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The role of the autonomic nervous system in the efficacy of glucagon-like peptide-1

receptor agonists (GLP-1 RA) in patients with type 1 diabetes is unknown. We assessed

the association between autonomic function and weight loss induced by the GLP-1

RA liraglutide.

Methods: Lira-1 was a randomized, double-blind, placebo-controlled trial assessing

the efficacy and safety of 1.8mg liraglutide once-daily for 24 weeks in overweight

patients with type 1 diabetes. Autonomic function was assessed by heart rate response

to deep breathing (E/I ratio), to standing (30/15 ratio), to the Valsalva maneuver

and resting heart rate variability (HRV) indices. Associations between baseline the

cardiovascular autonomic neuropathy (CAN) diagnosis (> 1 pathological non-resting test)

and levels of test outcomes on liraglutide-induced weight loss was assessed by linear

regression models.

Results: Ninety-nine patients with mean age 48 (SD 12) years, HbA1c 70 (IQR 66;75)

mmol/mol and BMI of 30 (SD 3) kg/m2 were assigned to liraglutide (N = 50) or placebo

(N= 49). The CAN diagnosis was not associated with weight loss. A 50% higher baseline

level of the 30/15 ratio was associated with a larger weight reduction by liraglutide

of −2.65 kg during the trial (95% CI: −4.60; −0.69; P = 0.009). Similar significant

associations were found for several HRV indices.

Conclusions: The overall CAN diagnosis was not associated with liraglutide-induced

weight loss in overweight patients with type 1 diabetes. Assessed separately, better

outcomes for several CAN measures were associated with higher weight loss, indicating

that autonomic involvement in liraglutide-induced weight loss may exist.
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INTRODUCTION

Glucagon-like peptide-1 (GLP-1) is a gut-derived hormone
with anorexigenic properties (1). The GLP-1 receptor agonist
(GLP-1RA) liraglutide is known to induce weight loss in patients
with type 2 diabetes as well as in patients with type 1 diabetes
(2–5). However, the exact mechanisms by which GLP-1 exerts
its anorectic effects are not fully clarified. Activation of GLP-
1 receptors in peripheral vagal neurons (6, 7) seems to be
involved, suggesting that dysfunction of the vagal nerve may
affect the body weight-reducing effect of liraglutide in patients.
If this is the case, a substantial subset of people with diabetes
may experience a reduced effect of treatment as autonomic
neuropathy is a common complication to diabetes. Prevalence
rates of cardiovascular autonomic neuropathy (CAN) in people
with type 1 diabetes and type 2 diabetes, respectively, range
from 20% in unselected diabetes populations (8, 9) to 65%
in patients with long-standing diabetes(10). We hypothesize
that autonomic dysfunction might be expected to influence the
efficacy of GLP-1RAs in type 1 patients. Here, we explored
the possible association between CAN measures and liraglutide-
induced weight loss, insulin requirements and gastric emptying
rate in patients with type 1 diabetes.

PARTICIPANTS AND METHODS

Study Design
The present study is a secondary analysis of data from the Lira-
1 study (3). Lira-1 was a single-center, parallel-group, double-
blinded, randomized, placebo-controlled trial performed at Steno
Diabetes Center (Gentofte, Denmark). In total, 100 overweight
(BMI> 25 kg/m2) patients with type 1 diabetes and insufficient
glycaemic control (HbA1c> 64 mmol/mol (8%)) were randomly
allocated (1:1) to receive 24 weeks of identical liraglutide
1.8mg once daily (QD) (Novo Nordisk, Måløv, Denmark) or
placebo QD (saline injection), as an add-on to existing insulin
treatment. Liraglutide dose was successively increased weekly
by 0.6mg from 0.6mg QD to 1.8mg QD. To reduce the risk
of hypoglycaemia bolus and basal insulin doses were reduced
by 33 and 25% at randomization. Insulin doses were adjusted
throughout the trial aiming at preprandial glucose targets of 4–7
mmol/L and a postprandial glucose of <10 mmol/L.

