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Summary
Cirrhotic cardiomyopathy (CCM) is defined as systolic or diastolic dysfunction in the absence of
prior heart disease or another identifiable cause in patients with cirrhosis, in whom it is an
important determinant of outcome. Its underlying pathogenic/pathophysiological mechanisms are
rooted in two distinct pathways: 1) factors associated with portal hypertension, hyperdynamic
circulation, gut bacterial/endotoxin translocation and the resultant inflammatory phenotype; 2)
hepatocellular insufficiency with altered synthesis or metabolism of substances such as proteins,
lipids, carbohydrates, bile acids and hormones. Different criteria have been proposed to diagnose
CCM; the first in 2005 by the World Congress of Gastroenterology, and more recently in 2019 by the
Cirrhotic Cardiomyopathy Consortium. These criteria mainly utilised echocardiographic evaluation,
with the latter refining the evaluation of diastolic function and integrating global longitudinal
strain into the evaluation of systolic function, an important addition since the haemodynamic
changes that occur in advanced cirrhosis may lead to overestimation of systolic function by left
ventricular ejection fraction. Advances in cardiac imaging, such as cardiac magnetic resonance
imaging and the incorporation of an exercise challenge, may help further refine the diagnosis of
CCM. Over recent years, CCM has been shown to contribute to increased mortality and morbidity
after major interventions, such as liver transplantation and transjugular intrahepatic portosystemic
shunt insertion, and to play a pathophysiologic role in the genesis of hepatorenal syndrome. In this
review, we discuss the pathogenesis/pathophysiology of CCM, its clinical implications, and the role
of cardiac imaging modalities including MRI. We also compare diagnostic criteria and review the
potential diagnostic role of electrocardiographic QT prolongation. At present, no definitive medical
therapy exists, but some promising potential treatment strategies for CCM are reviewed.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Introduction
Cirrhotic cardiomyopathy (CCM) is defined as car-
diac dysfunction in patients with cirrhosis in the
absence of prior heart disease.1,2 The vasodilatation
that occurs in patients with cirrhosis may mask
early systolic cardiac dysfunction and the early
decrease in contractility by decreasing afterload
and increasing preload (and thus cardiac output).
Resting diastolic evaluation is insensitive in pa-
tients with symptoms limited to exertional dysp-
noea since the increase in left ventricular filling
pressures and pulmonary congestion in these pa-
tients may only occur during exercise. Therefore,
the diagnosis of CCM may be difficult. Recent ad-
vances in diagnostic imaging have advanced
detection of CCM in patients with cirrhosis. The
present review aims to summarise the pathogen-
esis and pathophysiology of CCM, discuss advances
in diagnostic imaging, compare the 2005 World
Congress of Gastroenterology (WCG) criteria and
the 2019 Cirrhotic Cardiomyopathy Consortium
(CCC) criteria, review electrophysiological changes
in CCM, and discuss its clinical relevance and po-
tential treatment strategies.
Pathophysiology/pathogenesis
The features of cirrhosis include hepatic structural
and functional disturbances that lead to hepato-
cellular insufficiency and portal hypertension,
which causes mesenteric congestion. The con-
gested gut is more permeable, allowing for bacte-
ria/endotoxin translocation. These features impact
the heart via two major pathways: inflammation
and protein/lipid synthetic/metabolic defects
(Fig. 1)3).
Inflammation
First, pro-inflammatory cells are increased in hy-
pertrophic hearts.4 Monocyte/macrophage infil-
tration is associated with systolic dysfunction. Our
lab studied the role of monocyte/macrophage
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Key points

� Cirrhotic cardiomyopathy (CCM) is a syndrome of depressed cardiac
function in the absence of primary heart disease in patients with
cirrhosis.

� Its pathogenesis/pathophysiology is related to an inflammatory
phenotype and protein/lipid/carbohydrate synthetic/metabolic defects.

� Modern echocardiographic techniques assessing systolic and diastolic
function are used to diagnose CCM.

� CCM contributes to the pathogenesis of renal dysfunction and worse
outcomes after interventions such as transjugular intrahepatic porto-
systemic shunt insertion and liver transplantation.

� There is currently no definitive medical therapy, but animal studies
provide support for several possible treatment strategies.
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infiltration in the cirrhotic rat heart.5 We found that monocytes/
macrophages were increased in these hearts and myocardial
contractility was decreased. Using gadolinium chloride to
block the recruitment of monocytes/macrophages significantly
improved cardiac contractility.

Second, proinflammatory cytokines are increased. The in-
flammatory phenotype arises from intestinal congestion because
of portal hypertension; lipopolysaccharide enters the systemic
circulation stimulating production of pro-inflammatory cyto-
kines such as tumour necrosis factor-a (TNFa), interleukin (IL)-1b
and IL-6. There is a close correlation between inflammation and
disturbance of calcium transients in cirrhotic hearts. Adding
TNFa directly to atrial myocytes, Zuo and colleagues6 observed
that it directly increases spontaneous calcium release, decreases
the amplitude of calcium transients, and reduces the calcium
content in the sarcomere reticulum. Furthermore, TNFa has
regulatory effects on calcium transient proteins. Kao et al.7 re-
ported that 24-hour incubation of cardiomyocytes with TNFa
enhances methylation in the promoter region of SERCA2a and
decreases its protein expression. They speculated that inhibition
of TNFa-induced hypermethylation may be a novel treatment
strategy for heart failure. Rao et al.8 demonstrated that T-type
calcium channels on atrial myocytes were reduced in a TNFa
concentration-dependent manner during a 24-hour incubation.
The peak calcium current was also decreased in a TNFa
concentration-dependent manner. Gregolin and coworkers9
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showed that inflammation significantly reduced the phosphor-
ylation of cardiac phospholamban, contributing to systolic and
diastolic dysfunction in a rat model of thioacetamide (TAA)-
induced cirrhosis.

