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The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) play
crucial roles in vasculogenesis and angiogenesis. Angiogenesis is an important
mechanism in many physiological and pathological processes, and is involved in
endothelial cell proliferation, migration, and survival, then leads to further tubulogenesis,
and finally promotes formation of vessels. This series of signaling cascade pathways
are precisely mediated by VEGF/VEGFR-2 system. The VEGF binding to the IgD2
and IgD3 of VEGFR-2 induces the dimerization of the receptor, subsequently the
activation and trans-autophosphorylation of the tyrosine kinase, and then the initiation
of the intracellular signaling cascades. Finally the VEGF-activated VEGFR-2 stimulates
and mediates variety of signaling transduction, biological responses, and pathological
processes in angiogenesis. Several crucial phosphorylated sites Tyr801, Try951,
Try1175, and Try1214 in the VEGFR-2 intracellular domains mediate several key
signaling processes including PLCγ-PKC, TSAd-Src-PI3K-Akt, SHB-FAK-paxillin, SHB-
PI3K-Akt, and NCK-p38-MAPKAPK2/3 pathways. Based on the molecular structure
and signaling pathways of VEGFR-2, the strategy of the VEGFR-2-targeted therapy
should be considered to employ in the treatment of the VEGF/VEGFR-2-associated
diseases by blocking the VEGF/VEGFR-2 signaling pathway, inhibiting VEGF and
VEGFR-2 gene expression, blocking the binding of VEGF and VEGFR-2, and preventing
the proliferation, migration, and survival of vascular endothelial cells expressing
VEGFR-2.

Keywords: VEGF, VEGFR-2, structure, function and role, vasculogenesis, angiogenesis

INTRODUCTION

In organism, various physiological and pathological processes are involved in vasculogenesis,
angiogenesis, and formation and maintenance of new blood vessel structures, including embryonic
development (Vallon et al., 2014), tissue growth and wound healing (Ivkovic et al., 2003),
tumorigenesis (Yehya et al., 2018), rheumatoid arthritis (Marrelli et al., 2011), diabetic retinopathy
(Crawford et al., 2009; Cheng and Ma, 2015), axon growth (Klagsbrun and Eichmann, 2005), cancer
(Hanahan and Folkman, 1996; Rajabi and Mousa, 2017; Li et al., 2020), and inflammation (Alkim
et al., 2015), which are stimulated by a variety of factors, including basic fibroblast growth factor
(bFGF) (Iwasaki et al., 2004), vascular endothelial growth factor (VEGF) (Hoeben et al., 2004;
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Nilsson and Heymach, 2006), platelet-derived growth Factor
(PDGF) (Lindahl et al., 1999), ephrin-Eph receptors (Zhang
and Hughes, 2006), angiopoietin-1 (Yin et al., 2020), hepatocyte
growth factor (HGF) (Kaga et al., 2012), transforming growth
factor-β (TGF-β) (Ferrari et al., 2009), and interleukin 6 (IL-6)
(Gopinathan et al., 2015), etc. VEGFs and their receptors
(VEGFRs) are currently the most important and specific factors
to stimulate endothelial cell proliferation, regulate both the
development of blood vessels from precursor cells during early
embryogenesis and the formation of blood vessels from pre-
existing vessels at a later stage, and increase vascular permeability
and chemotaxis of vascular endothelial cells (Ferrara and Kerbel,
2005; Benedito et al., 2012; Chen et al., 2013). The VEGF and its
receptor VEGFR have been reported to play crucial roles not only
in physiological but in most pathological angiogenesis.

Vascular endothelial growth factors are important signaling
molecules involved in both vasculogenesis and angiogenesis that
are the two distinct processes by which new vascular network are
formed during embryonic development (Drake et al., 2000). The
vasculogenesis is a fundamental process of blood vessel system
formation in the embryo, occurring by a De novo synthesis and
differentiation of endothelial precursor cells into endothelial cells,
and it is the first stage of the formation of the vascular network.
The angiogenesis is a vital physiological process of growth of new
capillaries through which the pre-existing vasculatures formed
in the earlier stage of the vasculogenesis continue to grow,
sprout, split, and grow (Drake et al., 2000). VEGF is crucial
to ensure normal vascular morphogenesis, especial to increase
the number of capillaries in angiogenesis. The embryos lacking
a single VEGF allele exhibit abnormal vascular development
and lethality (Carmeliet et al., 1996; Ferrara et al., 1996).
The VEGF and its receptor VEGFR have been shown to play
important roles in many angiogenic processes not only in normal
physiological conditions but in most pathological conditions,
such as embryonic development, axon growth, cancer, and
inflammation (Hanahan and Folkman, 1996; Risau, 1997; Bellon
et al., 2010). VEGF is a sub-family of the cystine-knot growth
factor PDGF supergene family. All members of the VEGF family
can stimulate cellular responses by binding to their tyrosine
kinase receptors (VEGFRs) on the cell surface.

