
Citation: Aldhyani, T.H.H.; Verma,

A.; Al-Adhaileh, M.H.; Koundal, D.

Multi-Class Skin Lesion Classification

Using a Lightweight Dynamic Kernel

Deep-Learning-Based Convolutional

Neural Network. Diagnostics 2022, 12,

2048. https://doi.org/10.3390/

diagnostics12092048

Academic Editor: Jae-Ho Han

Received: 19 July 2022

Accepted: 22 August 2022

Published: 24 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Multi-Class Skin Lesion Classification Using a Lightweight
Dynamic Kernel Deep-Learning-Based Convolutional
Neural Network
Theyazn H. H. Aldhyani 1,* , Amit Verma 2 , Mosleh Hmoud Al-Adhaileh 3 and Deepika Koundal 2

1 Applied College in Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
2 School of Computer Science, University of Petroleum & Energy Studies, Dehradun 248007, India
3 Deanship of E-Learning and Distance Education, King Faisal University,

P.O. Box 4000, Al-Ahsa 31982, Saudi Arabia
* Correspondence: taldhyani@kfu.edu.sa

Abstract: Skin is the primary protective layer of the internal organs of the body. Nowadays, due to
increasing pollution and multiple other factors, various types of skin diseases are growing globally.
With variable shapes and multiple types, the classification of skin lesions is a challenging task.
Motivated by this spreading deformity in society, a lightweight and efficient model is proposed for
the highly accurate classification of skin lesions. Dynamic-sized kernels are used in layers to obtain
the best results, resulting in very few trainable parameters. Further, both ReLU and leakyReLU
activation functions are purposefully used in the proposed model. The model accurately classified all
of the classes of the HAM10000 dataset. The model achieved an overall accuracy of 97.85%, which is
much better than multiple state-of-the-art heavy models. Further, our work is compared with some
popular state-of-the-art and recent existing models.

Keywords: deep learning; skin diseases; biomedical image; artificial intelligence

1. Introduction

The largest organ in the human body is the skin, which is composed of many layers (the
epidermis, the dermis, the subcutaneous tissues, the blood vessels, the lymphatic vessels,
the nerves, and the muscles). The ability of the skin to act as a barrier can be strengthened by
employing fluids to stop the breakdown of lipids in the epidermis. Diseases of the skin can
be brought on by a fungus that grows on the skin, bacteria that are not visible to the naked
eye, allergic responses, bacteria that change the texture of the skin, or pigmentation [1].
Chronic skin conditions can develop into cancerous tissues on rare occasions. Skin disorders
must be treated as soon as they appear to keep them from spreading and progressing [2].
Imaging-based treatments for determining the consequences of various skin diseases are
in high demand. It may take months before a patient is diagnosed with the signs of
several skin illnesses, making treatment difficult. There has been a lack of generalization in
previous dermatological computer-aided categorization works due to a lack of data and a
concentration on routine tasks such as dermoscopy, which refers to the examination of the
skin utilizing a microscope of the skin surface. Computer-aided diagnosis can be used to
diagnose skin illnesses and provide treatment based on the symptoms of patients [3]. Skin
illnesses can be accurately identified using supervisory procedures that reduce the cost of
diagnosis. The progression of sick growth is monitored using a grey-level co-occurrence
matrix. For more effective treatment and lower pharmaceutical costs, it is critical that a
diagnosis be accurate.

There is a big disparity between those who have skin illnesses and those who have the
training to treat them. Dermatologists, equipment, drugs, and researchers are among the
resources available. Those living in rural areas suffer the most from a lack of resources, ac-
cording to the World Health Organization. Automated expert systems for the classification
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of early skin lesions are necessary because of the massive imbalance between the skin pa-
tients and the expertise. In resource-constrained locations, these categorization algorithms
can aid in the early detection of skin lesions [4,5]. Computer vision algorithms have been
offered in the literature as comprehensive research solutions for early skin lesion diagnosis
and the aforementioned complexity [6]. DTs, SVMs, and ANNs are just a few examples
of the many different approaches available for classifying data [7,8]. In Reference [9], a
comprehensive evaluation of various strategies is provided. As a result, many machine
learning approaches rely on photos with low noise and high contrast that cannot be used
with skin cancer data. Color, texture, and structural traits play a role in skin classifica-
tion. As skin lesions have a significant degree of inter-class homogeneity and intra-class
heterogeneity, the classification may lead to incorrect findings with weak feature sets [10].
Since skin cancer data are not normally distributed, the usual methodologies cannot use
them because they are parametric. These approaches are ineffective since each lesion has a
unique pattern. Using deep learning approaches in skin classification, dermatologists can
accurately diagnose lesions. Deep learning’s role in medical applications has been explored
in depth in some studies [11,12].

