI-SARS-CoV-1

MERS-CoV 250 30,123 29,999 NCBI-MERS-CoV

SARS-CoV-2 250 29,927 29,334 GISAID-SARS-CoV-2

Ebola 250 19,897 18,979 NCBI-Ebola

Dengue 250 11,195 10,748 NCBI-Dengue

Influenza 250 2,347 2,333 NCBI-Influenza

Testdata-1

SARS-CoV-1 90 30,311 29,494 NCBI-SARS-CoV-1

MERS-CoV 41 30,150 29,887 NCBI-MERS-CoV

SARS-CoV-2 2,152 29,986 29,527 GISAID-SARS-CoV-2

Ebola 50 19,034 18,964 NCBI-Ebola

Dengue 50 10,764 10,737 NCBI-Dengue

Influenza 760 2,341 2,318 NCBI-Influenza

Testdata-2

SARS-CoV-1 90 30311 29494 NCBI-SARS-CoV-1

MERS-CoV 200 30,423 29,066 NCBI-MERS-CoV

SARS-CoV-2 200 29,855 29,850 GISAID-SARS-CoV-2

Ebola 200 18,798 18,762 NCBI-Ebola

Dengue 200 10,731 10,692 NCBI-Dengue

Influenza 200 2,341 2,323 NCBI-Influenza

Testdata-3

SARS-CoV-1 90 30,311 29,494 NCBI-SARS-CoV-1

MERS-CoV 220 30,423 29,162 NCBI-MERS-CoV

SARS-CoV-2 3,030 29,903 29,780 NCBI-SARS-CoV-2

Ebola 220 18,871 18,850 NCBI-Ebola

Dengue 220 10,690 10,677 NCBI-Dengue

Influenza 220 2,341 2,323 NCBI-Influenza

Testdata-4

SARS-CoV-1 90 30,311 29,494 NCBI-SARS-CoV-1

MERS-CoV 250 30,423 29,277 NCBI-MERS-CoV

SARS-CoV-2 2,410 30,423 29,726 GISAID-SARS-CoV-2

Ebola 250 18,871 18,852 NCBI-Ebola

Dengue 250 10,757 10,538 NCBI-Dengue

Influenza 250 2,316 2,316 NCBI-Influenza

Testdata-5

SARS-CoV-1 90 30,311 29,494 NCBI-SARS-CoV-1

MERS-CoV 250 30,423 29,277 NCBI-MERS-CoV

SARS-CoV-2 4,000 29,903 29,798 GISAID-SARS-CoV-2

Ebola 200 18,798 18,762 NCBI-Ebola

Dengue 220 10,690 10,677 NCBI-Dengue

Influenza 250 2,316 2,316 NCBI-Influenza

with other predictors based on Linear Discriminant Analysis
(LDA), Random Forests (RFs), and Gradient Boosting Method
(GBM). For LDA, the discriminant type is considered to be
pseudo-linear, for Random Forests, the number of trees taken
are 50 and for GBM the maximum depth of the tree is 10 and
maximum iterations are taken as 100. All these parameters are
set experimentally.

Each predictor has been evaluated using K-fold cross-
validation (K = 10) technique followed by further validation
on unseen test datasets. The cross-validation partition uses
random non-stratified sampling method which is applied to
prepare the training and validation datasets resulting in a total
of 1,500 samples. The training and validation datasets consist
of all the pathogenic virus classes; SARS-CoV-1, MERS-CoV,
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FIGURE 1 | Visualization of virus sequences and their spread. (A) Embedded representation of SARS-CoV-1, MERS-CoV, SARS-CoV-2, Ebola, Dengue, and

Influenza (k=3) (B) 56 countries considered for COVID-DeepPredictor are spread across the globe.

FIGURE 2 | Pipeline of COVID-DeepPredictor. The pipeline is depicted in the form of a flowchart and then represented diagrammatically where the symbols are

defined as above.

SARS-CoV-2, Ebola, Dengue, and Influenza. For each predictor,
the descriptors of the sequences of the viruses are created using
k-mer method. Thereafter to train the COVID-DeepPredictor
and the other compared predictors, an embedded matrix of size
N×M is created with the use of BoDs and BoUDs.