Currently, the human VEGF/VEGFR system is composed
of VEGF-A (also VEGF), VEGF-B, VEGF-C, VEGF-D, and
PGF (placental growth factor), three main VEGF receptors
VEGFR-1 (Flt-1), VEGFR-2 (KDR), VEGFR-3 (Flt-4), and two
non-protein kinase co-receptors neuropilin-1 and neuropilin-2
(NRP-1 and -2) (Rahimi, 2006; Shibuya, 2011). The VEGFR-1
and VEGFR-2 regulate angiogenesis and vascular permeability,
and the VEGFR-3 mainly regulates lymphangiogenesis (Alitalo
and Carmeliet, 2002). Among them, VEGFR-2 is mainly
distributed in vascular endothelial cells and acts as major signal
transducer for angiogenesis by PLCγ-PKC-MAPK, PLCγ-PKC-
eNOS-NO, TSAd-Src-PI3K-Akt, SHB-FAK-paxillin, SHB-PI3K-
Akt, and NCK-p38-MAPKAPK2/3 pathways (Wong and Jin,
2005; Shibuya, 2011). The VEGF/VEGFR system is an important
target for anti-angiogenic therapy in cancer and for pro-
angiogenic therapy in neuronal degeneration and ischemic
diseases (Yang et al., 2018). Here, the molecular structures,

physiological functions, and pathological roles of VEGFR-2 and
its regulation mechanisms of signal transduction have been
analyzed and reviewed.

VEGFR-2 STRUCTURAL
CHARACTERISTICS AND FUNCTION

Vascular endothelial growth factors are main regulators in
vasculogenesis and angiogenesis and play their roles by binding to
VEGFRs on cell surface and activating subsequently the signaling
pathways of angiogenesis. The VEGFR-2 is the major receptor of
VEGF, expresses in vascular endothelial cells, and plays a major
role in angiogenesis (Bellon et al., 2010; Leppanen et al., 2010).

VEGFR-2 Molecular Characteristics
Human VEGFR-2, a kinase insert domain containing receptor
(KDR) gene, is located at chromosome locus 4q11-12 and
encodes 1356 amino acids of the full-length receptor (Park et al.,
2018). Mature VEGFR-2 is a transmembrane glycoprotein with
a molecular weight of 230 kD (Figure 1; Takahashi and Shibuya,
1997). The other two forms of VEGFR-2 are the non-glycosylated
form with a molecular weight of 150 kD and the intermediate
form with a molecular weight of 200 kD (Shen et al., 1998).
Only the mature glycosylated form of VEGFR-2 (KDR) can
achieve intracellular signal transduction (Shibuya, 2013). Mouse
VEGFR-2 is also called fetal liver kinase 1 (Flk-1), which is
composed of 1367 amino acids and has 83% homology with
human KDR, and has three forms, molecular weight of 180, 200,
and 220 kD, respectively.

VEGFR-2 is mainly distributed in vascular endothelial
cells, lymphatic endothelial cells, and embryonic precursor
cells, and can bind to VEGF-A, VEGF-C, and VEGF-D. By
binding and activating VEGFR-2, VEGF mediates endothelial
cell proliferation, invasion and migration, and survival,
and increases vascular permeability and neovascularization
(Holmes et al., 2007).

VEGFR-2 Molecular Structure
The full-length VEGFR-2 is composed of 1356 amino acids
including a signal peptide (1∼19 aa) and a mature protein
(20∼1356 aa). As a mature transmembrane protein, the VEGFR-
2 is divided into extracellular domain (ECD, 20∼764 aa),
transmembrane domain (TMD, 765∼789 aa), juxtamembrane
domain (JMD, 790∼833 aa), catalytic tyrosine kinas domain
(TKD, 834∼1162 aa) including ATP binding domain (TKD1,
834∼930 aa), kinase insert domain (KID, 931∼998 aa) and
phosphotransferase domain (TKD2, 999∼1162 aa), and a flexible
C-terminal domain (CTD, 1163∼1356 aa) (Table 1 and Figure 1).

The ECD is composed of 7 immunoglobulin-like subdomains,
IgD1 (46∼110 aa), IgD2 (141∼207 aa), IgD3 (224∼320 aa), IgD4
(328∼414 aa), IgD5 (421∼548 aa), IgD6 (551∼660 aa), and IgD7
(667∼753 aa) (Figure 1A; Fuh et al., 1998). Investigation have
showed that the IgD1 is involved in regulating the binding of
receptors to ligands; while the IgD2 and IgD3 are required for
tight binding to the dimeric VEGF and VEGF-induced VEGFR-
2 dimerization and activation; the IgD2 and IgD4 can affect the
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FIGURE 1 | The molecular structure of VEGF/VEGFR-2. (A) Diagram of the VEGFR-2 structure. VEGFR-2 is composed of a signal peptide, a extracellular domain
(ECD) including seven Ig-like subdomains (IgD1∼7), a TMD, a JMD, a catalytic tyrosine kinas domain (TKD) including ATP binding domain (TKD1), kinase insert
domain (KID) and phosphotransferase domain (TKD2), and a flexible C-terminal domain (CTD), and many functional sites. (B) VEGF-activated VEGFR-2 homodimer.
After VEGFs binding to VEGFR-2, the crucial tyrosine residues on the TKD have been phosphorylated and are involved in mediating downstream signaling pathways.
(C) Molecular structure of VEGF-A binding to IgD2 and IgD3 of VEGFR-2 [PDB ID: 3V2A (Brozzo et al., 2012)]. (D) Molecular structure of TKD of VEGFR-2 including
TKD1 (N-lobe), KID, and TKD2 (C-lobe) [PDB ID: 4ASD (McTigue et al., 2012)]. There are three important motifs: glycine-rich loop (blue, 841–846 aa), catalytic loop
(red, 1026–1033 aa), and activation loop (green, 1045–1075 aa), and three crucial phosphorylation sites (spheres) on the TKD: Tyr951 on the KID, and Tyr1054 and
Try1059 on the TKD2.

binding rate of the ligand; the IgD5 and IgD6 may be involved in
affect the receptor molecules unbinding from the ligands; and the
IgD7 plays a crucial role in receptor dimerization and regulation
(Figures 1B,C; Shinkai et al., 1998; Di Stasi et al., 2019).

