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Leukocytes offer a critical layer of protection to the host following skin infections.
Delineating the kinetics of cutaneous leukocyte recruitment as well as their anti-
microbial and regulatory profiles is challenging since it requires the isolation of adequate
cell numbers and maintenance of their functional properties. Herein, we took advantage of
a modified procedure to gain insights into the contributions of fish phagocytes through
induction and resolution phases of acute cutaneous inflammation in goldfish (Carassius
auratus). Our data shows early upregulation of pro-inflammatory cytokines and
chemokines, which was paired with neutrophil-dominant leukocyte migration of
neutrophils from circulation to the injury site. Recruited neutrophils were associated
with high levels of reactive oxygen species (ROS). Following pathogen elimination, a
reduction in ROS levels and pro-inflammatory cytokines expression preceded the
resolution of inflammation. These results provide a better understanding of the
cutaneous immune responses in fish. Moreover, the increased viability and functionality
of isolated skin leukocytes opens the door to better understand a range of additional
skin diseases.

Keywords: leukocytes, Aeromonas, inflammation, skin, immune response
1 INTRODUCTION

The skin is a primary site for interaction between an animal and its environment and is often the
initial point of contact between the host and a number of pathogens. The unique structure and
functions of the skin depend on the variety of its cell types, in addition to other hematopoietic cells
derived from the circulation (1). Skin leukocytes are essential for clearing infection through
complementary cellular and molecular responses (1). Initial pathogen exposure triggers an acute
inflammatory response via binding of pattern recognition receptors (PRRs) expressed by tissue-
resident cells to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) (2, 3). Tissue-resident immune and connective tissue cells subsequently release
org September 2021 | Volume 12 | Article 7250631
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pro-inflammatory cytokines as well as chemokines to recruit
polymorphonuclear leukocytes (PMN), monocytes/macrophages
and lymphocytes to the infection site from adjacent blood vessels
(4, 5). The recruited cells combat invading pathogens through
phagocytosis and anti-microbial mechanisms, e.g., nitric oxide
(NO) and reactive oxygen species (ROS) (5). Following
eradication of pathogens, a shift from pro-inflammatory to
anti-inflammatory profile is essential for resolution of
inflammation and activation of tissue repair machinery (5).
Regulation of both pro-inflammatory and anti-inflammatory
mediators is crucial for effective pathogen clearance along with
minimal collateral tissue damage (6). Various mechanisms
regulate the transition between induction and resolution of
inflammation, including apoptosis of neutrophils and
macrophage polarization towards an anti-inflammatory state (7,
8). During acute inflammation, macrophages internalize
apoptotic neutrophils followed by downregulation of their pro-
inflammatory profile, resulting in a reduction of infiltrating
leukocytes and ROS levels (9–11). Subsequent to resolution of
inflammation, upregulation of growth factors, cellular
proliferation and activation of tissue repair pathways contribute
to the restoration of tissue integrity and homeostasis (12).

Aeromonas veronii is a Gram-negative rod-shaped bacterium
that was described for the first time in 1987 by Hickman-Brenner
et al. (13). Despite being long-recognized as an important
pathogen, it continued to impact several hosts, including fish
and humans via inducing cutaneous infections associated with
severe tissue damage, i.e., furunculosis (14–17). A. veronii is
considered one of the most pathogenic species among
Aeromonas spp., with A. veronii biovar sobria being the most
pathogenic strain (18, 19). The bacterium has been isolated from
several species of diseased fish (20–22). Infected fish are usually
presented with well-characterized necrotic ulcers in addition to
other signs of internal hemorrhage, abdominal distention and
exophthalmia (21, 22). Though, not all of these signs are detected
in infected fish, suggesting that pathogenicity depends on factors
such as bacterial strain and fish species. A. veronii possesses several
virulence factors that involve adhesins molecules, toxins, lytic
enzymes, iron sequestering and quorum sensing systems (23–29).

Determining the functions and behaviour of leukocytes in
connective tissue such as skin remains a challenge since it
requires their isolation while considering the quantity and
quality of the extracted cells. Protocols for leukocyte isolation
from the skin of murine models (30) and fish (31–33) have been
previously reported. A desirable cell extraction protocol should
achieve high efficiency in cell harvesting concerning a high level
of viability and functionality. Owing to its fibrous nature,
enzymatic digestion of skin connective tissue is necessary to
liberate cells. Several enzymes, including dispase, trypsin, and
elastase were shown to modify the expression of surface
receptors and functionalities of different cell types (34–36).
Therefore, we used collagenase D enzyme, which was
previously reported to have minor effects on surface markers
and functions of isolated cells (37). Furthermore, we used
MGFL-15 media specifically developed for in vitro cultivation
of primary cells from carp and goldfish to maintain cell viability
Frontiers in Immunology | www.frontiersin.org 2
and maximize yield. With the help of the modified protocol, we
managed to characterize skin leukocyte immune responses
during induction and resolution phases of cutaneous
inflammation in goldfish.