To determine the performance of COVID-DeepPredictor and
the other predictors, Confusion Matrix (Luque et al., 2019)
is considered. In confusion matrix, True Positives (TP) refer
to a data being correctly identified and they are represented

by the diagonal elements. The remaining predictions lead to
an error ǫ. Moreover, False Positives (FP) for a particular
class refer to the sum of the values in the corresponding
column, excluding the TP and False Negatives (FN) for a
class is the sum of the values in the corresponding row,
excluding the TP. Lastly, True Negatives (TN) for a class is
the sum of all columns and row, barring the one for itself.
To evaluate the results of COVID-DeepPredictor, metrics like
Accuracy, Precision, Recall, and G-Mean have been considered
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which can be deduced from a confusion matrix. They can be
calculated as:

Accuracy:

TP + TN

TN + FP + FN + TP
(5)

Precision:

TP

FP + TP
(6)

Recall:

TP

TP + FN
(7)

G-mean:

TP
√
(TP + FP)(TP + FN)

(8)

Different existing state-of-the-art predictors based on Linear
Discriminant Analysis (LDA), Random Forests (RFs), and
Gradient Boosting Method (GBM) are used in this work for
comparison purposes. LDA is a very popular machine learning
tool for prediction. In LDA, each dependent variable is expressed
as a linear combination of other features. RFs are ensemble
learning methods which build numerous decision trees during
training and as an output produces the class that is the mode
of the classes. GBM is also an ensemble learning model which
produces a prediction model in the form of an ensemble weak
prediction models, usually decision trees.

For conducting the experiments, first and foremost, we need
to determine the value of k in k-mer. In order to do this,
the experiments have been conducted on five test datasets as
mentioned in section 2. The results are shown in Figures 3A–E,
where k is varied from 3 to 15 with accuracy and running time
of COVID-DeepPredictor. It can be seen from figures that the
accuracy is higher at k = 3 for all the five test datasets. Although,
the same accuracy can be found for other k values as well, e.g.,
in Figure 3A k = 9, 11, and 13 show the same accuracy, as we
increase the k-mer value, the run time increases. This trend of
increasing time with the increasing value of k-mer has also been
shown in Solis-Reyes et al. (2018). Keeping this in context, we
have taken the value of k in k-mer to be 3 as with this value, the
run time is least. For the compared predictors based on LDA, RF,
and GBM, the k values are similarly determined as 13, 4, and
4, respectively. In this work, K-fold cross-validation with K =
10 is used. The average results in terms of accuracy for the test
datasets are shown in Figure 4A. Moreover, apart from accuracy,
different metrics such as precision, recall and g-mean have also
been computed for the test datasets and reported in Table 2.
As can be seen from the results of Figure 4A, for COVID-
DeepPredictor the accuracy ranges from 99.51 to 99.94%. Thus,
the experiments establish the fact that COVID-DeepPredictor
can detect SARS-CoV-2 with a very high accuracy. The confusion
matrices as circos plots for Testdata-1 and Testdata-2 (k = 3)
are shown in Figures 4B,C. It can be seen from Figures 4B,C

that there is only one misprediction, where SARS-CoV-1 has
been wrongly predicted as SARS-CoV-2. The confusion matrices

for Testdata-3, Testdata-4, and Testdata-5 (k = 3) are shown in
Supplementary Figure 2.

COVID-DeepPredictor is performed on a validation dataset
as well. Accuracy, precision, recall, and G-mean values of the
prediction for the validation dataset are 100, 100, 100, and
1%, respectively (k=3). As we have used K-fold cross-validation
with K = 10, ten convergence plots of COVID-DeepPredictor
are generated. One of the corresponding convergence plots
for COVID-DeepPredictor is given in Figure 4D. The blue
line indicates the training accuracy and the black line is the
validation accuracy. All the convergence plots are shown in
Supplementary Figure 1. The Bag-of-Unique-Descriptors of the
six virus classes, SARS-CoV-1, MERS-CoV, SARS-CoV-2, Ebola,
Dengue, and Influenza are shown in Figures 4E–J for k=3.