The study included 5 visits at weeks 0, 3, 12, 23, and 24
at which information about concomitant medication, basal and
bolus insulin doses, bodyweight, blood pressure, and heart rate
were collected. Blood and urine samples were collected at these
visits. Details about the study design and results regarding main
outcomes have been described previously (3). The study was
approved by the Scientific Ethical Committee of the Capital
Region of Denmark (H-1-2012-031), the Danish Medicines

Abbreviations: 30/15 ratio, Heart rate response to standing; ANS, Autonomic

nervous system; CAN, Cardiovascular autonomic neuropathy; CARTS,

Cardiovascular autonomic reflex tests; E/I ratio, Heart rate response to deep

breathing; GLP-1 RA, Glucagon-like peptide-1 receptor agonists; HF, High

frequency power; HRV, Heart rate variability; LF, Low frequency power; RMSSD,

Root mean square of the sum of the squares of differences between consecutive

R–R intervals; SDNN, Standard deviation of normal-to-normal intervals.

Authority (EudraCT: 2012-001150-26), and the Danish Data
Protection Agency. The trial is registered with ClinicalTrials.gov,
number NCT01612468.

Assessment of Autonomic Function
Autonomic function was assessed by measures of CAN; heart
rate variability (HRV) and cardiovascular autonomic reflex tests
(CARTs). Assessments were done at baseline (week 0) and at end
of trial (week 24) by 5-min of passive supine recordings of HRV
followed by three measures of CARTs.

HRV indices were analyzed using normal statistical
description (time domain) and by estimating frequency-specific
fluctuations in HRV (frequency domain) (11). HRV indices in the
time domain were calculated by the root mean square of the sum
of the squares of differences between consecutive R–R intervals
(RMSSD) and as the standard deviation of normal-to-normal
intervals (SDNN). In the frequency domain, the calculations of
power were done in the low-frequency (LF) power (0.04–0.15Hz)
band, the high-frequency (HF) power (0.15–0.4Hz) band and in
the total frequency (≤ 0.4Hz) spectrum autoregressive model.
RMSSD and HF are measures of parasympathetic activity and
SDNN, LF, total power and LF/HF-ratio are measures of both the
parasympathetic and sympathetic activity (11).

The three standard CARTs recommended for diagnosing
CAN (12) were performed: the lying-to-standing test (30/15)
testing amix of the sympathetic and the parasympathetic nervous
system, the deep breathing test (E/I ratio) primarily testing
parasympathetic nervous system and the Valsalva maneuver
primarily testing sympathetic nervous system. CARTs were
performed in the mentioned order and in accordance with
procedures suggested by Ewing (13). CAN assessment was
performed after 5min of supine resting in a quiet room at
18–23 degrees Celsius. Patients were fasting and refrained
from strenuous physical activity 24 h prior to the examination.
Smoking was not allowed 3 h prior to testing.

All CARTs and HRV measures were analyzed as continuous
variables. Age-dependent cut-off levels as recommended by
Spallone et al. (14) were used to define pathological results of
CARTs. Manifest CAN diagnosis was defined as having more
than one pathological CARTs as recommended by the American
Diabetes Association (15). Higher values of the all autonomic
measures imply better autonomic function.

Resting HRV indices and CARTs were recorded by trained
technicians using a Vagustm device (Medicus Engineering,
Aarhus, Denmark). The Vagus device is a handheld device
that enables the measurement of R-R intervals of a two-
point electrocardiogram. Patients connects to the device by
holding on to two electrodes at each end. Measure are obtained
automatically. Instructions of breathing frequency, when to rise
and when to blow though a mouthpiece at 40 mmHg are given
on a display on the device (16).

Assessment of Gastric Emptying Rate
The first 40 patients included in the Lira-1 trial were subjected
to a standardized liquid mixed meal test (Nutridrink Protein
(Nutricia, Schiphol,Netherlands); 200mL containing 300 kcal,
31,2 g carbohydrate, 20 g protein, and 10,6 g fat) at week 0, 3
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and 24. Gastric emptying rate was assessed by the paracetamol
absorption test (17).

Statistical Methods
Patient characteristics are presented as means with standard
deviations (SD), as medians with interquartile range (IQR) for
characteristics with a skewed distribution or as percentages.

