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Abstract 

Background:  Triatoma tibiamaculata is a species distributed in ten Brazilian states which has epidemiological impor‑
tance as it has already been found infecting household areas. The taxonomy of this triatomine has been quite unsta‑
ble: it was initially described as Eutriatoma tibiamaculata. Later, the species was transferred from the genus Eutriatoma 
to Triatoma. Although included in the genus Triatoma, the phylogenetic position of T. tibiamaculata in relation to 
other species of this genus has always been uncertain once this triatomine was grouped in all phylogenies with the 
genus Panstrongylus, rescuing T. tibiamaculata and P. megistus as sister species. Thus, we evaluated the generic status 
of T. tibiamaculata using phylogenetic and chromosomal analysis.

Methods:  Chromosomal (karyotype) and phylogenetic (with mitochondrial and nuclear markers) analyses were 
performed to assess the relationship between T. tibiamaculata and Panstrongylus spp.

Results:  The chromosomal and phylogenetic relationship of T. tibiamaculata and Panstrongylus spp. confirms the 
transfer of the species to Panstrongylus with the new combination: Panstrongylus tibiamaculatus.

Conclusions:  Based on chromosomal and phylogenetic characteristics, we state that P. tibiamaculatus comb. 
nov. belongs to the genus Panstrongylus and that the morphological features shared with Triatoma spp. represent 
homoplasies.
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Background
The members of the subfamily Triatominae (Hemiptera, 
Reduviidae) are hematophagous insects of great epide-
miological importance as they act as vectors of the proto-
zoan Trypanosoma cruzi (Chagas, 1909) (Kinetoplastida, 
Trypanosomatidae), the etiological agent of Chagas 
disease [1]. Chagas disease is a neglected disease that 
affects about 8 million people and puts another approxi-
mately 25 million at risk of infection [1]. The main way to 
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minimize the incidence of new cases is based on the con-
trol of vector populations [1], the studies related to these 
insects being of extreme importance for public health 
once they can generate results to help vector control pro-
grams in the prophylaxis of Chagas disease.

Systematics has contributed to the correct identifica-
tion of triatomines and consequently to the surveillance 
activities of vector control programs [2, 3]. However, in 
the face of evolutionary events (cryptic speciation and 
phenotypic plasticity [4]) and associated taxonomic 
problems, in most cases, with classical taxonomy [5, 6] 
(based on the morphological characterization of the spe-
cies [3, 6]), > 190 synonymizations have occurred in the 
Triatominae subfamily [7]. This highlights the impor-
tance of integrative taxonomy for the description of new 
species [6], as performed by Dorn et al. [8], Lima-Cordón 
et al. [9] and Alevi et al. [10].

Currently, 157 species are described in the subfam-
ily Triatominae (with 154 extant species and three fossil 
species), grouped into 18 genera and 5 tribes [6–12]. In 
Brazil, > 60 species are distributed among the follow-
ing genera: Alberprosenia Martínez & Carcavallo, 1977, 
Belminus Stål, 1859, Microtriatoma Prosen & Mar-
tínez, 1952, Parabelminus Lent, 1943, Cavernicola Bar-
ber, 1937, Psammolestes Bergroth, 1911, Rhodnius Stål, 
1859, Eratyrus Stål, 1859, Panstrongylus Berg, 1879, and 
Triatoma Laporte, 1832 [7]. Rhodnius, Triatoma and 
Panstrongylus are the most important from an epidemio-
logical point of view [13].

The genera Rhodnius and Triatoma have been con-
sidered paraphyletic [13]. Panstrongylus was initially 
considered monophyletic based on morphological data 
[2]; however, Marcilla et al. [14], using the internal tran-
scribed spacer  2 (ITS-2) nuclear marker, suggested that 
Panstrongylus was polyphyletic. Later, several phyloge-
netic analyses indicated this genus is paraphyletic once 
species of Panstrongylus are grouped with species of 
Nesotriatoma Usinger, 1944, and T. tibiamaculata (Pinto, 
1926) [13, 15–17].