Proinflammatory cytokines also depress cardiac function via
two evanescent gases, nitric oxide and carbon monoxide, which
inhibit cardiac contraction via the second messenger cGMP.
Another inflammatory pathway, the endocannabinoid CB-1 sys-
tem, also inhibits ventricular contractility in CCM.5 We previ-
ously demonstrated that endocannabinoids are increased locally
in cirrhotic rat hearts, and administration of the CB-1 antagonist
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AM251 completely restored the inhibited contractility of ven-
tricular papillary muscles.5
Protein/lipid/carbohydrate synthetic/metabolic
defects
Hepatocellular insufficiency causes synthetic/metabolic defects
of cardiac proteins, lipids and carbohydrates, such as the b-
adrenergic receptor,10,11 titin, collagens, myosin heavy chain
(MHC), cholesterol, and lectins. The b-adrenergic receptor plays
an essential role in cardiac contraction.12 It was observed more
than six decades ago that catecholamine infusion in patients
with cirrhosis results in weaker cardiac responsiveness
compared to controls.13 We measured the myocardial binding
characteristics of the b-adrenergic receptor and heart rate
responsiveness to isoprenaline in a rat model of cirrhosis.10

Compared to sham-operated controls, myocardial b-adrenergic
receptor density was significantly lower and a significantly
higher dose of isoprenaline was required to raise basal heart rate
by 50 beats/min.10 Thus, b-adrenergic receptor downregulation is
associated with myocardial hyporesponsiveness to catechol-
amines in the cirrhotic heart.

The giant protein titin is largely responsible for the passive
elastic recoil of early diastole. Titin abnormalities are associated
with dilated cardiomyopathy.14 It has three isoforms, N2A, N2B
and N2BA. N2B is a relatively shorter protein isoform with less
elasticity and more passive stiffness compared to the N2BA iso-
form.15 Nagueh et al.16 suggested that the increased ratio of
N2BA:N2B plays an important role in patients with dilated car-
diomyopathy. Although we did not observe a change in the ratio
of N2BA:N2B in cirrhotic rats in our study, its regulator (protein
kinase A) was significantly decreased in cirrhotic hearts,17 which
would impact the phosphorylation of titin and consequently,
diastolic function.

Another myofilament that plays a critical role in cardiac
contraction is MHC. There are two isoforms of MHC, a-MHC and
b-MHC. a-MHC is a faster-contracting, more powerful phenotype
and b-MHC is a slower, weaker phenotype. We confirmed a
switch from a-MHC to b-MHC in the cirrhotic rat ventricle.18 In
normal rats, a-MHC is the predominant isoform (90%), whereas
the predominant phenotype is b-MHC in the bile duct ligation
(BDL)-cirrhotic ventricle. This suggests that the shift from a-MHC
to b-MHC in the cirrhotic heart plays an important role in sup-
pressed cardiac contractility.19

Lipid changes, mainly increased cholesterol in the cardiac
sarcolemmal plasma membrane, result in reduced membrane
fluidity. As all cardiac function-related receptors and ion chan-
nels including adrenergic receptors, cannabinoid receptors, L-
type calcium channels, and Na⁺/K⁺-ATPase are embedded in the
plasma membrane of cardiomyocytes, any biochemical and
fluidity changes can affect their function and that of their
downstream signalling pathways.20,21

Lectins are carbohydrates with ubiquitous distribution and
functions. We recently demonstrated a role of galectin-3 as a
proinflammatory, pro-apoptotic and pro-oxidant influence on
cardiac function in a BDL-cirrhotic rat model. Treatment of these
rats with a galectin-3 inhibitor improved ventricular function.22
Cardiac imaging modalities in CCM
Cardiac imaging is key to the diagnosis of CCM. In the following
section, we describe and contrast cardiac imaging techniques
used to diagnose CCM.
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Echocardiography
Transthoracic echocardiography is the primary imaging modality
recommended in the 2019 CCM diagnostic criteria due to its
widespread availability and the wealth of structural and hemo-
dynamic information obtained.1 A comprehensive approach is
required (Fig. 2).
Systolic dysfunction
Standard 2-dimensional echocardiography
Left ventricular (LV) systolic function is usually determined by LV
ejection fraction (LVEF), with LVEF <50% considered abnormal.1

However, since vascular resistance is often reduced in cirrhosis,
resulting in hyperdynamic systolic function with increased car-
diac output, LVEF is rarely <50% even when systolic dysfunction
is present.23–25 Therefore, a higher LVEF threshold in cirrhosis
has been proposed.26,27 However, other measures are needed to
better define LV systolic function in CCM.

Speckle-tracking echocardiography
Myocardial strain by speckle-tracking echocardiography has
emerged as a method to identify early systolic dysfunction
amongst patients with preserved LVEF. It is defined as the change
in length of the contracting myocardium in one spatial orienta-
tion relative to the baseline length. While strain can be measured
in several dimensions (circumferential, longitudinal, and radial),
longitudinal strain is often affected early in cardiomyopa-
thies.28,29 Therefore, global longitudinal strain (GLS) is recom-
mended for the evaluation of early systolic dysfunction in
patients with cirrhosis.1 Because the myocardium shortens in the
longitudinal dimension during systole, GLS is recorded as a
negative number by convention, with normal values being <−-18%,
borderline between -16% and -18%, and abnormal >-16%.30 For
simplicity, we refer to the absolute GLS value in this review (i.e.,
decreased GLS means lower absolute value <16% and normal GLS
means >18%).