The TKD is the most conserved region among VEGFRs (Park
et al., 2018). This protein kinase core of the VEGFR-2 has a
two-lobed spatial structure that forms the active center between
the both lobes. At the N-terminus of the intracellular tyrosine
kinas domain, there is a hydrophobic pocket containing a glycine-
rich (GXGXXG, 841∼846 aa) ATP phosphate binding loop in
the β-sheet structures. At the TKD C-terminal, there are several
α-helical structures, including a catalytic loop (HRDLAARN,
1026∼1033 aa), and activation loop (A-loop, 1045∼1075 aa),
which play important roles for VEGFR-2 catalytic properties
(Tables 1, 2 and Figures 1A,D).

In the human VEGFR-2, there are 18 N-linked glycosylation
sites, 15 phosphorylation sites, and many ATP binding sites
and substrate binding sites, which play important roles in
post-translational modifications of VEGFR-2, protein folding,
protein activation, and cellular attachment, and can further

modulate the function of VEGFR-2 (Croci et al., 2014; Chandler
et al., 2019; Chung et al., 2019).

Mechanism of VEGFR-2 Activation
VEGFR-2 is activated by VEGF-A, -C, and -D binding to
its Ig-like domains 2 and 3 (Figure 1C). Similar to other
receptor tyrosine kinases (RTKs), cellular signaling mediated
by VEGFR-2 is stimulated and initiated upon binding
of its ligand dimer to the extracellular receptor Ig-like
domains 2 and 3 (Ruch et al., 2007). This ligand-receptor
interaction causes VEGFR-2 homo- and hetero-dimerization
followed by phosphorylation of specific tyrosine residues
located in the intracellular region including juxtamembrane
domain, tyrosine kinas domain, and the carboxy-terminal
domain. Subsequently, a variety of signaling molecules are
recruited to VEGFR-2 dimers that activate downstream
signaling pathways, and ultimately affect the physiological
characteristics of endothelial cells and the entire vascular
environment (Figure 2A; Fuh et al., 1998; Ruch et al., 2007;
Ma et al., 2011).
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TABLE 1 | The structures and functions of the VEGFR-2 domains.

Domains Structure characteristic Functions and roles

ECD 20∼764 aa Plays a central role in VEGF binding, trafficking, stabilizing, and
pro-angiogenic signaling in physiological and pathological condition by the
IgD2 and IgD3, and the N-glycosylation sites.

The extracellular domain including 7 Ig-like subdomains (IgD1∼7)
connected by the linkers, and 18 potential N-glycosylation sites

TMD 765∼789 aa Regulates VEGFR-2 kinase activity, specific orientation of the intracellular
kinase domains in active VEGFR-2 dimers, and dimerization of the receptor
monomers with specific orientations.

A single transmembrane α-helical

JMD 790∼833 aa Plays a crucial role for the autophosphorylation rate of VEGFR-2.
Unphosphorylated JMD autoinhibits kinase activity by the site Y801
interacting with the activation loop in the kinase domain.

A flexible intracellular regulatory region including the first phosphorylation
site Y801 of VEGFR-2

TKD 834∼1162 aa Contains the catalytic site of VEGFR-2 and is involved in VEGFR-2
activation and signaling by its multiple phosphorylation sites and
VEGFR-2-mediate cellular signaling, and regulation of endothelial cell
survival, proliferation, cell migration, and the vascular tube formation.

The catalytic tyrosine kinas domain contains three subdomains:
• TKD1 (834∼930aa), an ATP binding domain including a hydrophobic
pocket with a glycine-rich motif
• KID (931∼998aa), a kinase insert domain including a phosphorylation site
Y951
• TKD2 (999∼1162aa), a phosphotransferase domain including two sites
Y1054 and Y1059, a catalytic loop and an activation loop

CTD 1163∼1356 aa Is critical for VEGFR-2 activation and signaling and is involved in
VEGFR-2-mediate cellular signaling and endothelial cell survival,
proliferation, cell migration, and permeability of vascular endothelial cells.

The carboxyl terminus domain including two important autophosphorylation
sites Y1175 and Y1214

The ECD Is Required for VEGFR-2
Dimerization
The extracellular domain (ECD) of VEGFR-2 consists of several
Ig-like subdomains, the linkers connecting these subdomains,
and multiple N-linked glycosylation sites, which play important
roles in formation of VEGF/VEGFR-2 system, in receptor
dimerization after with ligand binding, and in maintain of the
monomeric VEGFR-2 in the absence of ligand (Table 1). Each
VEGF monomer is composed of two α-helix and five β-sheets that
forms a central antiparallel beta sheet. In VEGF-A, a canonical
cysteine knot formed by three intramolecular disulfide bridges
Cys263-Cys308, Cys267-Cys310, and Cys232-Cys274, and two
receptor binding sites and dimerization interface sites are critical
for VEGF binding to VEGFR-2 and subsequently VEGFR-2
dimerization (Figure 2B).