Triatoma tibiamaculata is distributed in ten Brazil-
ian states [7] and has epidemiological importance as it 
has already been found infecting household areas [18] 
and colonizing peridomiciliar environments [19]. The 
taxonomy of this triatomine was quite unstable because 
Pinto [20], based only on morphological characteristics, 
initially described this species in the genus Eutriatoma 
Pinto, 1926, highlighting that it had intermediate char-
acteristics between Rhodnius and Triatoma. Later, the 
species was transferred from the genus Eutriatoma to 
Triatoma [21, 22].

Although grouped in Triatoma, the phylogenetic posi-
tion of T. tibiamaculata in relation to the other species of 
this genus has always been uncertain once this triatomine 

was grouped in all phylogenies with the genus Pan-
strongylus [13, 15–17], rescuing T. tibiamaculata and P. 
megistus (Burmeister, 1835) as sister species [13, 16, 17]. 
Based on this, Gardim et  al. [16] suggested a review of 
the generic status of T. tibiamaculata, highlighting that 
this species possibly belongs to Panstrongylus.

Thus, we evaluated the generic status of T. tibiamacu-
lata through phylogenetic and chromosomal analysis.

Methods
Type of material examined
Eutriatoma tibiamaculata Pinto, 1926, syntype. 
Determined: Pinto, C. 1926, Collected: Travassos, L. 
16.XII.1926., Location: Angra dos Reis, Rio de Janeiro, 
Brazil, deposited in the Entomological Collection of the 
Instituto Oswaldo Cruz (CEIOC), Rio de Janeiro, Brazil.

Molecular analysis
For molecular analysis, the genomic DNA of five speci-
mens of P. lignarius (Walker, 1873) (from Porto Velho, 
Rondônia, Brazil), P. lutzi (Neiva & Pinto, 1923) (from 
Irecê, Bahia, Brazil) and T. tibiamaculata (from Mogi 
Guaçu, São Paulo, Brazil) was extracted from gonads 
using the DNeasy Blood and Tissue kit (QIAGEN®). 
Amplification of the fragments was performed by poly-
merase chain reaction (PCR), using primers targeting 
cytochrome b (cytb) and internal transcribed spacer 1 
(ITS-1), as described in the literature [23, 24]. The ampli-
fied PCR products were visualized by electrophoresis 
in 1% agarose gel and later purified using the GFX PCR 
DNA & Gel Band Kit (GE Healthcare and Life Tech-
nology®) according to the manufacturer’s instructions. 
Subsequently, this material was submitted for direct 
sequencing on an ABI 3730 DNA Analyzer (Life Tech-
nologies) sequencer from the Research Center on the 
Human Genome and Stem Cells, University of São Paulo 
(USP), Brazil.

The gene sequences obtained were grouped with 
sequences of several molecular markers for 17 taxa avail-
able in GenBank (Table  1), which were aligned in the 
MEGA X program [25] using the Muscle method [26]. 
For the alignment of ITS-1 and ITS-2, the sequences 
of the brasiliensis subcomplex species are only avail-
able concatenated (Table 1); thus, the sequences for the 
other species had been previously concatenated and then 
aligned with species of the Brasiliensis subcomplex (rep-
resentatives of the Triatoma genus of the Brasiliensis 
subcomplex were used in the phylogeny because T. tibi-
amaculata was initially considered in this subcomplex 
based on morphological data and geographic distribution 
[16]).
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The alignments were concatenated by name using the 
Seaview4 program [27], resulting in an alignment with 
7993 nucleotides, which was converted in Mesquite 3.2 
[28]. Data were partitioned for each molecular marker, 
and the best model for each one (lowest Akaike infor-
mation criterion value) was determined in the jMod-
eltest 2 program [29] (Table  2). For the phylogenetic 
reconstruction by Bayesian inference, the data were 
submitted to MrBayes 3.2 [30] in an analysis with 100 
million generations. Trees were sampled every 1000 
generations in two independent runs (each with four 
Markov chains) and burn-in adjusted to 25%. Tracer 
v. 1.7 [31] was used to verify the stabilization (ESS 
values > 200) of the sampled trees, and the generated 

phylogenetic tree was visualized and edited in the 
FigTree v.1.4.4 program [32].