4. DISCUSSION

SARS-CoV-2 is a global pandemic and since human to human
transmission (Chan et al., 2020; Huang et al., 2020) is confirmed
for SARS-CoV-2, the need for its early prediction has become
imperative. Viral outbreaks of this kind call for timely and
prompt analysis of the genomic sequences to help the prediction
of the virus in its early stages. COVID-DeepPredictor can be used
by pathogen laboratories for the prediction of SARS-CoV-2 very
quickly and as concluded from the results, most accurately. It is
worth mentioning over here that for COVID-DeepPredictor to
be effective, there must be at least two virus classes present in the
training input sequences.

COVID-DeepPredictor has two functions for: (a)
training, testing, and accordingly saving an LSTM
model [COVIDdeepPredictor()] and (b) loading a pre-
trained LSTM model for testing on unseen test dataset
[COVIDdeepPredictorLoad()]. There is a main code
COVIDmain.m which loads both COVIDdeepPredictor()
and COVIDdeepPredictorLoad(). If users want to have their
own training model and also get the results for a test dataset,
they need to use only COVIDdeepPredictor() and disable
COVIDdeepPredictorLoad(). On the other hand, if they want to
use a pre-trainedmodel, they can disable COVIDdeepPredictor()
and run only COVIDdeepPredictorLoad() to get the results for
test datasets.

For ease of users, training and testing files are provided
to make them acquainted with the functionalities of
COVIDdeepPredictor(). Trainingdata.csv is the input file
for training and any one of the test files among Testdata-1.csv,
Testdata-2.csv, Testdata-3.csv, Testdata-4.csv, and Testdata-5.csv
can be used for testing. The results of the prediction will have
the sequence ID, predicted virus name, along with its sequence
which will be stored in Results.csv.

On the other hand, in case of COVIDdeepPredictorLoad(),
only any one of the test files needs to be provided to get the
results in Results.csv. Similarly, new training and test datasets
can be prepared by the users after following the same structures
of the training and testing files as provided. This is important
so that new training models of COVID-DeepPredictor can
be prepared for different set of viruses or similar kind of
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FIGURE 3 | Choosing k value of k-mer for COVID-DeepPredictor based on accuracy and running time. (A) Testdata-1, (B) Testdata-2, (C) Testdata-3, (D) Testdata-4,

(E) Testdata-5.
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FIGURE 4 | Results related to COVID-DeepPredictor. (A) Prediction performance of COVID-DeepPredictor and other compared methods in terms of average

accuracy for the five test datasets. Circos plots of confusion matrix for COVID-DeepPredictor (k=3) for (B) Testdata-1 (C) Testdata-2. (D) Convergence plot of

COVID-DeepPredictor. Word cloud of k-mer descriptors (k=3) of genome sequences for (E) SARS-CoV-1 (F) MERS-CoV (G) SARS-CoV-2 (H) Ebola (I) Dengue (J)

Influenza.
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TABLE 2 | Prediction performance of COVID-DeepPredictor and other compared methods on test datasets.

Method DataSet k-mer Average Average Average Average

accuracy precision Recall G-Mean

COVID-DeepPredictor

Testdata-1

3 99.867 99.914 99.336 0.996

LDA 13 98.981 91.845 98.015 0.948

RF 4 98.409 97.577 90.024 0.937

GBM 4 98.524 97.611 90.121 0.937

COVID-DeepPredictor

Testdata-2

3 99.513 99.527 99.423 0.994

LDA 13 98.807 98.814 98.925 0.988

RF 4 96.788 96.981 97.264 0.971

GBM 4 97.844 97.542 97.991 0.977

COVID-DeepPredictor

Testdata-3

3 99.877 99.595 99.686 0.996

LDA 13 99.650 98.981 99.162 0.989

RF 4 99.250 97.727 98.440 0.981

GBM 4 99.265 97.728 98.891 0.983

COVID-DeepPredictor

Testdata-4

3 99.860 99.637 99.682 0.996

LDA 13 98.885 97.281 97.648 0.974

RF 4 99.371 98.414 99.325 0.988

GBM 4 99.441 98.922 99.444 0.991

COVID-DeepPredictor

Testdata-5

3 99.940 99.766 99.808 0.997

LDA 13 99.380 97.467 97.927 0.976

RF 4 99.580 98.519 99.371 0.989

GBM 4 99.590 98.956 99.763 0.993

The results highlighted in bold show that COVID-DeepPredictor has superior performance as compared to the other predictors.

tasks. It is to be noted that the pre-trained model is provided
in Supplementary Material, where the value of k for k-mer
is 3. The choice of k has been done experimentally as it
takes computationally less amount of time and provides higher
accuracy. Sample files for training, testing, pre-trainedmodels for
COVID-DeepPredictor and the code of the software are available
in Supplementary Material for re-usability3.