In the ECD of VEGFRs, the ability to bind to its ligand is best
studied at the biochemical and the structural level. For VEGFR-2,
the ligands binding to VEGFR-2 required two Ig-like subdomains
2 and 3 (IgD2 and IgD3), and the stabilization of VEGF-bound
VEGFR-2 dimers and VEGF-mediated VEGFR activity required
Ig-like subdomains 4∼7 (IgD4∼7) (Li et al., 2000; Yang et al.,
2010). As a N-glycosylated RTK, VEGFR-2 has 18 potential
N-glycosylation sites in the seven Ig-like subdomains, which
play a central role in RTK ligand binding, trafficking, stabilizing,
and pro-angiogenic signaling in physiological and pathological

contexts, including cancer (Table 2 and Figure 1; Croci et al.,
2014; Chandler et al., 2017, 2019).

The TMD and JMD Is Crucial for
Regulating VEGFR-2 Activity
The transmembrane domain (TMD) and juxtamembrane
domain (JMD) of VEGFR-2 have been shown to play pivotal
roles in regulating VEGFR-2 kinase activity (Solowiej et al., 2009;
Koch and Claesson-Welsh, 2012; Table 1).

Investigations on the role of the TMD in VEGFR-2 signaling
showed that the activation of VEGFR-2 may depend on specific
orientation of the receptor monomers in an active dimer
resulting from VEGF-induced ECD rearrangement, and the
TMD is involved in dimerization of the receptor monomers
with specific orientations (Moriki et al., 2001; Bennasroune
et al., 2004; Holmes et al., 2007; Manni et al., 2014b). The JMD
of VEGFR-2 has the first phosphorylation site Y801, which is
crucial for the autophosphorylation rate of VEGFR-2 (Solowiej
et al., 2009). The unphosphorylated JMD autoinhibits kinase
activity by interacting with the activation loop (A-loop) in the
kinase domain 2 (TKD2). Therefore, the phosphorylated JMD
at specific tyrosine residue Y801 may disrupt this interaction
with the A-loop, promote reorientation of the activation loop,
and induce an enzymatically active conformation (Table 2 and
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TABLE 2 | Functional sites and motifs in VEGFR2.

Sites and motifs Location Function

N-linked glycosylation sites:
Asn46, 66, 96, 143, 158, 245, 318, 374, 395, 511, 523, 580, 613,
619, 631, 675, 704, and 721

ECD These sites play a central role in RTK ligand binding, trafficking, stabilizing, and
pro-angiogenic signaling in physiological and pathological contexts.

Phosphorylation sites:
Tyr801 JMD Y801 is crucial for the autophosphorylation rate of VEGFR-2, and phosphorylated

Y801 disrupts the interaction of JMD with the A-loop, promotes reorientation of the
activation loop, and induces an enzymatically active conformation.

Tyr951 KID Y951 is phosphorylated on VEGFA stimulation, and phosphorylated Y951 at the
TKD of VEGFR-2 can bind TSAd, activate formation of TSAd and Src complex,
subsequently regulate cell migration and mediate cell survival and permeability.

Tyr1054 TKD2 Y1054 and Y1059 sites are located in the TKD2 A-loop and play crucial role in
kinase activity, and phosphorylated Y1054 and Y1059 increase the VEGFR-2 kinase
activity.

Tyr1059
Tyr1175 CTD Y1175 and Y1214 are critical for VEGFR-2 activation and signaling and are involved

in VEGFR-2-mediate cellular signaling, and phosphorylated Y1175 mediates the
binding of VEGFR-2 with PLCγ, PI3K, and adapter proteins SHB and SCK and
phosphorylated Y1214 mediates the binding of VEGFR-2 with adapter protein NCK,
and the both of pY1175 and pY1214 finally directly activate VEGFR-2 to promote
the proliferation, migration, and permeability of vascular endothelial cells.

Tyr1214
Others phosphorylation sites:
Ser982, Ser984, and Tyr996 KID They are potential phosphorylation sites and may be involved in VEGFR-2 activation

and signaling.
Ser1231, Ser1235, and Thr1238 CTD
Tyr1305, Tyr1309, and Tyr1319 CTD
Functional motifs:
Glycine-rich (G841XGXXG) (841∼846 aa) TKD1 The glycine-rich forms a functionally important ATP phosphate binding loop, which

is a flexible segment whose position differs among kinase structures in various
activated and liganded states.

Catalytic loop (H1026RDLAARN) (1026∼1033 aa) TKD2 The catalytic loop contains an invariant aspartic acid residue (D1028) that is
essential for catalysis of the phosphotransferase reaction. The catalytic loop is
highly conserved among protein tyrosine kinases.

Activation loop (A-loop) (1045∼1075 aa) TKD2 The activation loop is a large flexible loop in protein kinases and contains two
tyrosines Y1054 and Y1059, whose conformation is postulated to regulate kinase
activity.