Cytogenetic analysis
Triatoma tibiamaculata (from Mogi Guaçu, São Paulo, 
Brazil), P. megistus (from Araraquara, São Paulo, Brazil), 
P. lignarius (from Porto Velho, Rondônia, Brazil) and P. 
lutzi (from Irecê, Bahia, Brazil) males were dissected; the 
testes were removed and stored in methanol:acetic acid 
solution (3:1). Slides were prepared by the cell crushing 
technique (as described by Alevi et al. [33]), and cytoge-
netic analyses were applied to confirm the karyotype of 
the species using the lacto-acetic orcein technique [33, 
34]. The slides were examined using Jenaval light micros-
copy (Zeiss) coupled to a digital camera and the Axio 
Vision LE 4.8 image analyzer system, with a 1000-fold 
increase.

Results
Phylogenetic analysis
Phylogenetic reconstruction with cytb and ITS-1 com-
bined with several mitochondrial and nuclear DNA 
sequences was deposited in GenBank (16S, 18S, 28S, 
COI, COII, ITS-2 and 12S) rescued T. tibiamaculata 
with Panstrongylus spp. (Fig.  1) in a clade distinct from 

Table 1  GenBank accession number for each marker used in the phylogenetic analysis

Bold: Sequences obtained in this study

Species Molecular markers

16S 18S 28S cytb COI COII ITS-1 ITS-2 12S

Panstrongylus genus
 P. chinai JX400960 AJ306547

 P. geniculatus AF394593 KX109907 KX109903 AM949585 AJ306543

 P. howardi JX400969 JX400871

 P. lignarius AY185833 JQ897584 KX109906 ON262111 AF449141 AJ306549 AY185818

 P. lutzi KC248969 KC249135 KC249227 KC249307 KC249401 ON262110
 P. megistus KC248975 AJ243336 KC249141 KC249232 KC249312 KC249403 AM949580 AJ306542 AF021178

 P. rufotuberculatus KY748239 AJ421955 JX400989 AJ306546

 P. tibiamaculatus comb. nov KC249080 KC249127 KC249214 KC249296 KC249389 KC249485 ON262109 AY185829

 P. tupynambai KC248978 KC249142 KC249234 KC249404

Brasiliensis subcomplex

 T. brasiliensis KC248985 AJ421957 KC249145 KC249239 KC249318 KC249413 KJ125138 AF021187

 T. bahiensis KT347298

 T. juazeirensis KC249026 KC249173 AY494169 KF826892 KJ125150

 T. lenti KY576788 KY576789 KY576791

 T. melanica KC249041 KC249183 AY336527 KC249041 KC249461 KJ125147

 T. petrocchiae KY654073 KY654075 KY654074 KY654072

 T. sherlocki EU489057 KC249205 EU489058 KC608987 KC249478 KJ125149

Outgroup

 Rhodnius prolixus AJ421962 AF435860 AF045718 AF449138 AJ286888 AF394519

Table 2  Substitution models for each marker

Molecular
markers

Substitution models

16S, cytb GTR + I + G

12S, 28S, COI, COII GTR + G

18S HKY + I

ITS-1 + ITS-2 HKY + G
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Fig. 1  Phylogeny obtained by Bayesian approach. Rhodnius prolixus was placed as outgroup. The number in the nodes indicates the posterior 
probability (> 0.5)

Table 3  Cytogenetic characteristics of P. tibiamaculatus comb. nov. and Panstrongylus spp.