While several studies have shown decreased GLS in cirrhosis
compared to controls,31–33 others observed increased or un-
changed GLS in these patients.34,35 The conflicting results likely
reflect the different effects of haemodynamic changes of
cirrhosis in patients with a healthy myocardium vs. those with
CCM, where GLS is expected to be decreased. Since GLS is
affected by both contractility and preload,36 in the healthy
myocardium, the high output state of advanced cirrhosis could
lead to increased GLS.36 Mechelinck et al. observed that both low
(<17-18) and high GLS (>24-26) were associated with increased
mortality.37 GLS was high in patients with more advanced
cirrhosis (i.e., portal hypertension, decompensated stage)
although increased GLS did not necessarily correlate with higher
Child-Pugh grades.37 Even modestly impaired GLS (<20.5%)
confers a 6-fold increase in post-transplant congestive heart
failure (CHF) and coronary artery disease.23 Similar conflicting
results are observed post-liver transplant, where some observed
decreased GLS (from 24.9% to 20.6%) in a subset of patients 1 year
after liver transplantation,38 while others found increased GLS
(from 18.5% to 20.8%) at 18.2 months post-transplant.39 However,
in both studies, GLS generally tended to normalise after liver
transplant.
Diastolic dysfunction
Four echocardiographic parameters are required for diastolic
dysfunction (DD) assessment: septal and lateral mitral annular
3vol. 6 j 100911



Echocardiography

Systolic dysfunction

Absolute GLS <18% → CCM
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Fig. 2. Diagnosis of cirrhotic cardiomyopathy using echocardiography. *Diastolic stress echocardiography or right heart catheterisation. †This includes the
ratio of pulmonary vein peak systolic velocity to peak diastolic velocity or systolic time velocity integral to diastolic time-velocity integral, isovolemic relaxation
time, left atrial strain, or left ventricular mass index and relative wall thickness. CCM, cirrhotic cardiomyopathy; GLS, global longitudinal strain; LAVI, left atrial
volume index; LVEF, left ventricular ejection fraction; TR, tricuspid regurgitation.
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peak early diastolic velocity (e’), the ratio of the peak velocity of
mitral inflow during early diastole (E) to the average of septal
and lateral e’ (E/e’), left atrial volume indexed to body surface
area, and tricuspid regurgitation (TR) velocity.40

Doppler echocardiography
Tissue Doppler imaging is a variant of pulsed wave Doppler that
measures the myocardial (tissue) rather than blood (flow) ve-
locity.40 The septal and lateral e’ reflect the velocities of the
septal and lateral mitral annuli during myocardial relaxation in
early diastole. Low values (septal e’ <7 cm/s; lateral e’ <10 cm/s)
indicate impaired LV relaxation in DD. In a retrospective study,
low septal e’ was the most predictive variable for the composite
outcome of arrhythmia, CHF, cardiac arrest, and/or cardiac death
after liver transplant, although GLS was not assessed.41 Impor-
tantly, e’ has limited accuracy in patients with regional wall
motion abnormalities, mitral annular calcification, prosthetic
mitral valves, or pericardial disease.40

Pulsedwavedoppler can also be applied to early diastolic blood
flow through themitral valve from the left atrium (LA) into the LV;
the peak velocity of this flow is the mitral E velocity and is a
reflection of the pressure gradient between the LA and the LV.40

The E/e’ ratio correlates to pulmonary capillary wedge pressure
and is a widely accepted non-invasive surrogate of LV filling
pressure,42 where E/e’ >−15 is elevated, 9-14 is borderline, and <−8 is
normal. An E/e’ >9.2 correlates with post-transplant incident
arrythmias and atrial fibrillation in patients with decompensated
cirrhosis.23 Importantly, E/e’ may be less accurate in normal in-
dividuals without heart disease, moderate/severe mitral regurgi-
tation, and in conditions when the e’ is not reliable.40

The peak TR velocity measured via continuous wave Doppler
reflects right ventricular systolic pressure.43 Since increased
left-sided pressures lead to pulmonary venous hypertension,
peak TR velocity >2.80 m/s could indicate DD in the absence of
pulmonary arterial hypertension. However, in liver disease,
JHEP Reports 2024
increased right ventricular systolic pressure can reflect multiple
disease processes (e.g., portopulmonary hypertension). There-
fore, peak TR velocity alone is non-specific and should be
considered in combinationwith other diastolic function variables
and clinical criteria.

Standard 2-dimensional echocardiography
Increased LV filling pressure is transmitted to the LA, which
subsequently dilates and remodels over time. Therefore, LA
enlargement, defined as left atrial volume indexed to body sur-
face area >34 ml/m2 in sinus rhythm and >40 in atrial fibrillation,
is an indicator of chronic DD40,43 and is associated with risk of
CHF after liver transplant.44

Diagnosing diastolic dysfunction
In patients with normal LVEF, DD is diagnosed when >−3 of 4
abnormal diastolic function parameters exist (Fig. 2). If <−1 cri-
terion is met, diastolic function is considered normal. When <−2
criteria are present, diastolic function is indeterminate.1,40,43 A
diastolic stress test during exercise and/or invasive measurement
with right heart catheterisation may be needed for further
evaluation. As with systolic dysfunction, other causes of DD
should be excluded before diagnosing CCM.