Our lab previously identified a period of neutrophilia in the
peripheral circulation during the first 48 h subsequent to skin
injury inoculated with A. veronii (20). This was followed by
leukocyte infiltration into the injury area. However, limitations
in our capacity to isolate and examine skin leukocytes prevented
characterization of the kinetics of leukocyte recruitment into the
skin and their anti-microbial and regulatory responses once at
the injury site. A primary challenge was how to isolate sufficient
numbers of leukocytes from the skin that remain viable and
functional. Herein, we utilized a modified protocol that isolates
high numbers of functional leukocytes with ~ 90% viability to
characterize the recruitment kinetics of different leukocyte
subsets in addition to their exerted anti-microbial responses
during induction and resolution of cutaneous inflammation.
Our data suggest that leukocytic infiltration, dominated by
neutrophils, occurred at 24-48 hours post-infection (hpi), and
was coupled to an increase in ROS production. Resolution of
inflammation was evident by a reduction in both infiltrating
leukocytes and ROS levels at 72 hpi. The results further provide
insight into the cutaneous immune responses in fish skin.
2 MATERIAL AND METHODS

2.1 Ethics Statement
All animals were utilized according to the Canadian Council of
Animal Care guidelines in addition to the University of Alberta
Animal Care and Use Committee (Animal Use Protocol # 706).
Goldfish were anesthetized using tricaine methanesulfonate
(Aqualife TMS) at a concentration of 15-30 mg/L and pH of
7.4 to 7.6 and were euthanized by cervical dislocation.

2.2 Animals
Common goldfish (Carassius auratus), 10-12 cm in length, were
purchased from Aquatic Imports in Calgary, Alberta. Fish were
held in the Aquatic Facility of the Department of Biological
Sciences, University of Alberta, on a simulated natural
photoperiod (12 hours of light: 12 hours of dark). Fish were
kept at 16°C in four continuous flow tanks (120 Liters in size)
with 25 fish added to each tank. A number of five fish (n=5) were
utilized per each time point. The water quality parameters
throughout the experiment were maintained as follows; pH at
7.2–8.0 and dissolved oxygen at 5.5–6.5 PPM. Fish were fed once
daily with 1.5 mm floating feed pellets.

2.3 Bacteria
Aeromonas veronii was previously isolated and identified by our
lab from natural lesions found on goldfish held in the Aquatics
facility (20). For the preparation of bacterial culture, frozen
bacteria were inoculated into a 5mL of sterile trypticase soy
media (BD Biosciences) and cultured overnight at room
temperature in a tube shaker.
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2.4 Wound Creation
and Bacterial Inoculation
Following the anesthetizing of fish, scales on the mid-line of the
left side of the fish were removed, and a 5x5 mm scratch wound
was made with sterile fine-grit sandpaper. The wound was
inoculated with 10 µL of A. veronii culture broth (concentration
of 4.1 x 108 CFU/mL) prior to returning the fish to water. Fish
were held in flow-through 16°C water for 72 - 96 h, depending on
the experiment. At indicated time points, fish were anesthetized
and euthanized for wound tissue collection.

2.5 Histopathological Analysis
Tissue surrounding the wound area (2x2 cm) was collected and
placed in 10% neutral-buffered formalin (Sigma) for 24 h.
Following fixation, tissues were placed in 75% ethanol at 4°C.
Tissues were subsequently processed overnight in a series of
ethanol, toluene, and wax washes using a Leica TP1020 benchtop
tissue processor. Paraffin-embedded tissues were left to harden
and sectioned using a microtome.

Before staining, all the slides were deparaffinized using two
rounds of toluene (5 min each). Slides were then washed using
subsequent rounds of 100%, 90%, 70%, and 50% ethanol, andwater
for 2 min each. For Hematoxylin & Eosin (H&E) stain, slides were
put in Haematoxylin solution for 20 min and washed in tap water
for 5 min. Slides were stained in Eosin solution for 5 min and
washed for 5min in tapwater. ForMasson’s Trichrome stain, slides
were stained with Lugol’s iodine for 5 min, decolorized with 5%
sodium thiosulphate, and washed with tap water until they were
clear. Slides were then stained with Wiegert’s iron hematoxylin
for 20 min, decolorized with 1% acid alcohol and tap water,
stained with 1% ponceau-fuchsin for 5 min, mordant in 1%
phosphomolybdic acid for 5 min, then differentiated with 1%
acetic acid. Finally, for both H&E and Masson’s Trichrome, slides
were dehydrated in seriesof alcohol, cleared in xylene,mountedwith
DPX. Images were taken on a Leica DM1000 confocal microscope.

2.6 Isolation of Leukocytes From Fish Skin
Protocols for leukocyte isolation from fish skin (31–33) were
previously reported. Herein, we present a modified protocol that
utilizes enzymatic digestion and gradient centrifugation to
extract immune cells from fish skin. In this protocol, we used
MGFL-15 media specifically developed for in vitro cultivation of
primary cells from carp and goldfish (Table 1), in addition to
collagenase D for tissue digestion to maintain cell viability and
maximize yield. The protocol is as follows:

Wound areawas dissected and skin tissue was added into a petri
dish containing cold sterile 1 x PBS-/- (no calcium/nomagnesium).
Using sterile scissors, skin was cut into small pieces (~2mm2) and
washed with cold 1 x PBS-/- to avoid blood contamination. Skin
piecesweremoved intoa 50mLtubecontaining 10mLofMGFL-15
media and the tube was added to a shaker for 30 minutes at room
temperature. Content of the tube was strained through a sterile 70
µmcell strainer (Sigma).Then, skinpieceswere collected and added
into a new 50 mL tube with 10 mL of complete MGFL-15 media
(with 5% (vol/vol) fetal bovine serum (FBS), 100 U/mL penicillin,
and 100 mg/mL streptomycin) containing collagenase D (Sigma)
(0.18mg/mL). Then, the tubewas added to a shaker for 120minutes
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at room temperature. Content of the tube was strained through a
sterile 70 µm cell strainer and flow-through containing cells was
collected and washed with MGFL-15 media. Collected cell
suspension was layered into a 51/34% discontinuous percoll
density gradient (GE Healthcare) and centrifuged at 400 x g for
25 minutes at 4°C. Using an electronic pipette, slowly discard the
upper layer and carefully collect the interface into a new15mL tube.
Cells were washed twice with MGFL-15 media to be ready for
downstream analysis.

2.7 Cell Staining
A 100 mL volume of cell suspension was added into a spin column
andcentrifugedonto a glass slideat 40xg for 6minusingaCytospin
4 cytocentrifuge (Shandon, ThermoFisher). ForHema 3 and Sudan
Black staining, cells were stained according to the manufacturer’s
specifications (Fisher HealthCar -Hema3 Fixative and Solutions
and Sudan Black B, Sigma, respectively). Slides were visualized at
1000x magnification (with oil immersion) on a Leica DM1000
confocal microscope. Cellular subpopulations were counted based
on the cellular morphology and Sudan Black staining. At least 200
cells were counted per sample.

2.8 Viability Assay
Leukocytes were added to a 5mL round bottom tube (BD Falcon)
at a density of 5x105 cells and centrifuged at 350 x g for 8 min at
4°C. Cells were washed twice with 1x Annexin V Binding Buffer
(BD Biosciences, Cat# 556454), resuspended in 200 mL 1x
Annexin V Binding Buffer, and incubated for 30 min in the
dark with 5 mL FITC Annexin V (BD Biosciences, Cat# 560931)
and 4 mL propidium iodide (Sigma, Cat# P4864) diluted 1:10 in
1x Annexin V binding buffer. Finally, leukocytes were washed
with 500 mL of 1x Annexin V Binding Buffer and fixed with 1%
formaldehyde. Prior to analysis, leukocytes were washed twice
with 1 x PBS-/-, centrifuged at 350 x g for 5 min at 4°C, and the
supernatant was decanted. Data was acquired using ImageStream
Mk II Imaging Flow Cytometer (Amnis) and analyzed using
IDEAS Image Data Exploration and Analysis Software (Amnis).
A minimum of 1x104 events was acquired. Leukocytes were gated
based on the normalized frequency of a fluorescent minus one
TABLE 1 | Components of MGFL-15 media.

Component Quantity

KH2PO4 0.69 g
K2HPO4 0.57 g
NaOH 0.75 g
NaHCO3 0.34 g
HEPES 7.00 g
L-glutamine 0.584 g
Bovine Insulin 0.01 g
L-15 media 1L
10x Hank’s Balanced Salt Solution 80 mL
Nucleic acid precursor solution 20 mL
MEM amino acid solution 25 mL
MEM non-essential amino acid
solution

25 mL

Sodium pyruvate solution 25 mL
MEM vitamin solution 20 mL
b-mercapto-ethanol 7 mL
MilliQ water fill to 2L
September 2021 | Volume 12 | Artic
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sample. The reported protocol isolates skin leukocytes with ~ 90%
viability (Figure 1).

2.9 ROS and NO Functional Assays
Cells were added to a 5 mL round bottom tube (BD Falcon) at a
density of 5x105 cells and centrifuged at 350 x g for 8 minutes at
4°C, then resuspended carefully into 500 mLMGFL-15media. Cells
were incubated in the dark for 30 min with 0.5 mL of CellROX™

DeepRedReagent (Thermo Fischer, Cat#C10491), 1mMDAF-FM
(4-Amino-5-Methylamino-2’,7’-Difluorofluorescein) (Thermo
Fischer, Cat# D23844), and 4 mL of propidium iodide (Sigma.
Cat# P4864) diluted 1:10 in MGFL-15 media. Cells were washed 2
times with 1 x PBS-/-, and then fixed with formaldehyde 1%. After
that, cells were centrifuged at 350 x g for 5 min at 4°C, and
supernatant was removed. Data was acquired using ImageStream
MkII ImagingFlowCytometer (Amnis) and analyzed using IDEAS
Image Data Exploration and Analysis Software (Amnis). A
minimum of 1x104 events was acquired. Cells were gated based
on the normalized frequency of a fluorescent minus one sample.