Setting the appropriate value of k in k-mer is very important
to achieve the desired results in a text classification problem. As
this work is based on the underlying concept of text classification,
k-mer has a very important role to play. Thus, to determine the
value of k in k-mer, extensive experiments have been performed.
It can be observed from Figures 3A–E that with the increasing
value of k, the run time of COVID-DeepPredictor is also on the
rise. Therefore, to choose the appropriate value of k, apart from
the accuracy, the run time of COVID-DeepPredictor also needs
to be taken into account. For Testdata-1, at k = 9, 11, and 13, the
accuracy is same as at k = 3. Similarly, for Testdata-2, Testdata-3,
Testdata-4, and Testdata-5, similar accuracies can be observed at
k = 3, 11, 13, k = 3, 4, 5, 13, k = 3, 4, and k = 3, 13, respectively.
Although, the accuracies are same at these k-mer values, run
time is increasing as can been seen from Figures 3A–E. Thus, the
smallest k-mer value has been chosen without compromising on
the accuracy. From Table 2 and Figure 4A, it is quite evident that
with k = 3, COVID-DeepPredictor shows the best results among
all the compared predictors.

3http://www.nitttrkol.ac.in/indrajit/projects/COVID-DeepPredictor/

To understand the relation among k-mer, size of BoDs and
BoUDs, Table 3 is reported. From this table, we can see that the
sizes of both BoDs and BoUDs increase with the increase in k-mer
for each virus class. In the table, “All” represents all the six virus
classes taken together. For example, at k = 15 for training dataset
of all virus classes, the sizes of BoDs and BoUDs are 30193594
and 518372, respectively for 1,500 sequences while for the same
k, for Testdata-1, the sizes of BoDs and BoUDs are 70595908
and 581774 respectively for 3,143 sequences. On the other hand,
for k = 3, less number of BoDs and BoUDs are generated. Here,
as expected, the BoD values for “All” are the summation of the
BoDs of the individual virus classes. On the contrary, BoUD is
less than the summation of the BoUDs of the six virus classes.
This can be attributed to the relatedness between different virus
classes. For example, SARS-CoV-1, MERS-CoV, and SARS-CoV-
2 are more related and thus they may share unique descriptors
(BoUDs) resulting in the intersection of the BoUDs when all the
virus classes are considered together. Apart from this, BoDs and
BoUDs for the varying k have also an impact on the accuracy and
run time of COVID-DeepPredictor as well which can be observed
by combining Figure 3 and Table 3.

The main advantage of COVID-DeepPredictor is that it uses
k-mer technique which is an alignment-free technique. Most
analysis based works attempted so far have used alignment
based techniques. Although, they are highly successful in
detecting similarities in sequences of viruses, they take a lot of
computational time. Also, alignment based techniques have the
underlying constraint of homologous sequences which may not
be the case every time. To mitigate these problems of alignment
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TABLE 3 | Bag-of-Descriptors and Bag-of-Unique-Descriptors for each virus class.

k-mer Virus Name
Training dataset Testdata-1 Testdata-2 Testdata-3 Testdata-4 Testdata-5