Figures 1A,B; Wybenga-Groot et al., 2001; Walter et al., 2007;
Solowiej et al., 2009).

The TKD Mediates VEGFR-2 Cellular
Signaling
The activation of VEGFR-2 upon its VEGFs-mediated
dimerization allows the TKD transphosphorylation, and
then mediates cellular signaling, and regulates endothelial cell
survival, proliferation, cell migration, and the vascular tube
formation (Koch et al., 2011; Table 1). The VEGFR-2 TKD
contains three subdomains, TKD1, an ATP binding domain,
KID, the kinase insert domain, and TKD2, a phosphotransferase
domain. The TKD is involved in VEGFR-2 activation and
signaling by its multiple phosphorylation sites (Figures 1B,D).

In VEGFR-2 TKD, there are several major phosphorylation
sites involved in cellular signaling mediated by TKD, including
Tyr951 (Y951) in the KID and Try1054 (Y1054) and Try1059
(Y1059) in the TKD2, which is phosphorylated for the kinase
activation (Takahashi et al., 2001; Matsumoto et al., 2005;
Table 2). The Y951 site is phosphorylated on VEGFA stimulation,
and the phosphorylated Y951 is indispensable for downstream

signaling by the activated kinase (Matsumoto et al., 2005). The
Y1054 and Y1059 sites are located in the TKD2 A-loop and
play crucial role in kinase activity, whose autophosphorylation
resulted by autophosphorylation at Y801 site increases the
VEGFR-2 kinase activity (Figures 1B,D; Kendall et al., 1999;
Solowiej et al., 2009).

The CTD Is Critical for VEGFR-2
Activation and Signaling
The carboxyl terminus domain (CTD) is critical for VEGFR-
2 activation and signaling. In VEGFR-2 CTD, there are two
important autophosphorylation sites Try1175 (Y1175) and
Try1214 (Y1214) (Table 1 and Figures 1B,D). After VEGF-A
binding to VEGFR-2, activation of VEGFR-2 phosphorylates
the Y1175 and Y1214 (Sase et al., 2009; Table 2). Then, the
VEGF-activated VEGFR-2 bind to several signaling molecules
such as PLCγ (Takahashi et al., 2001), PI3K (Kim et al., 2019),
and adapter proteins SHB and SCK (Warner et al., 2000;
Holmqvist et al., 2004) by the phosphorylated Try1175 site
(pY1175), and adapter protein NCK (Lamalice et al., 2006)
by the phosphorylated Try1214 site (pY1214), which directly
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FIGURE 2 | VEGF/VEGFR-2 mediated signaling pathways during angiogenesis. (A) Diagram of VEGF-activated VEGFR-2 homodimer. Several crucial tyrosine
residues have been phosphorylated after VEGFs binding to VEGFR-2. The Try801 on JMD is involved in cell permeability and proliferation by mediating the
PLCγ-PKC, then eNOS-NO or MEK-ERK, respectively. The Try951 on KID mediates the cell survival and permeability via the TSAd-Src-PI3K-Akt pathway. The
Try1054 and Try1059 on TKD2 can increase VEGFR-2 kinase activity. The Try1175 is involved in cell permeability, proliferation, and migration by regulating
PLCγ-PKC, SHB-FAK-paxillin, and SHB-PI3K-Rac pathways. The Try1214 mediates cell migration through NCK-p38-MAPKAPK2/3 pathway. (B) Structure-based
sequence alignment of PDGF-derived regions of the VEGF family members, includes human VEGF-A (NP_003367), human VEGF-B (NP_003368), human VEGF-C
(NP_005420), human VEGF-D (NP_004460), human PGF (placental growth factor) (NP_002623), Orf virus orfVEGF (VEGF-E) (ABA00650), and Snake venom
svVEGF (BAD38844), which are composed of two α-helix and five β-sheets. There are functional sites, including receptor binding site 1 (blue arrow) and site 2 (green
arrows), cysteine knot motifs (red closed circles) that form three disulfide bridges including Cys263-Cys308, Cys267-Cys310, and Cys232-Cys274 in VEGF-A, and
dimerization interface sites (orange stars).

activate VEGFR-2 to promote the proliferation, migration, and
permeability of vascular endothelial cells (Figure 2A; Koch and
Claesson-Welsh, 2012; Manni et al., 2014a).

VEGFR-2 MEDIATED CELLULAR
SIGNALING

The VEGF/VEGFR-2 signaling is essential for the development
and maintenance of the organ-specific vascular systems and
physiological function of many tissues and plays important
roles in the pathogenesis of diseases such as cardiovascular
disease and cancer. The VEGFR-2 has been proved to mediate
various VEGF-stimulated cellular signal transduction including
endothelial cell survival, proliferation, migration, and to enhance
vascular permeability (Holmes et al., 2007; Siveen et al., 2017).

VEGFR-2 Is Involved in Regulating the
Survival of Endothelial Cells
The VEGFR-2 plays crucial roles in vascular endothelial cell
survival and blood vessel formation in vivo (Sase et al.,
2009). VEGFR-2 regulates endothelial cell survival mainly by
the activation of TSAd-Src-PI3K-PKB/AKT signaling pathway

(Figure 2). Depending on VEGFR-2 and subsequent activated
PI3K, VEGF-A regulates the survival of human umbilical vein
endothelial cells. The PI3K can catalyze creation of PIP3 from
PIP2, and then phosphorylate and activate protein kinase B
(PKB) and Akt pathway (PKB/Akt pathway) (Downward, 2004).
The Akt directly phosphorylates two types of apoptosis proteins:
Bcl-2 associated death promoter (BAD) and caspase 9, and
then inhibits their apoptotic activity to ensure cell survival
(Lee et al., 2014).