2.10 Gene Expression Analysis
2.10.1 RNA Extraction
Goldfish were anesthetized and euthanized prior to collecting
wound tissue. Tissues were homogenized in 1 mL of Trizol
Reagent (Invitrogen, ThermoFisher) using a PRO 200 double
insulated blade disruption homogenizer. One mL of each
homogenized sample was transferred to respective microfuge
tubes along with 100 mL of 1-bromo-3-chloropropane (Sigma).
Frontiers in Immunology | www.frontiersin.org 4
Samples were vortexed and kept on ice for 5 min, and centrifuged
at 12,000 x g for 15 min at 4°C. The aqueous layer was collected
in a new labeled tube. 100 mL of isopropanol was added to each
tube and mixed by inversion before being stored at -80°C
overnight. Tubes were centrifuged at 12,000 x g at 4°C for 10
min, supernatant removed, and RNA pellet was washed with
75% ethanol. After centrifugation at 7,500 x g for 5 min, the
supernatant was discarded. The pellet was left to dry for 5 to 10
min. Samples were then resuspended in 30 mL of nuclease-free
water (Ambion). cDNA was synthesized using iScript™ cDNA
Synthesis Kit (Biorad). Then, cDNA samples were either used
immediately or stored at -20°C for qPCR analysis.
2.10.2 Quantitative (q) PCR Conditions
qPCR was performed using QuantStudio 6 Flex Real-Time PCR
System (Applied Biosystems). In a 10 µL reaction mix, 5 µL SYBR
green reagent mix, 0.5 µL of both forward and reverse primers
(final concentration is 0.5 µM) and 2.5 µL of cDNA were added.
cDNA was then analyzed by quantitative PCR. b-actin was used
as an endogenous control. Relative quantification (RQ) analysis
was performed. RQ values were normalized against gene
expression on day 0. Primers used in qPCR are listed in Table 2.

2.11 Statistical Analysis
Statistics were performed using non-parametric Kruskal–Wallis
test and Dunn’s test for multiple comparison in Prism 7 software
(GraphPad Prism).
A B

D

C

FIGURE 1 | Goldfish leukocytes isolated from A. veronii skin injury site showed 90% viability. (A) Cells evaluated in an ImageStream Mk II Imaging Flow Cytometer
(Amnis) were gated using gradient RMS to identify focused cells. Single cells (B) were subsequently evaluated for cell death (C) based on propidium iodide (PI) and
annexin V (AnxV FITC) staining. (D) Representative images show healthy cells [PI(-)/AnxV(-)], as well as those undergoing apoptosis or necrosis [PI(+)/AnxV(-)], [PI(-)
/AnxV(+)], [PI(+)/AnxV(+)]. BF, bright field.
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3 RESULTS

3.1 An Acute Inflammatory Response
Characterized by Upregulation of Pro-
Inflammatory Mediators and Neutrophil-
Centric Leukocyte Recruitment Was
Detected Following Cutaneous Injury
Histopathological analysis showed that leukocytes were recruited to
the injury site gradually to reach a peak at 48 hpi (Figure 2). Cellular
recruitment correlated with upregulation of gene expression of
classical pro-inflammatory cytokines and chemokines. For
example, interleukin 1 beta (IL1B) was markedly upregulated at
Frontiers in Immunology | www.frontiersin.org 5
16 – 36 hpi while tumor necrosis factor alpha (TNFA) showed a later
upregulation at 36 and 48 hpi (Figure 3). To gain added resolution
into the kinetics of infiltration of different leukocyte subpopulations,
we isolated skin leukocytes from wound tissue. Consistent with our
histopathological analyses above, the number of total leukocytes
isolated from the skin infection site gradually increased to reach
maximum levels between 36 to 48 hpi (Figure 4B). Among recruited
cells, neutrophils, as expected, accounted for the majority of
infiltrating leukocytes (> 56%) compared to monocytes/
macrophages (~ 29.5%) during the first 48 hpi (Figure 4B).
Limited numbers of neutrophils existed at the infection site at 0
hpi; though, they increased significantly to ~ 29 x 104 at 24 hpi and
TABLE 2 | Primer sequences and accession numbers for q-PCR.

PRIMER SEQUENCE (5’-3’) ACCESSION NUMBER

BACTIN Forward GAC CAA CCC AAA CCT CTC AA AB039726
BACTIN Reverse AGT CAA TGC GCC AAA CAG A
IL10 Forward CAA GGA GCT CCG TTC TGC AT HQ259106
IL10 Reverse TCG AGT AAT GGT GCC AAG TCA TCA
TNFA2 Forward TCA TTC CTT ACG ACG GCA TTT EU069817
TNFA2 Reverse CAG TCA CGT CAG CCT TGC AG
IL1B2 Forward GAT GCG CTG CTC AGC TTC T KC771268
IL1B2 Reverse AGT GGG TGC TAC ATT AAC CAT ACG
HSP27 Forward GAT TCC ACC AGA CAT CGC CA DQ872651
HSP27 Reverse ATT CCC AAC TCC ACC ATG TG
HSP70 Forward GCT GGC TGA CAA AGA GGA GT AB092839
HSP70 Reverse TGG CAT CCC TCC CTG ATA CA
TGFB Forward GTA CAC TAC GGC GGA GGA TTG EU086521
TGFB Reverse CGC TTC GAT TCG CTT TCT CT
INOSA Forward TTG GTA CAT GGG CAC TGA GAT T AY904362
INOSA Reverse CCA ACC CGC TCA AGA ACA TT
VEGF Forward ATG AGA ACC ACA CAG GAC GGG ATG TA XM026228403
VEGF Reverse CGA GAG CTG CTG GTA GAC ATC ATT
CXCL8 Forward CTG AGA CTT TAC AGT GTG AGT GTG AGT TTG GAA HM355573
CXCL8 Reverse TGG TGT CTT TAC AGT GTG AGT TTG G
September 2021 | Vo
FIGURE 2 | Histopathological analysis of wound tissue showed gradual recruitment of leukocytes to cutaneous infection site. Goldfish were wounded on the skin
and inoculated with A. veronii. Wound tissues were collected at indicated time points. Tissues were fixed in 10% formalin then sectioned, stained and imaged.
Representative hematoxylin and eosin stained sections are shown at 20x magnification.
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then to~ 45 x 104 at 36 and 48 hpi,making neutrophils themain cells
to respond and to be recruited to the infection site. Characterization
of gene expression profiles at the wound site showed early
upregulation of neutrophil chemoattractant released by tissue-
resident cells, C-X-C Motif Chemokine Ligand 8 (CXCL8)/IL8 36-
48 hpi (Figure 3), correlating well with neutrophils recruitment.