When to perform echocardiography in patients with cirrhosis
Echocardiographic imaging has been suggested at 6-month in-
tervals pre-transplant for all patients with cirrhosis, especially
those with clinical evidence of CHF.1 Patients with pre-transplant
CCM should undergo echocardiography at 6, 12, and 24 months
after transplant to assess for worsening or persistent cardiac
dysfunction.1Whether asymptomatic patients with cirrhosiswith
less severe liver disease but potential markers of higher risk, such
as prolonged QTc or elevated cardiac biomarkers, should undergo
routine echocardiographic screening for CCM is unknown26–29

and future studies are needed to address these questions.
4vol. 6 j 100911



Stress echocardiography
Patients with cirrhosis, especially in advanced stages, often have
hypercontractile LV at rest, leading to less contractile reserve.45

In the WCG criteria for CCM, an increase of LVEF on stress
testing of <5% indicates decreased contractile reserve and prob-
able subclinical LV systolic dysfunction.46 However, given the
lack of standardised criteria to define impaired contractile
reserve on stress testing, the use of stress echocardiography to
identify subclinical systolic dysfunction was not part of the 2019
diagnostic criteria for CCM.1

However, stress echocardiography plays a well-established
role in identifying DD and may be useful in CCM. Patients with
early DD may have similar haemodynamics to normal in-
dividuals at rest, which only become abnormal upon exercise
(i.e., increased cardiac output occurs at the expense of increased
filling pressures during stress). Diastolic stress tests can be per-
formed when patients are symptomatic but only have abnormal
e’ at rest.40

Cardiac magnetic resonance imaging
Cardiac magnetic resonance imaging (CMR) can provide com-
plementary information to echocardiography and has an
emerging role in the evaluation of CCM.47,48 Compared to echo-
cardiography, CMR has higher accuracy, reproducibility, and
sensitivity and is not affected by poor acoustic windows, but
processing of certain parameters, such as myocardial strain, can
be time-consuming.48 Furthermore, dobutamine stress testing
can be performed using CMR to determine the presence of
myocardial ischaemia and/or decreased contractile reserve.49

Late gadolinium enhancement (LGE) is a widely used CMR
technique for myocardial tissue characterisation, including
fibrosis, which is not readily assessed by echocardiography.50

Focal fibrosis is less common in CCM than diffuse myocardial
fibrosis, although the pattern and association of myocardial LGE
with outcomes in patients with cirrhosis has not been well-
studied.38 This may be due to the limitations of LGE, which
demonstrates relative differences in myocardial recovery times
between areas of fibrosis or scar (LGE) and normal myocardium.
Without normal reference myocardium for comparison, diffuse
myocardial fibrosis can be missed by LGE imaging.51

Myocardial extracellular matrix volume fraction (ECV) using
T1 mapping is a relatively new technique that measures the
fraction of the myocardial space occupied by extracellular matrix
and may be a more effective CMR method to assess diffuse
fibrosis.52,53 Myocardial ECV fraction is increased in patients with
Table 1. Diagnostic criteria systems for cirrhotic cardiomyopathy.

Criteria Systolic dysfunction Diastolic dysfunction

WCG criteria (2005) LVEF <55%
or
Blunted increase in
contractility on stress
testing

E/A ratio <1.0
or
DT >200 ms
or
IVRT >80 ms

CCC criteria (2019) LVEF <−50%
or
GLS <18

>−3 of the following
E/e’ ratio >−15 e’ septal
<7 cm/s
TR velocity >2.8 m/s
LAVI >34 ml/m2

CCC, Cirrhotic Cardiomyopathy Consortium; DT, mitral deceleration time; E/A, E-
wave to A-wave ratio; GLS, global longitudinal strain (absolute value); IVRT, iso-
volumetric relaxation time; LAVI, left atrial volume index; LVEF, left ventricular
ejection fraction; TR, tricuspid regurgitation; WCG, World Congress of
Gastroenterology.
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cirrhosis compared to healthy individuals and correlates with
increasing Child-Pugh class.38,54 High ECV is associated with
worse transplant-free mortality,54 but ECV may normalise 1 year
after liver transplant, indicating that early-stage interstitial
fibrosis can be reversible.38

CMR T2* imaging sequences, which quantify the relaxation
parameter R2* in the ventricular septum, have been validated as
a non-invasive measurement of cardiac iron overload, with lower
T2* values indicating progressive iron overload.55 Cardiac iron
overload can occur in advanced cirrhosis, even in the absence of
haemochromatosis.56–58 A T2* <15 ms in liver transplant candi-
dates is associated with increased post-transplant mortality and
CHF.57,59 It was also found that patients with an MELD (model for
end-stage liver disease) score >−25, Child-Pugh class C, and LVEF
<65% were at a 5-fold increased risk of T2* <20 ms.59 Despite the
advantages of CMR and the additional information it can provide
in patients with cirrhosis, at present, transthoracic echocardi-
ography remains the initial test of choice to evaluate CCM given
its wide availability, efficiency, and low cost. Further studies are
needed to evaluate the additional role that CMR may play in the
diagnosis of CCM; the current clinical use of CMR in CCM is
mainly for the evaluation and exclusion of other potential causes
of systolic or diastolic dysfunction.
Diagnostic criteria: old vs. new?
The initial diagnostic criteria for CCM resulted from a consensus
conference at the 2005 World Congress of Gastroenterology,60

and are called the WCG criteria. In 2019, a group of multidisci-
plinary experts in the field (the Cirrhotic Cardiomyopathy Con-
sortium, CCC), generated a new set of diagnostic criteria based on
updated echocardiographic imaging parameters, called the CCC
criteria.1 The comparisons are shown in Table 1.