Outcomes were repeated measurements of body weight in
kilograms, daily insulin requirements (units/day) andgastric
emptying assessed by the paracetamol absorption test. CAN
measures as continuous variables and the CAN diagnosis as
a binary variable were used as determinants. All analyses
including HRV were adjusted for 5min resting heart rate at
the time of testing. Analyses of HRV were also performed
without adjustments for heart rate to assess the effect of heart
rate on estimates. The trapezoidal rule was used to calculate
AUC0−240min during the meal test (3).

Associations were modeled by linear mixed-effect models
with a patient-specific random intercept to account for the
correlation of repeated measurements within patients. We tested
for a modifying effect of having the CAN diagnosis at baseline
or not on liraglutide-induced changes in outcomes. Also, the
modifying effect of increasing (better) levels of CAN measures at
baseline on the effect of liraglutide-induced changes in outcomes
was tested. All analyses were performed as an intention to treat
analysis. To fulfill the requirement of a normal distribution of
the model residuals, all determinants were log1.5-transformed
and the following outcomes were log-transformed: total insulin
requirements per day and measures of gastric emptying. For
log-transformed outcomes, estimates are presented as % change
due to subsequent back transformation of results in log-scale.
Estimates are therefore a function of a 50% higher level of
determinants at baseline on outcomes, e.g. liraglutide-induced
weight loss. An increase of 50% was chosen to assess a
clinically relevant difference in autonomic measures. Where
relevant, analyses of a 50% higher change in determinants
during the trial period were assessed. Standardized regression
coefficients for log1.5-transformed CARTs and HRV measures
were further calculated to allow for direct comparison between
the parameter estimates.

Group differences (liraglutide vs. placebo) in change in
continuous CAN measures between baseline and end of trial
were assessed by linear regression analyses adjusting for baseline
values of the CAN measure analyzed.

Statistical significance was inferred at a two-tailed P-value
< 0.05.

Analyses were performed using SAS version 9.4 (SAS Institute,
Cary, NC) and R version 3.2.1 (The R Foundation for Statistical
Computing, www.R-project.org).

RESULTS

Of the 100 patients enrolled in the Lira-1 trial, one patient in the
placebo group had no usable CAN measures, leaving 50 patients
in the liraglutide and 49 patients in the placebo arm for analysis.
During the trial four patients assigned to liraglutide treatment
and six patients in the placebo arm discontinued the trial.

TABLE 1 | Baseline characteristics by treatment group.

Liraglutide (N = 50) Placebo (N = 49)

Sex (male), (N/%) 30 (60.0) 33 (67.3)

Age (years) 47.7 (13.3) 48.9 (11.7)

HbA1c (mmol/mol) 70 (66;74) 70 (66;76)

HbA1c (%) 8.6 (8.2;8.9) 8.6 (8.2;9.1)

Bodyweight (kg) 92.4 (14.5) 92.9 (13.0)

Body mass index (kg/m2) 30.2 (3.5) 29.9 (3.4)

Diabetes duration (years) 17 (11;24) 21 (16;34)

Insulin dose per kilo per day 0.6 (0.2) 0.6 (0.2)

Total cholesterol (mmol/L) 4.4 (4;5) 4.5 (4;5.1)

HDL cholesterol (mmol/L) 1.3 (0.4) 1.3 (0.3)

LDL cholesterol (mmol/L) 2.7 (0.9) 2.8 (0.9)

Systolic blood pressure

(mmHg)

131 (16) 131 (16)

Diastolic blood pressure

(mmHg)

82 (9) 81 (7)

Beta blocker (N/%) 0.0 (0) 4 (8.2)

Diuretics (N/%) 11 (22.0) 15 (30.6)

ACE inhibitor (N/%) 13 (26.0) 19 (38.8)

ARBs (N/%) 6 (12.0) 10 (20.4)

CAN diagnosis (N/%) 15 (30.0) 12 (24.5)

Early CAN (N/%) 16 (33.3) 18 (37.5)

Pathological E/I ratio (N/%) 22 (44.0) 22 (44.9)

Pathological 30/15 ratio

(N/%)

12 (24.0) 11 (22.4)

Pathological Valsalva (N/%) 16 (33.3) 13 (27.1)

E/I ratio 1.2 (1.1;1.3) 1.2 (1.1;1.3)

30/15 ratio 1.1 (1;1.3) 1.1 (1.1;1.3)