Other leukocytes such as monocytes/macrophages increased at
the wound site at a relatively lower rate than PMN. For instance, we
observed an increase in the number of monocytes/macrophages by
~ 17 x 104, while there was amarked rise in neutrophil number by~
44 x 104 at 36 hpi compared with the basal levels (Figure 4B).
Interestingly, monocytes/macrophages were the dominant
population of leukocytes following the resolution of inflammation
at 72 hpi (Figure 4B). Macrophages also dominated the leukocyte
population residing in the skin tissue with limited numbers of both
neutrophils and lymphocytes at 0 hpi (Figure 4B). Lastly,
lymphocytes infiltrated the wound site gradually to reach a
significant number at 48 and 72 hpi (Figure 4B).
3.2 Activation of Anti-Inflammatory
Program Was Associated With a
Neutrophil-Dominated Decline in
Skin Leukocytes and Resolution of
Inflammation to be Followed by
Tissue Repair
Resolution of inflammation is critical to prevent chronic
inflammatory conditions and to initiate an effective tissue repair.
Frontiers in Immunology | www.frontiersin.org 6
Control of inflammation is demonstrated by downregulation of
pro-inflammatory cytokines and leukocyte recruitment.
Histopathological analyses and cell counts showed a reduction in
the number of leukocytes in the wound area at 72 hpi (Figures 2,
4B), which was driven by a sharp decline in neutrophils
(Figure 4B). We further observed a substantial reduction in the
gene expression of pro-inflammatory cytokines, e.g., TNFA and
IL1B and chemokines (CXCL8) at 72 and 96 hpi (Figure 3). This
was associated with a remarkable upregulation of crucial anti-
inflammatory cytokines such as transforming growth factor
(TGFB) and IL10 (Figure 3). TGFB and IL10mediate robust pro-
resolution functions by suppressing pro-inflammatory cytokines
and chemokines expression, resulting in induction of pro-
resolution events (38–40).

Although we detected a significant decline in neutrophils,
macrophages/monocytes and lymphocytes were the dominant
populations of leukocytes residing the wound tissue at 72 hpi (~
40% and ~ 35%, respectively). Lymphocytes are involved in the
induction of adaptive immune responses along with various
functions related to tissue repair (41, 42). Meanwhile,
macrophages secrete pro-resolution cytokines and growth factors,
including vascular endothelial growth factor (VEGF) to control
inflammation and promotewoundhealing (43).Our data showed a
significant increase in the expression ofVEGF at 48, 72 and 96 hpi.
VEGF is crucial for enhancing vascular permeability, chemotaxis,
reepithelialization, collagen deposition and angiogenesis (44). In
addition to growth factors, macrophages and other tissue-resident
cells produce heat shock proteins (HSP) to protect tissue against
FIGURE 3 | qPCR analysis of wound tissue revealed gene expression kinetics of classical pro-inflammatory and pro-resolution mediators. At each of the indicated
time points, wound tissue was collected, RNA extracted, and cDNA made. qPCR was used to evaluate the expression levels of pro-inflammatory cytokines: TNFA &
IL1B, anti-inflammatory cytokines: TGFB & IL10, chemokines: CXCL8, growth factors: VEGF, heat shock proteins: HSP27 & HSP70, and INOSA. All statistical results
correspond to a significance level of P<0.05 using Kruskal–Wallis test followed by the Dunn’s test for multiple comparison. Graph bars represent the mean with error
bars representing SEM. Different letters indicate statistical differences between groups; n=5.
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stress-induced misfolded proteins (45). We observed a significant
upregulation of HSP27 at 36 and 48 hpi; meanwhile, HSP70 was
upregulated at 24 and 36 hpi (Figure 3).
3.3 Recruited Leukocytes Exert Differential
Anti-Microbial Responses During
Induction and Resolution of Inflammation
Characterized by Dramatic Changes in
ROS Levels
We were further interested in examining the anti-microbial
defenses exerted by recruited leukocytes at the injury site. Both
ROS and NO represent critical defense mechanisms deployed by
leukocytes against invading pathogens (46). While there was no
increase in ROS levels at 12 hpi, a significantly higher percentage of
leukocytes showed evidence of ROS activity at 24 and 48 hpi
Frontiers in Immunology | www.frontiersin.org 7
(Figure 5). This was followed by a sudden drop in ROS at 72 hpi
(Figure 5). The upsurge in ROS production was associated with
upregulation of pro-inflammatory cytokines (TNFA andIL1B)
(Figure 3) along with the increase in neutrophil-centric
leukocytic infiltration (Figures 4A, B) between 24 and 48 hpi.
Additionally, a neutrophil-mediated decline in leukocyte numbers
(Figure 4) as well as upregulation of IL10 and TGFB gene
expression (Figure 3), were correlated with a substantial drop in
ROS at 72 hpi, suggesting a shift from pro-inflammatory to anti-
inflammatory profile.