The use of the transmitral early (E) to late filling velocity (A)
ratio (E/A, a parameter of diastolic function) in the WCG criteria
has several limitations. First, E/A ratio is preload-dependent and
its value decreases with interventions such as diuresis, dialysis,
and paracentesis and increases with volume overload. Second,
the left ventricular wall becomes stiffer with aging resulting in
slower early filling velocity (E) and decreased E/A ratio.

Whether the CCC criteria are superior to the WCG criteria
remains incompletely clarified. However, we believe that for
several reasons, at present, the new criteria are superior.

There are currently six studies that have compared the WCG
and CCC criteria or examined only the CCC criteria,23–25,41,61 as
listed in Table 2.62

Spann et al.41 analysed 1,165 patients with echocardiography
before liver transplantation. They further analysed 210 who met
the WCG or CCC inclusion criteria. According to the WCG criteria,
77% (162/210) of patients had CCM, while this percentage was
30% (64/210) if they applied the CCC criteria. A limitation of this
study is the retrospective nature and the unavailability of GLS
because it was not a standard of measurement during the study
period. Furthermore, none of their patients demonstrated an
LVEF of <50%. Thus, the systolic criteria were not applicable. All
the cases of CCM diagnosed according to the CCC criteria were
based on DD. They found that the occurrence of major adverse
cardiac events (MACEs; 44 patients) and deaths (31 cases) after
liver transplantation were associated with the CCC criteria but
not the WCG criteria. Based on these findings, the authors
concluded that the CCC criteria are superior to the WCG criteria
in predicting MACEs and post-transplant mortality.
5vol. 6 j 100911



Table 2. Prevalence of CCM according to the different diagnostic criteria.

Authors (Patients) 2005 WGC 2019 CCC p value

Razpotnik et al.61 (consecutive patients with cirrhosis) 66.2% 55.7% with GLS>22%
19.7% with GLS<18% only

p = n.s.
p <0.05

Singh et al.25 (LT candidates) 74.8% 85.6% with GLS<18% only p = n.s.
Spann et al.41 (LT candidates) 77% 30% without GLS p <0.05
Arman et al.62 (LT recipients) 78.6% 17.6% p <0.01
Cesari et al.24 (consecutive patients with cirrhosis) 29% including GLS>22%
Izzy et al.23 (LT recipients) 38.8%

CCC, Cirrhotic Cardiomyopathy Consortium; GLS, global longitudinal strain; LT, liver transplant; WCG, World Congress of Gastroenterology.
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Singh and coworkers25 retrospectively reported data on 278
patients. According to the CCC criteria, 238 (85.6%) had CCM. This
percentage was 74.8% (208/238) based on the WCG criteria. The
mortality rates before liver transplantation were 19.3% in pa-
tients who met CCC criteria, 20.2% in those who met the WCG
criteria and 25.0% in the patients with no CCM; none of these
differences were statistically significant. The LVEF was >50% in all
included patients. The patients with advanced DD based on the
CCC criteria had a higher mortality rate than the other groups.
However, the rates of acute kidney injury and hepatic encepha-
lopathy before liver transplantation and the mortality after liver
transplantation were similar in the CCC and WCG groups.

Razpotnik and coworkers61 compared the CCC, WCG and 2016
American Society of Echocardiography/European Association of
Cardiovascular Imaging guidelines in 122 patients with cirrhosis.
This prospective study found that 67.2% met WCG-CCM criteria
and 55.7% met CCC-CCM criteria. Unfortunately, this study was
conducted when the first publication of the CCC criteria con-
tained a crucial error in listing GLS >22% as a criterion of CCM,
and the relevant corrigendum63 was only published several
months later.64 Therefore, the comparisons were based on the
incorrect CCC criteria and were thus not accurate. When the
correct CCC criteria were applied to these data, the prevalence of
CCM dropped dramatically to only 19.7%.

A preliminary retrospective study by Arman et al.62 analysed
131 patients with cirrhosis who underwent liver transplantation.
They found that 103 (78.6%) met WCG criteria and 23 (17.6%) met
the new CCC criteria. The patients who met the WCG criteria
were older (58 vs. 55, p = 0.034), had lower mean heart rate (78
vs. 95, p = 0.025), and lower Fick cardiac index (3.8 vs. 4.6, p =
0.022). Meeting WCG criteria but not CCC criteria before liver
transplantation was associated with MACEs after liver trans-
plantation. They also found that patients with MACEs after liver
transplantation had a higher prevalence of hepatorenal syn-
drome (HRS), ascites, and lower diastolic blood pressure.

Izzy et al.23 evaluated 141 patients using CCC criteria and
found that 34.8% had CCM. The risk of cardiovascular disease
after liver transplantation was significantly higher in patients
with CCM than in those without CCM (p = 0.016). This study did
not compare the WCG and CCC criteria.

It seems that CCC criteria have some advantages in predicting
adverse cardiovascular events after liver transplantation. How-
ever, WCG criteria also have predictive value for patients with
cirrhosis undergoing major procedures. Cesari and coworkers24

analysed 83 consecutive patients with cirrhosis and reported
that after a 6-year follow-up period, the mortality rate was
similar in those with or without altered GLS or advanced DD at
baseline. These data suggested that the CCC diagnostic criteria
were not valuable in predicting prognosis in patients with
cirrhosis. These authors concluded that the CCC criteria are
mainly descriptive, predominantly based on contemporary
JHEP Reports 2024
cardiovascular imaging parameters, and may lack prognostic
value. Główczy�nska et al.65 contended that the exercise stress
test is a reliable, safe and useful tool for the diagnosis of CCM in
liver transplant candidates and should be included in cardio-
vascular assessment before liver transplantation.