Valsalva 1.4 (1.2;1.6) 1.4 (1.2;1.7)

SDNN (ms) 28.4 (17.1;43.3) 25.7 (19.9;32.7)

RMSSD (ms) 17.9 (9.0;29.2) 14.3 (9.7;23.6)

High frequency power (ms2) 31.8 (8.8;117.3) 27.6 (9.1;72.2)

Low frequency power (ms2) 86.2 (19.0;188.1) 58.2 (25.6;100.4)

Total power (ms2) 220.3 (94.2;576.3) 197.4 (132.5;321.8)

LF/HF ratio 2.6 (1.6;5.4) 2.3 (1.2;3.7)

Heart rate (beats/minute) 72.0 (11.5) 69.9 (10.3)

Data are in means with standard deviation (SD) in brackets or in medians with interquartile
range (IQR) in brackets or numbers (n) with percent in brackets. HDL, high-density
lipoprotein; LDL, low-density lipoprotein ACE, angiotensin-converting-enzyme inhibitor;
ARBs, angiotensin II receptor blockers; CAN, cardiovascular autonomic neuropathy;
RMSSD, the root mean square of the sum of the squares of differences between
consecutive R–R intervals; SDNN, standard deviation of normal-to-normal intervals;
LF/HF-ratio, Low frequency power / High frequency power ratio.

Patients were predominantly male (60% in the liraglutide
group and 67.3% in the placebo group) with a mean age
of 48 (SD 12) years, a median HbA1c of 70 (IQR 66;75)
mmol/mol and a mean BMI of 30 (SD 3.5) kg/m2. Baseline
demographic, anthropometric and cardio-metabolic markers
were similar in the two groups except for diabetes duration
which on average was 4 years longer in the placebo group.
At baseline, 15 patients (30%) in the liraglutide group and
12 patients (25%) in the placebo group had the CAN
diagnosis. CARTs and HRV measures were similar in the two
groups (Table 1).
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TABLE 2 | The association between CAN measure and weight change (measured in kilo from baseline to follow-up).

Liraglutide Placebo P for group difference

CARTS

E/I ratio −0.01(−1.95;1.94)[0.994] 2.36(0.08;4.64)[0.041] 0.121

30/15 ratio −2.65(−4.60;−0.69)[0.009] 1.32(−0.64;3.27)[0.189] 0.005

Valsalva −0.91(−2.36;0.45)[0.190] 1.04(−0.35;2.43)[0.144] 0.050

HEART RATE VARIABILITY INDICES

SDNN (ms) −0.48(−0.93;−0.04)[0.032] 0.65(0.07;1.22) [0.028] 0.023

RMSSD (ms) −0.31(−0.69;0.06)[0.105] 0.15(−0.29;0.59) [0.504] 0.120

High frequency power (ms2) −0.11(−0.28;0.05)[0.179] 0.02(−0.18;0.22) [0.833] 0.302

Low frequency power (ms2) −0.24(−042;−0.06)[0.010] 0.23(−0.01;0.48) [0.066] 0.003

Total power (ms2) −0.24(−0.46;−0.01)[0.039] 0.30(0.03;0.58) [0.031] 0.003

LF/HF ratio −0.19(−0.48;0.06)[0.147] 0.19(−0.05;0.044)[0.127] 0.035

HEARTS RATE

Heart rate (beats/minute) 1.41(−0.30;3.13)[0.107] 0.47(−1.40;2.33)[0.623] 0.464

Results are weight change in kilo from baseline to follow-up with 95% CI as a result of a 50% higher level of CAN measures at baseline [P-value]. CARTS, cardiovascular autonomic
reflex tests; E/I ratio, heart rate response to deep breathing; 30/15 ratio, heart rate response to standing; SDNN, standard deviation of normal-to-normal intervals; RMSSD, the root
mean square of the sum of the squares of differences between consecutive R–R intervals; LF, low-frequency; HF, high-frequency.