On the other hand, levels of another evolutionarily conserved
defense mechanism, NO, were relatively lower than ROS at 24
and 48 hpi (Figure 5). NO is a signaling molecule that mediates
anti-microbial activities (47–51), in addition to regulation of
cellular and biological functions such as angiogenesis and
chemotaxis (52–54). The percentage of leukocytes with NO
A

B

FIGURE 4 | Kinetics for neutrophil, monocyte/macrophage, and lymphocyte subsets recruitment to cutaneous injury site. (A) Representative images show
leukocytes stained with both Hema3 and Sudan Black stains. PMN (polymorph nuclear leukocytes)/Neutrophils are positive for Sudan Black staining, while
monocytes/macrophages (M/Mac) and lymphocytes (Lym) are Sudan Black negative. (B) Total number of leukocytes, PMN, macrophages/monocytes, and
lymphocytes isolated from wound tissue. At each indicated time point, leukocytes were isolated and counted using a hemocytometer. Then, cells were fixed
on slides using Cytospin and stained with Sudan Black stain. At least 200 cells were counted to determine the proportion of individual leukocyte subsets,
which would then be used to determine total cell numbers. All statistical results correspond to a significance level of P<0.05 using Kruskal–Wallis test
followed by the Dunn’s test for multiple comparison. Points represent the mean with error bars representing SEM. Different letters indicate statistical
differences between groups; n=5.
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activity increased gradually to reach a peak at 24 hpi. Although
we detected a marked reduction in ROS at 72 hpi, levels of NO
decreased gradually at 24 and 48 hpi (Figure 5). NO is
synthesized by three different nitric oxide synthases (NOS):
endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible
NOS (iNOS). Both eNOS and nNOS are constitutively expressed
in endothelial cells and neurons, respectively. Meanwhile, iNOS
expression is regulated in various cells, e.g., macrophages,
monocytes, and mast cells, in response to inflammatory
mediators (52, 55). Our data showed that INOSA gene
expression was significantly upregulated at 24 hpi (Figure 3).
4 DISCUSSION

The inflammatory response following skin injury is crucial for
eradication of infection and normal wound healing (56).
Following cutaneous injury, the innate immune system is
activated via binding of DAMPs and PAMPs to PRRs expressed
by tissue-resident cells (57). Induction of acute inflammatory
response involves upregulation of pro-inflammatory cytokines
and leukocyte migration to the infection site (5). Crucial to
pathogen clearance and subsequent tissue repair is the
recruitment of leukocytes from nearby blood vessels to the
wound area (46, 58–60). Although our cumulative observations,
in this study together with our previous published works (20),
point to A. veronii playing a prominent role in induction of
cutaneous immune responses, we cannot argue against
additional potential contributions from deviations in microflora
composition, opportunistic infections derived from this
microbiota or incoming facility water, and/or the initial
wounding procedure. Thus, we highlight all of these sources as
Frontiers in Immunology | www.frontiersin.org 8
potential contributors, and consider this model as representing the
conditions often encountered in an aquatic facility infection where
A. veronii is involved, rather than a controlled A. veronii infection.
Hence, our results cannot be conclusively A. veronii-related yet
they characterize the overall cutaneous inflammatory responses
in goldfish.

Our data revealed a significant increase in leukocytes
infiltrating the infection site at 36-48 hpi. Among infiltrating
cells, neutrophils accounted for a significant portion when
compared to monocyte/macrophage. Following infection,
neutrophils are usually the first line of defense against infection
since they infiltrate the infection site rapidly to become the
dominant leukocyte in earlier stages of acute inflammation (56).
In both mammals and fish, neutrophils exist in the bloodstream
and to a larger extent within hematopoietic tissue, ready tomigrate
to circulation in response to a microbial challenge (61–64).
Previously, our lab has shown a rapid mobilization of
neutrophils from hematopoietic tissue to the circulation in
response to A. veronii cutaneous infection (20). Though, the
kinetics of neutrophil recruitment to the wound site were not
established. In the present study, we observed neutrophil-centric
leukocyte recruitment to the infection site, which is consistent with
the period of neutrophilia detected at the first 48 hpi (20).
Neutrophils were rarely detected at wound area at 0 hpi and
increased significantly at 36-48 hpi, making neutrophils the main
cells to respond and to be recruited to the infection site.