It is clear that further comparative studies, preferably pro-
spective, are needed. However, at present, the consensus seems
to be that the WCG criteria are less useful because the criteria are
not stringent or discriminatory enough, i.e. approximately 60-
80% of patients with cirrhosis have CCM based on these criteria.
On the other hand, only about 20-40% have CCM based on the
CCC criteria. The only outlier to this trend, for reasons that
remain unclear, is the study of Singh and colleagues who re-
ported a surprising 85.6% prevalence with the CCC criteria.
Should prolonged QT interval be a diagnostic
criterion?
Although there are several methods to correct QT interval for
heart rate, Zambruni et al. confirmed that the Fridericia method
is the most appropriate for patients with cirrhosis (Table 3).66

Factors associated with QTc prolongation have been studied.
Bernardi et al.67 showed that QTc prolongation is not related to
aetiologyof cirrhosisbut to severityof liverdysfunction.Therewasa
significant correlation between QTc length and Child-Pugh score;
moreover, worsening of Child-Pugh score was associated with
increasing QTc (DQTc). Henriksen et al.68 also reported a positive
correlation between QTc length and Child-Pugh score. However,
Tsiompanidis and coworkers69 did not find a correlation.

A study from the Lee lab confirmed that the cellular mecha-
nism behind a prolonged QT interval in a rat model of biliary
cirrhosis involved the abnormal function of two types of car-
diomyocyte potassium channels: a transient outward and a
delayed-rectifier current.70

Should a prolonged QT interval be part of the diagnostic
criteria? There is no evidence of a connection between QTc
prolongation and diastolic or systolic dysfunction. However, CCM
is different from conventional cardiomyopathy; thus, if QTc
prolongation has predictive value for cardiac-related mortality, it
should be considered a criterion in CCM diagnosis. Bernardi
et al.67 verified that patients with a QTc longer than 440 ms had
significantly lower survival rates than those with a normal QTc.
Most, but not all other studies also reported a correlation be-
tween QTc prolongation and mortality.71,72 Given these consid-
erations, QTc prolongation might be considered in the diagnostic
criteria for CCM.
Clinical relevance of CCM
CCM is associated with HRS. Ruiz del Arbol and colleagues
showed that ventricular dysfunction precedes development of
6vol. 6 j 100911



Table 3. Normal values for QTc intervals by Fridericia correction115,116.

QTc interval Males Females

Normal <430 ms <450 ms
Borderline 430-450 ms 450-470 ms
Prolonged >450 ms >470 ms
HRS triggered by bacterial infections.73 The same Spanish
group74 followed 66 patients with cirrhosis, with tense ascites
and normal serum creatinine levels; 27 patients who had lower
mean arterial pressure and cardiac output developed HRS. Krag
et al.75 reported that lower cardiac index (<1.5 L/min/m) is
associated with lower glomerular filtration rate and renal blood
flow.

Ventricular dysfunction may also be associated with mortality
risk. Rabie et al.76 found that patients with an E/A <−1.0 had
significantly lower survival rates after transjugular intrahepatic
portosystemic shunt (TIPS) insertion compared to those with an
E/A >1.0. Cazzaniga et al.77 reported that an E/A <−1 at day 28 after
TIPS is an independent predictor of death (relative risk 8.9; 95%
CI 1.9 to 41.5; p = 0.005). Six of 10 patients with an E/A <−1 died,
whereas all 22 patients with E/A ratio >1 survived. Giannelli78

demonstrated that reduced LV stroke work index was associ-
ated with mortality in patients with cirrhosis waitlisted for liver
transplantation.

Finally, increasing evidence indicates a critical role of CCM in
the setting of liver transplantation. Although an extensive re-
view of this topic is beyond the scope of this manuscript, this
subject has recently been reviewed in detail.60,79,80 In particular,
several studies have focused on whether CCM increases the
morbidity and mortality of the transplantation procedure or
predisposes to increasing risk of MACEs such as arrhythmias and
heart failure, in the peri- and post-operative periods after liver
transplantation.
Therapeutic strategies
Generally speaking, there is no specific treatment for CCM.
Because of the marked peripheral vasodilatation and resultant
hypotension associated with cirrhosis, vasodilators that are used
in non-cirrhotic heart failure are unsuitable for the treatment of
CCM. For example, angiotensin-converting enzyme inhibitors or
angiotensin receptor blockers are contraindicated in patients
Table 4. Potential therapies in cirrhotic cardiomyopathy.

First author(s) Substance Mechanism of action

Mookerjee et al.114 b-blocker
(propranolol)

decrease portal pressure, intestinal
permeability, and systemic inflamma

Silvestre et al.108 b-blocker
(metoprolol)

decrease portal pressure, intestinal
permeability, and systemic inflamma

De Souza et al.85 Exercise Alleviate liver injury, cardiac remode

Bortoluzzi et al.83 Albumin Decrease inflammatory and oxidativ
Mousavi et al.84 Taurine reduce lipid peroxidation, reactive o

species, protein carbonylation
Sheibani et al.81 Spermidine Decrease inflammatory and oxidativ

Yoon et al.22 Galectin-3
inhibitor
(N-acetyllactos-
amine)

Decrease inflammation by inhibiting

Niaz et al.82 Statin
(atorvastatin)

Decrease inflammation and cardiac fi

CCl4, carbon tetrachloride; RCT, randomised-controlled trial.
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with decompensated cirrhosis because of the risk of hypotension
and HRS.2 However, animal studies have revealed some potential
treatment options (Table 4).81–85
Animal studies
Statins
Statins are pleiotropic molecules and can reduce liver fibrosis,
inflammation, and portal pressure.82 Mura et al.86 demonstrated
that simvastatin mitigates lipopolysaccharide-induced sinusoidal
endothelial dysfunction by increasing nitric oxide availability.
Marrone et al.87 found that simvastatin decreases the expression
of a-smooth muscle actin and procollagen I, alleviates oxidative
stress in hepatic stellate cells and improves liver fibrosis.