BoD BoUD BoD BoUD BoD BoUD BoD BoUD BoD BoUD BoD BoUD

3

SARS-CoV-1 16000 64 5760 64 5760 64 5760 64 5760 64 5760 64

MERS 16000 64 2642 81 12831 90 14083 67 16003 67 16003 67

SARS-CoV-2 16000 64 138336 181 12800 64 193920 64 154240 64 256000 64

Ebola 16000 64 3200 64 14248 125 14741 125 16661 125 14248 125

Dengue 16000 64 3212 75 12827 82 14080 64 16496 138 14080 64

Influenza 16000 64 48688 90 12803 67 14080 64 16000 64 16000 64

All 96000 64 201838 181 71269 125 256664 125 225160 141 322091 125

5

SARS-CoV-1 255723 1024 92053 1024 92053 1024 92053 1024 92053 1024 92053 1024

MERS 256000 1024 42012 1054 204674 1081 225101 1029 255821 1029 255821 1029

SARS-CoV-2 255578 1024 2202055 1446 204592 1023 3099528 1024 2465318 1024 4091752 1024

Ebola 255966 1024 51195 1024 208766 2461 227294 2104 257985 2104 208766 2461

Dengue 253210 1024 50659 1044 202616 1054 222741 1024 253923 1493 222741 1024

Influenza 200176 1022 608293 1093 159407 1020 175272 1015 201513 1007 201513 1007

All 1476653 1024 3046267 1548 1072108 2555 4041989 2106 3526613 2293 5072646 2452

7

SARS-CoV-1 2804578 15151 1008955 15813 1008955 15813 1008955 15813 1008955 15813 1008955 15813

MERS 2928952 12897 479752 12526 2293586 15184 2528113 15111 2879852 15113 2879852 15113

SARS-CoV-2 2649879 12330 22899216 15728 2137492 11100 32349863 14073 25724590 12971 42685988 14211

Ebola 2443931 13407 490077 14109 1947490 18116 2143135 17557 2435668 17562 1947490 18116

Dengue 1681474 15764 337983 13206 1332951 15733 1454478 14773 1650576 16470 1454478 14773

Influenza 513627 10642 1545260 9627 407434 8175 447771 8253 510118 6824 510118 6824

All 13022441 16365 26761243 17235 9127908 20509 39932315 18815 34209759 19521 50486881 20334

9

SARS-CoV-1 6628103 74045 2384098 99891 2384098 99891 2384098 99891 2384098 99891 2384098 99891

MERS 6789715 36574 1109206 32462 5266196 68377 5811335 68421 6628997 68503 6628997 68503

SARS-CoV-2 6477353 39782 56109728 87633 5264550 29600 79603531 62655 63327698 47111 105111057 65922

Ebola 4441121 38632 888076 42449 3510149 52268 3873871 69072 4403894 69127 3510149 52268

Dengue 2552607 85437 510925 39245 2032038 84400 2230265 59231 2503617 83849 2230265 59231

Influenza 576353 25781 1736059 20908 458593 15572 504138 15921 571045 11662 571045 11662

All 27465252 170456 62738092 176102 18915624 190230 94407238 191127 79819349 194988 120435611 188263

11

SARS-CoV-1 7307627 107764 2628669 164654 2628669 164654 2628669 164654 2628669 164654 2628669 164654

MERS 7433338 43970 1214507 37565 5761632 93236 6358646 93410 7254330 93587 7254330 93587

SARS-CoV-2 7255552 50534 62870692 146218 5905735 34664 89280255 94001 71036334 64429 117924347 100857

Ebola 4708196 47084 940996 50512 3714237 64927 4101614 91849 4663098 91945 3714237 64927

Dengue 2670007 136386 534074 51172 2126694 135576 508411 19304 2619237 132259 508411 19304

Influenza 580256 33741 1752556 26635 462340 18759 2334852 85407 576053 13648 576053 13648

All 29954976 385098 69941518 425910 20599307 465475 105212447 491662 88777721 504060 132606047 448483

13

SARS-CoV-1 7368667 122008 2650637 191450 2650637 191450 2650614 191438 2650614 191438 2650614 191438

MERS 7491153 47114 1223927 39330 5806329 101342 6408044 101572 7310682 101788 7310682 101788

SARS-CoV-2 7320339 54634 63432818 171269 5959215 36016 90082938 109721 71677120 72455 118991161 117831

Ebola 4733413 51117 946000 53465 3732476 70736 4122922 100238 4687630 100355 3732476 70736

Dengue 2679746 163142 535989 57918 2134755 162571 2344694 99695 2629120 157280 2344694 99695