VEGFR-2 Is Required for Mediating the
Proliferation of Endothelial Cells
VEGFR-2 plays a critical role in endothelial cell proliferation
during angiogenesis. Through the VEGFR-2 on the cell
membrane, the VEGF-A, a mitogen of many endothelial cells,
can transmit extracellular signals to the cytoplasm and activate
a series of downstream signaling pathways, and regulate the
proliferation of endothelial cells. VEGFR-2 is mainly through the
PLCγ-PKC-Raf-MEK-MAPK signaling pathway, and transmits
the VEGF signal to the nucleus to activate DNA synthesis
and promote the proliferation of endothelial cells (Takahashi
et al., 1999; Figure 2). The VEGFR-2 can bind and activate
phospholipase C-γ (PLCγ) by phosphorylation of the C-terminal

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 November 2020 | Volume 8 | Article 599281

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-599281 November 10, 2020 Time: 15:50 # 7

Wang et al. VEGFR-2 in Angiogenesis

Y1175 of VEGFR-2, and then phosphorylate the PLCγ and
enhance its catalytic activity (Takahashi et al., 2001; Sase et al.,
2009). The activated PLCγ hydrolyzes phosphatidylinositol (4,
5)-bisphosphate (PIP2) and then produces diacylglycerol (DAG)
and inositol 1, 4, 5-trisphosphate (IP3), in which IP3 can increase
the intracellular Ca2+ concentration, and DAG is a physiological
activator of PKC. The ERK in the PKC-Raf-MEK-ERK signaling
cascade is activated by the VEGF-activated VEGFR-2, enters the
nucleus, and then binds to transcription factors that induce gene
expression in response to extracellular stimuli. Finally, VEGFR-
2 is involved in the endothelial cell proliferation (Holmes et al.,
2007; Rask-Madsen and King, 2008).

VEGFR-2 Is Closely Related to the
Migration of Endothelial Cells
The migration of endothelial cells is crucial for angiogenesis.
A variety of signal pathways mediated by VEGFR-2 are related
to the migration of endothelial cells. VEGFR-2 has been proved
to regulate cell migration by activating SHB, NCK, and PI3K
mediated pathway via the both phosphorylation sites Y1175
and Y1214 on VEGFR-2 CTD (Laramee et al., 2007; Graupera
et al., 2008). The phosphorylated Tyr1175 (pY1175) site at
the CTD of VEGFR-2 can bind the Src homology domain-2
(SH2) of the adaptor protein SHB and regulate cell migration
caused by VEGF (Holmqvist et al., 2004; Figure 2). The
downregulated expression of SHB can prevent VEGF/VEGFR-
2-mediated cell scaffold reorganization, migration, and PI3K
activation (Masoumi Moghaddam et al., 2012; Park et al.,
2018). The phosphorylated Tyr951 (pY951) site at the TKD
of VEGFR-2 can bind T-cell-specific adapter (TSAd) in the
vascular endothelial cells of tumor tissue (Matsumoto et al.,
2005), activate formation of TSAd and Src complex, and
subsequently regulate cell migration. Site-directed mutation of
Tyr951 on VEGFR-2 can inhibit VEGF-mediated cytoskeletal
reorganization and migration (Cebe-Suarez et al., 2006). While
the phosphorylated Tyr1214 (pY1214) site at the C-terminus
domain of VEGFR-2 is involved in the remodeling of actin
by VEGFR-2 mediated NCK/Src-p21/Cdc42-SAPK2/p38-MAPK
pathway (Lamalice et al., 2004, 2006).

VEGFR-2 Enhances Vascular
Permeability
The VEGF-A acts as a vascular permeability factor and its
signal can activate endothelial nitric oxide synthase (eNOS)
to create NO, and then change vascular permeability (Holmes
et al., 2007). VEGF-activated VEGFR-2 can stimulate vascular
endothelial cells to release NO, in which the phosphorylation of
the Try801 (pY801) residue at the JMD of VEGFR-2 is necessary
for the release of NO induced by VEGF, and the pY801 activates
eNOS mainly by the PKC-PI3K/Akt pathway (Blanes et al., 2007;
Figure 2). VEGFR-2 mediated signals can promote eNOS binding
to its molecular chaperone heat shock protein 90 (Hsp90), and
then enhance the release of NO by endothelial cells (Duval
et al., 2007). VEGFR-2 can also mediate effect of lowering blood
pressure via increased permeability of blood vessels and relaxed
of blood vessels caused by VEGF-A (Gliki et al., 2001).