Animal and human studies have shown that statins have anti-
inflammatory and antifibrotic effects, reduce liver decompensa-
tion, disease progression, hepatocellular carcinoma develop-
ment, and death.88 Statins decrease levels of TNFa,89 a
proinflammatory cytokine, and thereby have an inhibitory effect
on cirrhosis.90 Niaz et al.82 recently performed a study on the
effect of atorvastatin on chronotropic dysfunction in cirrhotic
rats, and showed that isoproterenol-stimulated atrial responses
were significantly decreased in cirrhotic rats; this decreased
contractility was reversed by atorvastatin. Moreover, the QTc
interval, serum brain natriuretic peptide, TNFa, and malondial-
dehyde (MDA) levels were increased in cirrhotic rats, and ator-
vastatin significantly decreased these parameters.35 All these
data suggest that atorvastatin may have therapeutic potential in
CCM.

Spermidine
Spermidine has multiple functions as an antioxidant and anti-
inflammatory agent.81 In cirrhotic rats, the level of heart oxida-
tive stress is increased as evidenced by an increase of MDA, and
decreased superoxide dismutase (SOD, a key antioxidant), and
glutathione. Sheibani et al..81 tested the therapeutic effect of
spermidine on CCM in rats following BDL. In comparison with
the sham-control group, proinflammatory cytokines such as
serum TNFa, IL-1b, and cardiac pNF-kB/NF-kB ratio were signif-
icantly increased in BDL rats. MDA, an index of oxidative stress,
was significantly increased, while SOD levels were significantly
decreased. Contractility of papillary muscles from BDL rats was
significantly decreased. When spermidine (10 mg/kg) was
Species/model Comments

tion
Patients with cirrhosis Authors suggest to use during

‘therapeutic window’117

tion
RCT in patients with
cirrhosis

No effect on contractile response to
stress or cardiac remodelling

lling Thioacetamide-cirrhotic
rats

Improved cardiac function

e stress CCl4-cirrhotic rats Enhanced systolic function
xygen Bile duct-ligated cirrhotic

rats
Improved mitochondrial function and
increased ATP levels

e stress Bile duct-ligated cirrhotic
rats

Enhanced systolic function

TNFa Bile duct-ligated cirrhotic
rats

Increased blood pressure; enhanced
systolic and diastolic function

brosis Bile duct-ligated cirrhotic
rats

Increased chronotropic responses to
isoproterenol, decrease QTc interval
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administered to BDL rats, it significantly reduced the levels of
proinflammatory cytokines, such as serum TNFa, interleukin 1b,
the pNF-kB/NF-kB ratio in the BDL heart. Furthermore, spermi-
dine significantly reduced MDA and increased SOD levels.
Moreover, the QTc interval was significantly decreased in the
BDL + spermidine group compared with that in BDL controls
(204 ± 4 vs. 170 ± 5 ms, p <0.001). Spermidine also significantly
increased the contractility of papillary muscles (p <0.001). To
summarise, spermidine significantly improved the cardiac con-
dition and thus may be a candidate for the treatment of CCM.

Albumin
It is well known that albumin has anti-inflammatory and anti-
oxidative effects.91 Bortoluzzi and colleagues83 performed a
study to test the therapeutic effect of albumin on CCM induced by
carbon tetrachloride (CCl4) in rats. They found that in cirrhotic
animals, the protein expression of Gai2 (an inhibitory protein),
TNFa, and iNOS (inducible nitric oxide synthase) was significantly
increased (all p <0.05), as was NAD(P)H-oxidase activity (p <0.05)
and nuclear translocation of NF-jB (p <0.05). Adcy3 (adenylate
cyclase 3), a membrane-associated enzyme that catalyses the
formation of the secondary messenger cAMP which plays an
essential role in stimulating cardiac contractility, was significantly
decreased in the cirrhotic heart (p <0.05). These changes resulted
in a significant reduction in cardiac contractility in cirrhotic rats
compared to controls (p <0.01). Albumin infusion reversed these
changes in the cardiac tissue of cirrhotic rats to control levels (all p
<0.05) and significantly increased cardiac contractility.

Bile acids
Bile acids suppress cardiac function and play an important
pathogenic role in CCM.92 There are many ways to manipulate
the serum content of bile acids and improve cardiac function. For
example, cholestyramine, a bile acid-binding resin, significantly
decreases serum bile acids and improves cardiac function.92

Taurine although not a bile acid is abundant in bile. It protects
the murine heart in transverse aortic constriction-induced heart
failure93 by mitigating apoptosis, reducing myocyte hypertrophy,
fibrosis and oxidative stress. As apoptosis,94 myocyte hypertro-
phy,95 fibrosis96 and oxidative stress91 are all features of CCM,
taurine may be a useful treatment. Mousavi and coworkers84

evaluated the protective effect of taurine in a rat model of
BDL-induced CCM. They reported that taurine significantly
reduced lipid peroxidation, reactive oxygen species and protein
carbonylation in the cirrhotic heart. Cardiac total antioxidant
capacity, the ratio of reduced to oxidised glutathione and mito-
chondrial ATP content were also increased by taurine. Overall,
taurine alleviated oxidative stress and improved mitochondrial
function in the BDL cirrhotic heart.84 Furthermore, taurine led to
a reduction in markers of liver and heart injury.