FIGURE 1 | Standardized regression coefficients with 95% CL of the associations between CAN measures and weight change during trial. Estimates are in kilo on the

log-scale by one SD increase in log1.5 of the determinant. Black: Liraglutide group. Gray: placebo group. E/I ratio, heart rate response to deep breathing; 30/15 ratio,

heart rate response to standing; SDNN, standard deviation of normal-to-normal intervals; RMSSD, the root mean square of the sum of the squares of differences

between consecutive R–R intervals; LF, low-frequency; HF, high-frequency. P-value for between group difference indicated by
†
= <0.01,

††
= <0.005, P-value for

change within group indicated by *P < 0.05, ** P < 0.01. * in brackets indicate no group difference.

Weight Loss
In the liraglutide group, patients with and without CAN had
similar weight change of −6.08 kg (95% CI −11.76;-0.38) vs.
−5.77 kg (95% CI −13.51;1.98), respectively (P = 0.438 for
between-group difference).

The effect of the CANdiagnosis at baseline onweight loss were
similar in the liraglutide group and the placebo group (P = 0.513
for group difference).

In the liraglutide group a 50% higher baseline 30/15
ratio was associated with a larger weight change of −2.65 kg
(95% CI −4.60; −0.69 P = 0.009). Similar numerical results
were found for the E/I ratio and the Valsalva maneuver
and liraglutide induced weight loss but did not reach

statistical significance, no differences between groups were
observed (Table 2).

In patients treated with liraglutide, higher baseline HRV
indices SDNN, LF, and total power were significantly associated
with larger weight loss during the trial. For the remaining HRV
indices a similar but non-significant association to liraglutide-
induced weights loss was seen. In the placebo group, higher
baseline SDNN and total power were associated with body weight
gain during trial. Resting heart rate was not associated with
body weight change in any of the groups (Table 2). As illustrated
in Figure 1, increasing levels of CAN measures associated with
weight change had similar effects on weight change elicited by
liraglutide when assessed in standardized regression models.
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TABLE 3 | The association between CAN measures and change in insulin use (in percentage) during trial.

Liraglutide Placebo P for group difference

CARTS

E/I ratio −2.52(−6.67;12.63)[0.604] −5.11(−15.00;5.92)[0.351] 0.293

30/15 ratio −2.02(−10.95;7.79)[0.675] −5.19(−13.82;4.31)[0.275] 0.633

Valsalva −1.60(−7.86;5.07)[0.629] −2.24(−8.62;4.59)[0.512] 0.629

HEART RATE VARIABILITY INDICES

SDNN (ms) 0.44(−1.70;2.62)[0.691] −2.70(−5.37;0.04)[0.054] 0.076

RMSSD (ms) 0.25(−1.51;2.06)[0.780] −2.10(−4.15;−0.01)[0.050] 0.091

High frequency power (ms2) −0.01(−0.81;0.80)[0.981] −0.62(−1.56;0.33)[0.201] 0.334

Low frequency power (ms2) 0.04(−0.84;0.93)[0.928] −1.01(−2.20;0.20)[0.102] 0.167

LF/HF ratio 0.10(−1.11;1.32)[0.872] 0.00(−1.20;1.21)[0.997] 0.906

Total power (ms2) 0.11(−0.97;1.20)[0.839] −1.25(−2.55;0.07)[0.04] 0.115

HEARTS RATE

Heart rate (beats/minute) −0.32(−8.25;8.29)[0.940] 5.99(−3.13;15.97)[0.206] 0.323

Results are weight change in kilo from baseline to follow-up with 95% CI as a result of a 50% higher level of CAN measures at baseline [P-value]. CARTS, cardiovascular autonomic
reflex tests; E/I ratio, heart rate response to deep breathing; 30/15 ratio, heart rate response to standing; SDNN, standard deviation of normal-to-normal intervals; RMSSD, the root
mean square of the sum of the squares of differences between consecutive R–R intervals; LF, low-frequency; HF, high-frequency.

FIGURE 2 | Standardized regression coefficients with 95% CL of the associations between CAN measures and change in insulin requirements during trial. Estimates

are in IU per day on the log-scale by one SD increase in log1.5 of the determinant. Black: Liraglutide group. Gray: placebo group. E/I ratio, heart rate response to

deep breathing; 30/15 ratio, heart rate response to standing; SDNN, standard deviation of normal-to-normal intervals; RMSSD, the root mean square of the sum of

the squares of differences between consecutive R–R intervals; LF, low-frequency; HF, high-frequency.