Influenza 580108 39489 1752528 30935 462251 21020 508334 21713 15101 575971 15101 575971

All 30173426 466701 70541899 523579 20745663 569846 106117546 607703 88970267 622408 135044728 578236

15

SARS-CoV-1 7374678 133005 2652762 211394 2652762 211394 2652739 211383 2652739 211383 2652739 211383

MERS 7495710 49814 1224682 40764 5809898 106916 6412005 107189 7315184 107441 7315184 107441

SARS-CoV-2 7326267 57890 63484669 189982 5964143 37021 90156005 123153 71735232 79346 119088222 132184

Ebola 4737182 54589 946752 55755 3735616 75678 4126489 106635 4691704 106770 3735616 75678

Dengue 2680123 185342 536022 63800 2135271 184450 2345444 111850 2629444 177592 2345444 111850

Influenza 579634 44695 1751021 34958 461851 23061 507894 23904 575480 16471 575480 16471

All 30193594 518372 70595908 581774 20759541 630327 106200576 673741 89599783 689040 135712685 642812
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TABLE 4 | Runtime comparison of COVID-DeepPredictor and BLASTN.

Alignment-free technique Alignment-based

technique

Number of sequences COVID-DeepPredictor (k=3) BLASTN

of SARS-CoV-2 [Training and Testing (in min)]

50 1.26 1 h 15 min

100 1.27 2 h 40 min

200 1.28 4 h 30 min

300 1.29 6 h 35 min

400 1.31 9 h 10 min

based techniques, alignment-free techniques (Kari et al., 2015)
can be used. Alignment-free techniques are meant to be fast
and can work with a large number of sequences. To prove the
advantage of COVID-DeepPredictor over BLASTN4, which is an
alignment-based technique, Table 4 is reported where different
input sequences of size 50, 100, 200, 300, and 400 of SARS-
CoV-2 are taken. For 50 sequences, BLASTN takes 1 h 15 min
to align the sequences and to produce the subsequent results.
Thereafter, such results are further required to be analyzed by
machine intelligence technique to predict the virus class which
takes some additional time as well. On the contrary, COVID-
DeepPredictor successfully completes the job of training and
testing, which involves prediction, in just 1.26min. Similar results
are also seen for the other varying sequences as well. Thus, we can
conclude that an alignment-free technique is significantly faster
than an alignment based technique.

5. CONCLUSION

In the current scenario of global pandemic, it has become
very important to predict SARS-CoV-2 as early as possible as
both the affected and the number of death cases are increasing
exponentially everyday. However, polymorphic nature of SARS-
CoV-2 allows it to adapt and sustain in different kinds of
environment which makes SARS-CoV-2 very hard to predict. In
such scenarios, the proposed COVID-DeepPredictor can be very
useful for predicting SARS-CoV-2 and other kinds of pathogenic
viruses based on their genomic information very quickly as
it uses an alignment-free technique. The results for COVID-
DeepPredictor are highly encouraging as it shows prediction
accuracy in the range of 99.51 to 99.94% for test datasets.
Human health being the main concern of this work, the code
for COVID-DeepPredictor along with the pre-trained model are
also provided so that the scientific community can reap as much
benefit as possible from it. Apart from SARS-CoV-2, COVID-
DeepPredictor can also be used by pathogen laboratories to
recognize the other five pathogenic viruses (SARS-CoV-1,MERS-
CoV, Ebola, Dengue, and Influenza) very easily and accurately

4https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=

BlastSearch&BLAST_SPEC=&LINK_LOC=blasttab&LAST_PAGE=blastn

from a given genomic sequence. To achieve good performance,
data preprocessing and the experiments are carried out on
real-life datasets. Moreover, comparisons with popular existing
prediction methods based on Linear Discriminant Analysis,
Random Forests, and Gradient Boosting Method are also
performed to show the superiority of COVID-DeepPredictor.
Additionally, accuracy and runtime of COVID-DeepPredictor
are taken together to determine the value of k in k-mer,
comparison among k values in k-mer, Bag-of-Descriptors (BoDs)
and Bag-of-Unique-Descriptors (BoUDs) is considered along
with a comparative study between COVID-DeepPredictor and
Nucleotide BLAST.
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