Galectin-3 inhibitor
Galectin-3 is significantly increased in patients with cirrhosis97

and animal models.22 Various studies implicate a pathogenic
role of galectin-3 in non-cirrhotic types of cardiac dysfunction.
Increased galectin-3 is associated with both systolic98 and dia-
stolic dysfunction.99 van Kimmenade and colleagues100 revealed a
correlation between galectin-3 and heart failure. The infusion of
recombinant galectin-3 into thepericardial space in rats depresses
LVEF, reduces the amplitude of the negative slope of dP/dtmax and
JHEP Reports 2024
leads to fractional shortening.101N-acetyllactosamine, a galectin-3
inhibitor, significantly reduces cardiac fibrosis and inflamma-
tion,102 and improves left ventricular function, consequently
reducing the risk of heart failure.103 We previously demonstrated
thatN-acetyllactosamine downregulates galectin-3, decreases the
cardiac level of TNFa and improves cardiac function in cirrhotic
rats.22 Therefore, our results imply that galectin-3 inhibition may
be a potential therapeutic strategy.

Exercise
Exercise benefits many patients with different conditions. For
example, exercise improves cardiopulmonary function in pa-
tients with coronary artery diseases.104 de Souza et al. used85 TAA
to induce cirrhosis in rats and reported that the TAA + exercise
group had significantly milder liver injury compared with TAA
control rats. Furthermore, exercise alleviated cirrhosis-associated
cardiac remodelling, such as the diastolic and systolic left ven-
tricular diameters, and improved systolic and diastolic dysfunc-
tion. These data indicated that exercise training alleviates the
CCM phenotype in TAA-cirrhotic rats.

Human studies
As there is no proven specific treatment for CCM, management of
patients with CCM should concentrate on symptomatic treatment
of CHF, e.g. with oxygen therapy, sodium restriction, and di-
uretics.105 Besides reducing the risk of bleeding from oesophageal
varices,106 b-blockers alleviate systemic inflammation by reducing
portal pressure, mesenteric venous congestion and intestinal
permeability, thereby reducing the entry of inflammatory cyto-
kines into the circulation. The alleviation of systemic inflamma-
tion may benefit the heart.107 Moreover, b-blockers shorten the
QTc interval in cirrhosis106 and thus decrease the risk of ventric-
ular arrhythmias. However, a six-month randomised-controlled
trial demonstrated that b-blockers do not improve cardiac
morphology and function in patients with CCM.108 Moreover,
Alvarado-tapias et al.109 found that b-blockers may reduce survival
in patients with decompensated cirrhosis. Giannelli et al.78

investigated the therapeutic role of non-selective b-blockers
(NSBBs) in patients with refractory ascites and found that NSBBs
increase mortality in patients with compromised cardiac perfor-
mance on the liver transplantation waiting list; patients with re-
fractory ascites are at higher risk of compromised cardiac
performance.

There is a “window theory” on the use of NSBBs in patients
with cirrhosis.110 Sympathetic nervous system activity is near
normal in early stage cirrhosis, thus NSBBs may not be effective;
in advanced stages of cirrhosis, NSBBs may not be appropriate
because they reduce cardiac contractility and arterial pressure.
The window phase is thus between “too early and too late”.
However, the time points at which the window “opens and
closes” remain unclear.

Fukuta et al.performed ameta-analysis and found that exercise
training improves exercise capacity, quality of life,111 and clinical
outcomes112 in patients with heart failure. This may also apply to
patients with CCM. Yuan et al.113 evaluated cardiac health in pa-
tients with hepatitis B virus-related cirrhosis and suggested that
physical exercise should be emphasised in the daily routine of
patients with cirrhosis to improve exercise tolerance and general
well-being. Clinicians should highlight the beneficial effect of
exercise on improving quality of life in patients with CCM.
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Because CCM is based on cirrhosis, the substitution of a
diseased liver for a healthy one may reverse CCM, and liver
transplantation is currently the only effective treatment option.
There is relatively little literature on transplantation correcting
CCM but current evidence suggests that this is indeed the
case.105 However, a detailed discussion of transplantation is
beyond the scope of this review.79

Future perspectives: 5-year timeline
We believe the most pressing needs over the next 5 years are
three important areas. First, long-term prospective studies,
preferably multicentric, that examine outcomes such as mortal-
ity and relevant complications including renal dysfunction,
bleeding and decompensation risk, and other complications
potentially related to CCM are needed. These studies should
address whether the old or the new diagnostic criteria are su-
perior predictors of clinically relevant outcomes.

Second, refinement of diagnostic imaging methods, in
particular whether echocardiography is sufficient or if MRI
cardiography provides useful additional information, should be
JHEP Reports 2024
tested prospectively. In this regard, the ILTS (International Liver
Transplant Society) Cardiovascular Special Interest Group
is currently considering the possibility of a multicentre pro-
spective study comparing echocardiography and MRI cardiac
scanning.

Finally, clinical studies should be performed to assess the
safety and efficacy of treatment modalities that have shown
promise in animal studies.

Conclusions
We have reviewed the latest advances in cardiac imaging
including echocardiography and MRI methods. The new 2019
diagnostic criteria seem to be superior to the 2005 criteria, but
further studies are needed. Although prolonged QT is found in a
significant subset of patients with cirrhosis, whether it should be
one of the diagnostic criteria for CCM remains unresolved to
date. Finally, animal studies suggest a number of potential
treatment avenues to explore in the future. However, at present,
liver transplantation appears to be the only therapeutic strategy
that is effective in treating CCM.
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