Neutrophil recruitment was associated with remarkable
upregulation of pro-inflammatory cytokines (TNFA and IL1B)
and a potent neutrophil chemoattractant (CXCL8). Pro-
inflammatory cytokines were reported to enhance migration of
immune cells, including neutrophils, to the infection site and
further increase the level of chemoattractants to augment
A B

C

FIGURE 5 | Kinetics of ROS and NO antimicrobial responses exerted by skin leukocytes during induction and resolution phases of cutaneous inflammation.
Percentage of leukocytes associated with (A) reactive oxygen species (ROS); (B) nitric oxide (NO). At indicated time points, leukocytes were isolated from goldfish
skin, then incubated with DAF-FM (detects NO), CellROX (detects ROS) and propidium iodide (PI) for 30 minutes. Using image flow cytometry, intensity of DAF-FM
and CellROX was detected. All statistical results correspond to a significance level of P<0.05 using Kruskal–Wallis test followed by the Dunn’s test for multiple
comparison. A boxplot showing spread of data with their median. Different letters indicate statistical differences between groups; n=5. (C) Representative images
from ImageStream MKII flow cytometer denote positive or negative DAF-FM and/or CellROX events.
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leukocyte recruitment (56). Downregulation of pro-inflammatory
mediators and upregulation of anti-inflammatory cytokines
(TGFB and IL10) were coupled to an abrupt decline in
neutrophil numbers at 72 hpi, which led to a decline in total
leukocytes infiltrating the wound area. Reduction in neutrophils at
the infection site is possibly induced by their retrograde migration
to the circulation (65) and cellular apoptosis (64). Our lab has
previously shown a critical role of neutrophils in inflammation
resolution via the formation of apoptotic bodies that are
subsequently internalized by macrophages to initiate anti-
inflammatory/pro-resolution programs (64).

Macrophages/monocytes were the main cells occupying the
skin tissue (~75%) at 0 hpi, suggesting their role in immune
surveillance, pathogen detection, induction of acute inflammatory
response and recruitment of other leukocytes. We observed a
relatively less increase in macrophage/monocyte numbers at 24-48
hpi when compared with neutrophils. This could be explained by
the necessity of early neutrophil recruitment, thereby contributing
to the majority of leukocytes infiltrating the wound area during the
early phases of inflammation, which was largely at the expense of
monocytes/macrophages. Interestingly, A. veronii cutaneous
infection was shown to be associated with low levels of blood
monocytes (20), in addition to their capacity to induce high levels
of apoptosis in macrophage populations (17, 66), which may
explain the relatively low numbers of monocytes/macrophages
at the infection site. In contrast with A. veronii-induced
neutrophilia, the substantially lower monocyte number in the
peripheral circulation was attributed to an A. veronii-mediated
selective recruitment of neutrophils (20), suggesting that the
vascular route may not be the only path for monocyte
recruitment to wound site. Recent studies indicated that
monocyte migration to the infection site could be achieved
through visceral organs (67). Moreover, a local proliferation of
macrophages could contribute to the total monocyte/macrophage
population detected at the wound area (68, 69).

Concomitantly with the significant drop in neutrophil
numbers at 72 hpi, monocytes/macrophages and lymphocytes
remained the dominant populations of leukocytes at the wound
area (~ 40% and ~ 35%, respectively). Macrophages contribute
significantly to the resolution of inflammation and subsequent
tissue repair via upregulation of anti-inflammatory cytokines, heat
shock proteins and growth factors (70). Activation of tissue
machinery is critical for restoring tissue integrity and
homeostasis following an injury. The process involves a cross-
talk between several pathways and growth factors (71). Among
these factors, the pleiotropicVEGF is considered crucial for several
wound healing processes such as angiogenesis, reepithelialization
and collagen deposition, in addition to enhancing vascular
permeability to promote cellular chemotaxis (12, 44). qPCR
analysis showed a significant increase in VEGF gene expression
at 48, 72 and 96 hpi, suggesting a shift from inflammatory to
proliferative phase in order to promote wound repair.
Lymphocytes, on the other hand, infiltrated the wound area at
48-72 hpi to mediate antigen-specific responses that activate
adaptive immune arm. Previous studies reported lymphocyte
infiltration during the late inflammatory phase of wound healing
Frontiers in Immunology | www.frontiersin.org 9
to play a role in resolution of inflammation and tissue remodeling
(72, 73).

We examined the activity of two evolutionally conserved
defense mechanisms exerted by skin leukocytes, i.e., ROS and
NO. Redox molecules, including NO and ROS as well as
their products, e.g., hydrogen peroxide (H2O2), superoxide
anion (O−

2 ), and reactive nitrogenous species (RNS), are
essential for regulating inflammatory responses and eradication
of pathogens (74). ROS has a critical role in intracellular
signaling pathways as well as anti-microbial activities (75). In
response to inflammatory mediators and phagocytosis, ROS is
generated by nicotinamide adenine dinucleotide phosphate-
oxidase (NADPH oxidase) enzyme complex (76). At the inner
wall of the phagosome, NADPH oxidase produces O−

2 and H2O2

to destroy pathogens through damaging proteins, lipids and/or
DNA (75, 77). Our data showed a remarkable increase in ROS
levels associated with leukocytes isolated at 24 and 48 hpi
followed by a sudden drop in ROS levels at 72 hpi. High ROS
levels were coupled to a significant increase in the neutrophil-
dominated leukocytes as well as an upsurge in the gene
expression of pro-inflammatory cytokines. Likewise, a
reduction in neutrophil numbers correlated with a marked
decline in ROS at 72 hpi.