X X sex chromosome, Y Y sex chromosome
a Crossa et al. [35]
b Panzera et al. [36]
c Santos et al. [37]
d Alevi et al. [38]
e Schreiber and Pellegrino [39]
f Panzera et al. [40]
g Panzera et al. [41]
h Pita et al. [42]
i Panzera et al. [43]

Panstrongylus spp. Karyotype Autosomal number Sex determination system FISH
(45S rDNA)

P. chinai 2n = 23a 20a X1X2Ya The largest autosomal parg

P. geniculatus 2n = 23a 20a X1X2Ya The largest autosomal parh

P. howardi 2n = 23b 20b X1X2Yb The largest autosomal pari

P. lignarius 2n = 23a 20a X1X2Ya The largest autosomal parg

P. lutzi 2n = 24c,d 20c,d X1X2X3Yc,d The largest autosomal pari

P. megistus 2n = 21e 18e X1X2Ye The largest autosomal parg

P. rufotuberculatus 2n = 23a 20a X1X2Ya The largest autosomal parh

P. tibiamaculatus comb. nov 2n = 23f 20f X1X2Yf The largest autosomal parg

P. tupynambai 2n = 23f 20f X1X2Yf –
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Triatoma spp., demonstrating that T. tibiamaculata is a 
species of Panstrongylus.

Chromosomal analysis
The confirmation of the karyotype of the species T. tibi-
amaculata, P. megistus, P. lignarius and P. lutzi, when 
combined with literature data [35–40], demonstrates 
that, except for P. megistus and P. lutzi, T. tibiamaculata 
and all other species of Panstrongylus have the same dip-
loid chromosome set (2n = 23 chromosomes) (Table  3). 
In addition, based on FISH data in the literature, T. tibia-
maculata and all species of Panstrongylus present mark-
ings in a pair of autosomes [41–43] (Table 3), confirming 
that T. tibiamaculata is a species of Panstrongylus.

Generic transfer
Kingdom Animalia Linnaeus, 1758, Phylum Arthrop-
oda von Siebold, 1848, Class Insecta Linnaeus, 1758, 
Order Hemiptera Linnaeus, 1758, Suborder Heterop-
tera Latreille, 1810, Family Reduviidae Latreille, 1807, 
Subfamily Triatominae Jeannel, 1919, Tribe Triatomini 
Jeannel, 1919,  Genus Panstrongylus Berg, 1879, Species 
Panstrongylus tibiamaculatus  (Pinto, 1926) comb. nov. 
(Fig. 2).

Eutriatoma tibiamaculata Pinto, 1926 (p. 134, Figs. 
C–E [20]).

Triatoma (Eutriatoma) tibia-maculata (Lima, 1940) (p. 
199, Fig. 383 [22]).

Triatoma tibiamaculata (Pinto, 1926) (p. 902, Fig.  2 
[21]).

Panstrongylus: the genus name comes from the Greek 
“pan” means whole, and “strongylus” means round, 
plump, burly, a reference to the insect’s robust, rounded 
body [44].

tibiamaculatus: the specific epithet comes from the 
Latin “tibia” and “maculatus,” and the combination 
means stained tibias, a reference to the insect’s tibiae 
being totally "stained" in orange [44].

The change of the specific epithet “tibiamaculata” 
to “tibiamaculatus” was carried out based on Art. 31.2 
of the International Code of Zoological Nomenclature 
(ICZN) [45] since “Panstrongylus” is masculine—because 
(i) the ending ’-us’ usually indicates masculine words; (ii) 
the ICZN requires that the specific epithet be of the same 
grammatical gender as the generic epithet, for example, 
the species of the genus Panstrongylus are all male, as P. 
geniculatus (Latreille, 1811), P. lignarius and P. rufotu-
berculatus (Champion, 1899), and so is the genus; (iii) 
the Portuguese versions of Latin words retain the gram-
matical gender: if the term “strongyl” is masculine, so is 
Panstrongylus [46]—and “tibiamaculatus” is a latinized 
adjective.