VEGFR-2 PHYSIOLOGICAL FUNCTIONS
AND PATHOLOGICAL ROLES

In organism, many angiogenic proteins are involved in the
stimulation of angiogenesis including EphrinB2/EphB4 (Groppa
et al., 2018), fibroblast growth factors (FGFs) (Maddaluno
et al., 2017), VEGFs/VEGFR-2 (Basagiannis et al., 2016),
angiopoietin/Tie receptors (Zhang et al., 2019), and platelet-
derived growth factors (PDGFs/PDGFRs) (Zhang et al.,
2009; Manzat Saplacan et al., 2017). Among the angiogenic
proteins, VEGFs/VEGFR-2 is a crucial regulator of physiological
vasculogenesis and angiogenesis in early embryonic and adult
stages and pathological angiogenesis in tumorigenesis.

Physiological Functions of VEGFR-2
VEGFR-2 mediates the main physiological functions of VEGF.
VEGF, the vascular permeability factor (VPF), is an essential
and crucial growth factor for vascular endothelial cells, and
plays various roles in cardiovascular system (Wang et al., 2019),
central nervous system (Bellon et al., 2010; Luck et al., 2019),
hematopoiesis (Hooper et al., 2009), development (Karaman
et al., 2018), and tumorigenesis (Volz et al., 2020; Zhong et al.,
2020). Despite having so many physiological functions, the
main physiological functions of VEGF on endothelial cells are
almost all achieved by activating VEGFR-2, including stimulating
endothelial cell proliferation, increasing vascular permeability,
and chemotaxis to endothelial cells, etc. Investigations showed
that VEGFR-2 is the main receptor to mediate the increase in
vascular permeability by VEGF (Koch and Claesson-Welsh, 2012;
Smith et al., 2020). VEGFR-2 is required for VEGF-mediated
signaling and regulating. The phosphorylation of VEGFR-2
can be found on the surface of whole cell. Several important
phosphorylation sites, Try951, Try1054, Try1059, and Try1175
had been proved to be involved in this process by binding
SHB (Holmqvist et al., 2004; Smith et al., 2020), SCK (Warner
et al., 2000), PLCγ (Takahashi et al., 2001), PI3K (Blanes et al.,
2007), and TASD (Matsumoto et al., 2005) and activating their
respective signal pathway.

VEGFR-2 plays a very important role in embryonic
development. VEGF-activated VEGFR-2 stimulates endothelial
cell proliferation and is crucial to the development of the
embryonic vascular system and hematopoietic system (Hooper
et al., 2009; Han et al., 2018). During embryonic development,
the VEGFR-2 signaling pathway is involved in the proliferation,
growth, and migration of hematopoietic and early endothelial
cells (angioblasts) (Dias et al., 2000; LeCouter et al., 2004).
Several studies showed that the VEGF/VEGFR-2 signaling
directly regulates the development and function of neurons, e.g.,
increased axon branching (Luck et al., 2019).

Pathological Rroles of VEGF-Activated
VEGFR-2
Though the VEGF/VEGFR-2 system plays important functions
in normal physiological condition, de-regulation of the
VEGF/VEGFR-2 implicates directly in various diseases, and
dysfunctional VEGFR-2 can cause developmental disorders of
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the vascular system and hematopoietic system during embryonic
development (Shibuya, 2001; Zeng et al., 2001).

VEGF-activated VEGFR-2 plays important roles in mediating
the formation of new blood vessels under various pathological
conditions and processes, including wound healing, rheumatoid
arthritis (RA), diabetic retinopathy (DR), Alzheimer’s disease
(AD), small vessel disease, coronary heart disease (CHD),
and cancer owing to its complicated molecular and structural
characteristics. The VEGFA/VEGFR-2 signal transduction leads
to endothelial cell proliferation, migration, survival and new
vessel formation involved in angiogenesis, and has been
implicated in pathogenesis of several diseases, e.g., inflammation,
cancers, ophthalmic diseases, and neurological diseases (Louveau
et al., 2015; Ferrara and Adamis, 2016; Ma et al., 2017).

VEGFR-2 is required for cardiovascular system diseases.
Investigations showed that VEGFR-2-deficient mice die in early
embryo for an early defect in the development of hematopoietic
and endothelial cells (Shalaby et al., 1995; Carmeliet et al.,
1996; Ferrara et al., 1996). VEGFR-2 is also involved in
tumor angiogenesis and lymphatic development via recruiting
endothelial cells (Dumont et al., 1998; Rafii et al., 2002).
Studies have reported that the expression of Ets-1 and Flk-1
(mouse VEGFR-2) are highly correlated in angiogenesis and
tumor angiogenesis, and are involved in stem cell leukemia
(Elvert et al., 2003).

VEGFR-2 is an important target of anti-tumor angiogenesis.
VEGF secreted by tumor cells activates its receptor VEGFR-2,
and they subsequently promote vascular growth and supply the
oxygen and nutrition into the hypoxic areas of tumor tissues
(Lugano et al., 2020). VEGF-activated VEGFR-2 mediate the
phosphorylation of many proteins in the downstream signaling
pathways, e.g., Akt (protein kinase B), mTOR (mammalian target
of rapamycin), Erk1/2 (extracellular signal-regulated kinase 1/2),
FAK (focal adhesion kinase), and p70S6K (ribosomal protein S6
kinase), and promotes tumor angiogenesis (Karar and Maity,
2011; Lechertier and Hodivala-Dilke, 2012; Ji et al., 2018).
Therefore, VEGFR-2 functions as an important target for anti-
tumor therapy (Weis and Cheresh, 2011; Fallah et al., 2019).