NO level, in contrast, was relatively lower than ROS. After
reaching a peak at 24 hours, its level did not change dramatically
when compared to ROS. This could be attributed to the
constitutive basal expression level of NO by both eNOS and
nNOS as well as its pivotal role in other biological processes
beyond immunological functions. NO possesses anti-microbial
properties, including suppression of bacterial DNA repair and
enzymes (47–51). Furthermore, NO enhances respiratory burst-
induced cytotoxicity in bacterial cells (78) and protects against
oxidative stress-associated cellular injury (79) via controlling
ROS production and minimizing the reactivity of O−

2 and H2O2

(74). Recently, our lab showed a reverse relationship between the
levels of NO and ROS (data not published), where high levels of
NO were coupled to low ROS in behavioural fever fish model.
This may justify our findings where a relatively low NO
production was detected along with high ROS levels at the
same time points.

Resolution of cutaneous inflammation was detected at 72 hpi,
indicated by a neutrophil-driven reduction in leukocytes,
downregulation of pro-inflammatory mediators and decreased
ROS. These pro-resolution events were potentially driven by
anti-inflammatory cytokines, e.g., IL10 and TGFB that were
upregulated at 72 and 96 hpi. IL10 was found to downregulate
NADPH oxidase essential for ROS generation (39). Meanwhile,
TGFB reduces levels of pro-inflammatory cytokines that
potentiate leukocyte recruitment and ROS production (38, 40).
Even though it is crucial for pathogen killing and intracellular
signaling, ROS may injure the host tissue if released
extracellularly in large quantities, resulting in chronic
inflammation and impaired wound healing (80). Therefore, the
balance between pro-inflammatory and anti-inflammatory
mediators is crucial for effective pathogen clearance along with
minimal collateral tissue damage (6). Resolution of inflammation
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is suggested to be mediated by several mechanisms. For instance,
macrophages internalize apoptotic neutrophils followed by
downregulation of their pro-inflammatory profile (9–11).
Additionally, activated neutrophils ex vivo also showed the
capacity to engulf apoptotic cells, leading to inflammation
control and a substantial reduction in ROS (11, 81).

Collectively, our data suggest that subsequent to cutaneous
injury infected with A. veronii, an acute inflammatory response
peaked at 24-48 hpi, identified by a neutrophil-dominated
migration of leukocytes to the infection site, where they
deployed anti-microbial defenses (i.e., ROS and NO) to combat
pathogens (Figure 6). The acute inflammatory response and
leukocyte recruitment are likely triggered and regulated via pro-
inflammatory cytokines such as TNFA and IL1B as well as
chemokines including CXCL8 (4, 5) (Figure 6). A shift from
pro-inflammatory to pro-resolution state was noticed at 72 hpi,
evident by a substantial drop in neutrophils, which was possibly
induced by a retrograde migration of PMN back into the
circulation (65) and neutrophil apoptosis (64) (Figure 6).
PMN undergo apoptosis and produce chemotactic factors to
attract macrophages (65, 82), which in turn engulf apoptotic
bodies and secrete pro-resolution/anti-inflammatory cytokines,
e.g., TGFB and IL10 as well as growth factors (83). Anti-
inflammatory cytokines provoke a reduction in the pro-
inflammatory mediators and ROS production to control
inflammation (40) (Figure 6). Meanwhile, growth factors are
critical for the activation of tissue repair machinery to restore
integrity and homeostasis. Lastly, the reported model system can
Frontiers in Immunology | www.frontiersin.org 10
be utilized for studying skin diseases and a wide variety of other
biological processes, including basic immunology, evolutionary
and developmental biology (84–86).
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FIGURE 6 | Phagocyte immune response during induction and resolution phases of cutaneous inflammation. Damage/Pathogen Associated Molecular Patterns
(DAMPs/PAMPs) induced by an injury and/or infection bind to pattern recognition receptors (PRRs) expressed by tissue resident macrophages, which in turn release
pro-inflammatory cytokines and chemokines to trigger an acute inflammatory response and to recruit leukocytes to the injury site from nearby blood vessels (Bl. vs.).
Polymorphonuclear (PMN) leukocytes infiltrate the wound site gradually to reach a peak at 36-48 hpi, where they and macrophages exert antimicrobial defense
mechanism including reactive oxygen species (ROS), to combat pathogens. The peak of ROS was at 24-48 hpi, which was coupled to an increase in PMN number
at the wound site. (Lym) lymphocytes were noticed to infiltrate the injury site at 48 and 72 hpi. Following elimination of pathogens, PMN undergo cellular apoptosis to
release chemoattractant to attract macrophages, which engulf apoptotic PMN. Activated macrophages release anti-inflammatory cytokines to provoke the resolution
of inflammation via suppression of ROS production and a retrograde migration of PMN back to circulation at 72 hpi. Furthermore, macrophages release growth
factors to activate tissue repair machinery and restore homeostasis.
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Supplementary Figure 1 | Gating strategy to evaluate the production of reactive
oxygen species (ROS) and nitric oxide (NO). (A) Cells acquired in an ImageStream
Mk II Imaging Flow Cytometer (Amnis) were gated using gradient RMS to identify
focused cells. Single cells (B) were subsequently evaluated for viability based on
propidium iodide staining (C). ROS and NO were examined based on CellROX (D)
and DAF-FM (E) staining, respectively. BF, bright field.
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