Discussion
The chromosomal and phylogenetic relationship of Pan-
strongylus tibiamaculatus comb. nov. and Panstrongylus 
spp. confirms the change of generic status to this species. 
Thus, the genus Panstrongylus includes 16 species now, 
namely, P. chinai (Del Ponte, 1929), P. diasi Pinto & Lent, 
1946, P. geniculatus, P. guentheri Berg, 1879, P. hispanio-
lae Poinar, 2013 (fossil species), P. howardi (Neiva, 1911), 
P. humeralis (Usinger, 1939), P. lenti Galvão & Palma, 
1968, P. lignarius, P. lutzi, P. martinezorum Ayala, 2009, 
P. megistus, P. mitarakaensis Bérenger & Blanchet, 2007, 
P. rufotuberculatus, P. tibiamaculatus  comb. nov. and P. 
tupynambai Lent, 1942 [3].

As already mentioned, since 2002, phylogenetic studies 
have shown the relationship between P. tibiamaculatus 

Fig. 2  Eutriatoma tibiamaculata Pinto, 1926 syntype. a Type 
specimen (dorsal view); b labels referring to collection, location and 
type determination. Bar: 6 mm
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comb. nov. and Panstrongylus spp. (more specifically, 
P. megistus) [13, 15–17] demonstrating that these taxa 
share common ancestry. Justi et al. [17], based on phylo-
genetic reconstruction associated with geological events, 
suggested that the ancestral population that gave rise to 
P. tibiamaculatus comb. nov. and P. megistus was distrib-
uted along the former connection between the Amazon 
Forest and the Atlantic Forest and, later, with the climate 
changes caused by the Andean uplift that resulted in the 
disappearance of this connection, a vicariance event that 
resulted in the speciation of P. tibiamaculatus comb. nov. 
and P. megistus.

Considering the phylogenetic relationship between P. 
tibiamaculatus comb. nov. and Panstrongylus spp. (more 
specifically, P. megistus) [13, 15–17], Monteiro et  al. [5] 
highlight that these species probably descend from a 
common ancestor that colonized the moist Atlantic for-
ests of eastern Brazil south of parallel 7S. The authors 
signaled that P. megistus is widespread across the Atlan-
tic forests but also occurs in gallery forests throughout 
the drier Cerrado and stretches into the semiarid Caat-
inga, the Chaco and parts of the Pantanal and Uruguayan 
savannahs. On the other hand, Monteiro et al. [5] pointed 
out that P. tibiamaculatus comb. nov. is associated with 
palms and bromeliads along a narrow strip of coastal 
Brazil including the Pernambuco, Bahia and Serra do 
Mar coastal moist forests.

Gardim et al. [16] evaluated ecoepidemiological issues 
related to P. tibiamaculatus comb. nov. and P. megistus. 
The authors also emphasized that the close relationship 
between P. megistus and P. tibiamaculatus comb. nov. 
may help to explain the recent finding of the latter spe-
cies invading human domiciles in downtown Salvador, 
Bahia State, Brazil.

Justi et  al. [17] grouped the species of Panstrongylus 
into two groups: geniculatus and megistus. However, 
more recently Monteiro et al. [5] considered four groups: 
P. rufotuberculatus, P. lignarius, P. geniculatus and P. 
megistus. Our results also retrieved four groups, namely, 
P. rufotuberculatus (composed of P. chinai, P. rufotu-
berculatus and P. howardi), P. lignarius (composed of P. 
lignarius), P. geniculatus (composed of P. geniculatus, P. 
lutzi and P. tupynambai) and P. megistus (composed of P. 
megistus and P. tibiamaculatus comb. nov.).