In the placebo group, patients with and without CAN had
similar weight change of −1.05 kg (95% CI −8.30; 6.20) vs.
0.67 kg (95% CI −4.10; 5.44), respectively (P = 0.0993 for
between-group difference).

Insulin Requirements
CAN diagnosis was not associated with changes in insulin
requirements in any of the groups. Neither, CARTs, HRV indices
or resting heart rate were associated with changes in insulin
requirements in any of the group (Table 3 and Figure 2).

Gastric Emptying
In the subset of 40 patients who underwent liquid mixed meal
testing, liraglutide induced a delay in gastric emptying rate
measured by paracetamol as reported earlier (3). The CAN

diagnosis at baseline did not affect the change in gastric emptying
rate induced by liraglutide when assessed by total AUC0−240min

(P = 0.406).
In the liraglutide group a 50% higher level of E/I ratio

at baseline was associated with lower effect of liraglutide on
paracetamol AUC0−240min of −15.10 mmol/L x min (95% CI
−26.78; −1.56 P = 0.034). No other baseline autonomic
measures were associated with gastric emptying (Table 4).

A 50% increase in paracetamol AUC0−240min during trial was
associated with a decrease in body weight of 5.8% (95% CI 1.4;
10.0 P = 0.016) in the liraglutide group.

CAN Measures
Liraglutide treatment did not elicit changes in CAN measures
from baseline to end of trial, but increased resting heart
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TABLE 4 | CAN measures and association to gastric emptying assessed by AUC0−240min of serum paracetamol.

Liraglutide Placebo P for group difference

CARTS

E/I ratio −15.10(−26.78;−1.56)[0.034] 11.03(−7..80;33.70)[0.274] 0.028

30/15 ratio 16.39(−3.53;40.43)[0.118] 12.04(−7.43;35.60)[0.247] 0.778

Valsalva 11.23(−1.40;25.48)[0.089] −4.28(−6.49;16.29)[0.454] 0.433

HEART RATE VARIABILITY INDICES

SDNN (ms) 0.50(−3.34;4.49)[0.802] 1.34(−3.94;6.92)[0.627] 0.804

RMSSD (ms) 1.75(−1.56;5.17)[0.308] −0.23(−4.96;5.70)[0.933] 0.636

High frequency power (ms2) 0.49(−1.07;2.07)[0.541] −0.61(−2.64;1.46)[0.564] 0.401

Low frequency power (ms2) 0.00(−1.28;1.30)[0.998] 1.08(−1.56;3.79)[0.429] 0.474

Total power (ms2) 0.00(−1.79;1.83)[0.998] −0.08(−2.68;2.60)[0.956] 0.962

LF/HF ratio −0.67(−2.51;1.20)[0.481] 1.14(−0.85;3.17)[0.269] 0.193

HEARTS RATE

Heart rate (beats/minute) −13.94(−24.23;−2.25)[0.024] −5.31(−17.79;9.07)[0.453] 0.322

Results are percentage change in gastric emptying assessed by AUCtotal 0–240min paracetamol absorption testfrom baseline to follow-up with 95% CI as a result of a 50% higher
level of CAN measures at baseline. CARTS, cardiovascular autonomic reflex tests; E/I ratio, heart rate response to deep breathing; 30/15 ratio, heart rate response to standing; SDNN,
standard deviation of normal-to-normal intervals; RMSSD, the root mean square of the sum of the squares of differences between consecutive R–R intervals; LF, low-frequency;
HF, high-frequency.

rate by 8 beats per min. compared to placebo as described
previously (3). A study effect on the 30/15 ratio was seen as a
decrease from baseline to follow-up of 0.06 (95% CI −0.11;0.02,
P = 0.004 in the lira group and P=0.007 in the placebo group)
in both treatment groups, with no between-group difference
(P = 0.900). All other measures of CAN and resting heart
rate remained unchanged in the placebo group throughout the
trial (Table 5).