CONCLUSION AND PERSPECTIVES

Vascular endothelial growth factors, as the key regulators, are
involved in vasculogenesis, angiogenesis, and hematopoiesis
during development. Thay play their roles by binding to and
activating their tyrosine kinase receptors (VEGFRs) on the cell
surface. In VEGF/VEGFR-2 system, the VEGF binding to the
Ig-like subdomains 2 and 3 (IgD2 and IgD3) of VEGFR-2
induces the dimerization of the receptor, the activation and
trans-autophosphorylation of the tyrosine kinase, and then the
initiation of the intracellular signaling cascades, finally is involved
in proliferation, survival, migration, and permeability of vascular
endothelial cells.

The interaction of VEGF and VEGFR-2 is crucial for the
dimerization of VEGFR-2. In endothelial cell, the signaling by
VEGFR-2 requires VEGF-mediated dimerization with precise
positioning of VEGFR-2 subunits in active dimers. In VEGF-A,

there are a canonical cysteine knot that consists of three
intramolecular disulfide bridges Cys263-Cys308, Cys267-Cys310,
and Cys232-Cys274, and two receptor binding sites that bind
to each VEGFR-2 of the dimer and dimerization interface sites,
which are critical for the ligand binding to VEGFR-2. In VGEFR2
Ig-like subdomains, the IgD2 and IgD3 are involved in the VEGF
binding to its receptor. The dimeric VEGF/VEGFR-2 complexes
subsequently induce the dimerization of the receptor.

The dimerization of VEGFAR-2 is required for activation
of VEGFR-2. The dimeric VEGF ligands binding to diffusing
monomeric VEGFR-2 promotes dimerization of the later, and
then stimulates the activation of VEGFR-2. It is reported that
ligand-induced VEGFR-2 phosphorylation is increased as much
as 10-fold compared to the phosphorylation in the absence of
ligand (Sarabipour et al., 2016). In the active homotypic VEGFR-
2-VEGFR-2, the IgD4∼7 were proved to be critical for efficient
phosphorylation of the VEGFR-2 in the presence of VEGF,
and the TMD dimer upon ligand binding increases VEGFR-2
phosphorylation and stabilizes the VEGFR-2 dimers, indicating
that VEGF binding and VEGFR-2 dimerization are required
for its activation.

The VEGFR-2-mediated intracellular signaling are involved in
cell survival, proliferation, migration, and vascular permeability.
VEGFR-2 is the primary mediator of the physiological effects
of VEGF in angiogenesis. The VEGF binding to VEGFR-2
induces autophosphorylation of specific tyrosine residues in
the cytoplasmic domain of VEGFR-2, including the Try801
on JMD involved in cell permeability and proliferation by
mediating the PLCγ-PKC, then eNOS-NO or MEK-ERK,
respectively, the Try951 on KID mediating the cell survival
and permeability via the TSAd-Src-PI3K-Akt pathway, the
Try1054 and Try1059 on TKD2 increasing VEGFR-2 kinase
activity, the Try1175 involved in cell permeability, proliferation,
and migration by regulating PLCγ-PKC, SHB-FAK-paxillin,
and SHB-PI3K-Rac pathways, and the Try1214 mediates cell
migration through NCK-p38-MAPKAPK2/3 pathway. These
signaling networks mediated by VEGF/VEGFR-2 are involved
in regulating the process of angiogenesis, and controlling
endothelial cell survival, proliferation and motility, and vascular
fenestration and permeabilization.

The VEGFR-2-targeted therapy strategies will contribution
to clinical treatment of disease. So far, the in-depth study of
the structure and signal transduction of VEGFR-2 has made
the mechanism of related pathogenesis further elucidated and
effectively treated. VEGFR-2-targeted therapy strategies have
been widely explored and applied clinically in cancer treatment.
VEGF/VEGFR-2 signal transduction pathway is used in anti-
tumor angiogenesis. VEGF/VEGFR-2 system is involved in
various pathological conditions and processes, especially in
tumorigenesis, owing to its complicated molecular structure and
signal transduction, indicating these diseases can be considered
to employ the strategy of the VEGFR-2-targeted therapy. The
tumor microenvironment stimulates the specific expression of
VEGF and VEGFR-2 in tumor cells and endothelial cells around
the tumor, making the expression of VEGF and VEGFR-
2 significantly higher than in normal tissues, indicating that
inhibiting tumor angiogenesis by blocking the VEGF/VEGFR-2
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signaling pathway may be an effective anti-cancer treatment
strategy, including (a) inhibiting VEGF and VEGFR-2 gene
expression level by antisense oligonucleotides (ASOs), RNA
interference (RNAi), and ribozyme (Rz) (Marchand et al., 2002);
(b) blocking the binding of VEGF and VEGFR-2 in protein
level through neutralizing antibodies (nAbs), soluble VEGFR-
2 (sVEGFR-2), and small molecule inhibitor VEGF/VEGFR-2
tyrosine kinase signaling pathway (Jain et al., 2006); and (c)
destroying vascular endothelial cells through directed therapy
by VEGF combined with small molecule toxic substances or
VEGFR-2 monoclonal antibody (mAb) cross-linked with drugs
and killing or inhibiting the growth of vascular endothelial cells
expressing VEGFR-2 (Stopeck et al., 2002).
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