Although P. tibiamaculatus comb. nov. has morpho-
logical characteristics that approximate it to Triatoma 
spp. (which led to the misclassification of the species in 
this genus), the most prominent morphological feature 
that distinguishes the genus Panstrongylus from other 
triatomines is the short head, with antennae close to 
the eyes [3]. The geometric morphometric of head, for 
example, is a tool that discriminated Panstrongylus and 
Triatoma based on the position of the antennal insertion 

relative to the eyes [47]. Justi et al. [12] highlighted that 
the morphological divergences observed between P. 
tibiamaculatus comb. nov. and the other Panstrongylus 
may be due to morphological convergence with Tria-
toma spp., because variations in the size of the eyes of 
Panstrongylus spp. have already been reported in the lit-
erature [48], and these variations influence the distances 
between the antennas and the eyes.

Some morphological similarities between P. tibiamacu-
latus comb. nov. and the species in the brasiliensis sub-
complex led Schofield and Galvão [49] to group these 
species in this complex. However, based on chromosomal 
divergences, Alevi et  al. [33] proposed the exclusion of 
the species from this complex. From a karyosystem-
atic point of view, while P. tibiamaculatus comb. nov. 
has 2n = 23 chromosomes (which approximates it to 
most species of Panstrongylus), all South American 
Triatoma species have 2n = 22 (species of the Brasilien-
sis, Infestans, Maculata, Pseudomaculata, Rubrovaria 
and Sordida subcomplexes) or 24 chromosomes (Vit-
ticeps subcomplex species) [50]. Based on the ances-
tral karyotype of Triatominae (2n = 22) [51], Alevi et al. 
[52] suggested that during the divergence of the com-
mon ancestor of Panstrongylus there was a fission in sex 
chromosome X, which resulted in the karyotype 2n = 23 
(karyotype shared by P. chinai, P. geniculatus, P. howardi, 
P. lignarius, P. rufotuberculatus, P. tibiamaculatus comb. 
nov. and P. tupynambai). However, the authors suggested 
that during the karyotypic evolution of Panstrongylus, 
two possible punctual events occurred: fusion in a pair of 
autosomes in P. megistus and fission in the sex chromo-
some X in P. lutzi. The karyotypes of P. megistus and P. 
lutzi (2n = 21 and 2n = 24, respectively) were observed 
only in five species of Triatoma (T. nitida Usinger, 1939, 
T. eratyrusiformis Del Ponte, 1929, T. melanocephala 
Neiva & Pinto, 1923, T. vitticeps (Stål, 1859) and T. breyeri 
Del Ponte, 1929 [52]), suggesting that these evolutionary 
events occurred independently during the chromosomal 
evolution of triatomines.

In addition, P. tibiamaculatus comb. nov. and all other 
Panstrongylus species (regardless of the number of chro-
mosomes) have 45S rDNA probes restricted to a pair 
of autosomes [41–43]. Pita et  al. [53] suggest that the 
chromosomal position of 45S rDNA is variable in Tri-
atominae, although it is conserved among closely related 
species (such as P. tibiamaculatus comb. nov. and Pan-
strongylus spp.). In addition to the genetic relationships 
observed between P. tibiamaculatus comb. nov. and 
Panstrongylus spp., morphological similarities between 
fifth-instar female nymphs of P. megistus and P. tibiamac-
ulatus comb. nov. (more specifically in the structures of 
the eighth ventral segment as well as between setae) were 
observed [54]. Furthermore, Nascimento et  al. [55] also 
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observed similarities between spermathecae morphol-
ogy from P. lignarius, P. megistus and P. tibiamaculatus 
comb. nov., and Mello et  al. [56] recorded a relation-
ship between exocorial cells in eggs of P. tibiamaculatus 
comb. nov. with Panstrongylus.

Conclusion
Thus, based on chromosomal and phylogenetic char-
acteristics, we state that P. tibiamaculatus comb. nov. 
belongs to the genus Panstrongylus and that the mor-
phological features shared with Triatoma spp. represent 
homoplasies.
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