DISCUSSION

The CAN diagnosis per se was not associated with liraglutide
induced weight loss. This could be attributed to the composite
nature of the CAN diagnosis which is comprised by a diverse
array of autonomic measures, limiting the ability to assess the
individual components of the autonomic nervous system (18).
On the other hand, our findings may suggest that autonomic
function is associated with liraglutide-induced weight loss
in overweight patients with type 1 diabetes and insufficient
glycaemic control. We found that higher baseline values of mixed
parasympathetic and sympathetic measures (the 30/15 ratio
and the HRV indices SDNN, LF power and total power) were
associated with increased liraglutide induced weight loss. Specific
parasympathetic measures were not significantly associated with
weight loss in the liraglutide group, which indicates that the
modifying effect of autonomic function on liraglutide induced
weight loss is not solely mediated by vagal function, but
rather by a complex interplay between the sympathetic and
parasympathetic nervous system.

The lack of association between the CAN diagnosis and
liraglutide-induced weight loss may indicate the activation
of peripheral autonomic nerves is not a prerequisite
for GLP-1 RA-induced weight-loss. Direct stimulation
of the central nervous system may be required for
weight loss.

Native GLP-1 and liraglutide may not directly pass the
blood brain barrier, but may access certain regions of the
brain via the circumventricular organs (19–22), and it has
been suggested that exogenous GLP-1 may in this way have
a direct effect on receptors in the central nervous system
and thereby induce weight loss by increased satiety (23, 24).
In mice, liraglutide effects on food intake were abolished
after genetic deletion of brain receptors, but remained
after deletion of peripheral autonomic nerves (25). In
summary, our results do not rule out that the peripheral

autonomic nervous system plays a role in liraglutide induced
weight loss.

A potential cause of liraglutide induced weight
loss could be the reduction in insulin use seen
in the liraglutide group (3). However, autonomic
function was not associated with insulin requirements
during trial.

Only baseline E/I ratio was associated with liraglutide
induced deceleration of gastric emptying, indicating that
vagal nerve function might be associated with the effect of
liraglutide on gastric motility. Earlier studies have shown
that GLP-1-induced deceleration of gastric emptying is lost

after vagotomy in non-diabetic individuals (26) suggesting
that the effect of GLP-1 on gastric emptying is mediated
via the vagus nerve as indicated by our findings. Presently,

however it remains controversial whether liraglutide’s effect
on gastric emptying contributes to liraglutide-induced weight
loss (27, 28). As the baseline E/I ratio was not associated

with weight loss, and as no other CAN measure were
associated with gastric emptying, we conclude that the

association between baseline CAN measures and liraglutide
induced weight loss was not mediated through gastric
emptying rate.

As CAN measures were not affected by liraglutide or

placebo treatment in this trial it is unlikely that associations
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between baseline measures of CAN and study outcomes are
a result of changes in autonomic nervous function. The
E/I ratio did decline in both study arms at comparable
magnitudes which could be attributed to an overall study
effect. In contrast, a recent study in type 2 diabetes patients
reported that 12 weeks of liraglutide treatment induced
detrimental reductions in several HRV indices (29). However, 18
months of treatment with the short-acting GLP1-RA exenatide
had no effect on CAN measures in patients with type 2
diabetes (30) which is in line with the findings of the
present study.

As the study was not designed to assess the
association between CAN and the efficacy of
liraglutide it may be underpowered to show
significant association on more CAN parameters than
presented here.

Measures of autonomic function used in the present
study are not purely associated to either branch of the
autonomic nervous system, which hampers the ability
to conclude on associations specifically related to either
the sympathetic or the parasympathetic nervous system.
Measures of blood pressure changes as a response
to Valsalva maneuver and active standing could have
enabled a more specific assessment of sympathetic
nervous function.

The present study is a post-hoc analyses of data from
a randomized controlled trial designed to estimate the
efficacy of liraglutide in overweight patients with type 1
diabetes. This study was not designed or powered to assess
differences in efficacy in patients with or without autonomic
dysfunction. Hence, the lack of a modifying effect of the
CAN diagnosis on the efficacy of liraglutide-induced weight
change may be due to lack of power. Confirmatory studies
where participants are stratified by CAN status must be
performed before conclusions can be made on whether
autonomic neuropathy affects the weight-lowering effect
of GLP-1 RAs.

In conclusion, our results suggest that weight
loss induced by liraglutide in type 1 diabetes
patients is not associated with CAN diagnosis,
but weight loss may in part be modulated by
autonomic function not solely attributed to
vagal function.
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