Basal cell carcinoma, squamous cell carcinoma, and melanocyte carcinoma are the
most common subtypes of skin cancer [13]. The most prevalent kind of cancer, known as
basal cell carcinoma, is characterized by sluggish progression and does not metastasize
to other areas of the body. Because it often comes back, getting rid of it thoroughly from
the body is essential. Squamous cell carcinoma is a different type of skin cancer that can
spread to other places of the body and goes deeper into the skin than basal cell carcinoma.
When the skin is exposed to sunlight, melanocytes, the cells that make the skin dark or tan,
create melanin. Cancerous moles, which are also known as melanoma cancer, arise when
the melanin within these cells accumulates in the body. Melanocyte-based malignancies, on
the other hand, are classified as malignant and can be life-threatening due to their ability to
inflict minor damage to surrounding tissues. The ISIC Skin Imaging Collaboration is one
of the datasets that has been utilized rather frequently for the purpose of this study [14].
According to the data provided by the ISIC 2016–2020, lesions may be broken down into
the following four categories: The most frequent types of skin lesions are known as nevus
(NV), seborrheic keratosis (SK), benign (BEN), and malignant (MEL). The trunk, arms, and
legs can all display varying hues of pink, brown, and tan that indicate NV cancer. The next
kind is the SK, which, when it is not malignant, can have the appearance of a waxy brown,
black, or tan. BEN is a sort of lesion that is not malignant and does not penetrate the tissues
that are nearby, nor does it spread to other parts of the body. A lesion is said to be BEN if it
possesses both NV and SK components. MEL is a massive brown mole with dark speckles
that can bleed or change color over time. This is the final and most important point. It is a
cancer that is quite aggressive and quickly spreads throughout the body. There are several
subtypes of MEL, including acute, nodular, and superficial. The purpose of this research
is to differentiate between MEL and BEN cancers, which is the study’s primary objective.
Our major contributions are as follows: (i) An improved convolutional neural network is
proposed by using variable size kernels and activation function in the network. Moreover,
fewer numbers of kernels are used in the first three layers of the network as compared to
the last two layers, which results in efficient utilization of kernels. (ii) The ReLU activation
function is used in the first three layers of the network, whereas leakyReLU is used in the
last two layers of the convolutional neural network to improve the performance of the skin
lesion classification. (iii) Class-wise balancing of data has been performed to unbiased the
training. (iv) The model has achieved high accuracy with fewer parameters and in less
computational time as compared to other state-of-the-art models and existing works.

2. Background of Study

There is a huge number of deaths each year due to skin cancer, which is prevalent all
over the world [15]. To preserve lives, it is critical to perform early identification of this
aggressive disease. The ABCDE [16] criteria are followed by several histopathology tests
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by clinical professionals. Preprocessing, feature extraction, segmentation, and classification
are some of the standard processes that can be automated using artificial intelligence-based
algorithms. Handcrafted feature sets, which lack generalizability for dermoscopic skin
pictures, were heavily relied upon in several classification algorithms [17,18]. Because of
their similarities in color, shape, and size, lesions are highly linked, resulting in inadequate
feature information [19,20].

In order to extract features, the ABCD scoring method was applied to the data. Lesion
classification was completed by employing a combination of existing approaches. The
thickness of the lesion was used to classify melanoma in [21]. First, lesions were classified
as thin or thick, and second, they were classed as thin, medium, and thick. The logistic
regression and artificial neural networks were proposed for classification purposes. To
increase the number of lesions, a median filter was applied in a distinct manner to each of
the RGB channels [22]. In order to segregate these lesions, a deformable model was utilized.
The Chan–Vese model was used as the foundation for a segmentation approach that was
developed in [23].

A support vector machine was used to classify these features support vector machine
(SVM). The paraconsistent logic (PL) method was used by the authors to classify melanoma
(MEL) and basal cell carcinoma (BCC) [24]. They were able to determine the strength
of the evidence, the pattern of formation, and the diagnostic contrast. BCC and MEL
were distinguished using spectra with values of 30, 96, and 19, respectively. In [25], the
binary mask of ROIs was extracted using a Delaunay Triangulation. By removing the
granular layer boundary, the authors of [26] were able to identify only two lesions in
the histological pictures. Alam et al. [27] presented an SVM to automate the detection
of eczema. This was accomplished by segmenting the acquired image, choosing features
based on texture-based information for more accurate predictions, and ultimately utilizing
the support vector machine (SVM) for evaluating the advancement of eczema as reported
by I. Immagulate [28]. When dealing with noisy image data, it is inappropriate to apply
the support vector machine modeling technique [29]. When working with an SVM, it is
essential to locate parameter values that are feature-based. If there are more parameters
in each feature vector than there are data samples that were utilized for training, then its
performance will be subpar.

Artificial neural networks and convolutional neural networks (CNN) are the methods
that are employed most frequently for artificial neural networks to detect and diagnose
abnormalities in radiological imaging data [30,31]. The CNN method of diagnosing skin
diseases has produced good results [32]. This makes working with images taken on a
smartphone or digital camera difficult because CNN models are not scaled or rotation
invariant. Both neural network approaches require enormous amounts of training data to
achieve the model’s high performance, which in turn necessitates a substantial amount of
computational effort [33]. The models based on neural networks are more abstract, and we
are unable to modify them to suit our own requirements because of this. Additionally, the
number of trainable parameters in ANN skyrockets as picture resolution improves, which
necessitates massive training efforts in order to achieve accurate results. The gradient
shrinks and explodes, which causes problems for the ANN model. In CNN’s findings, the
object’s magnitude and size are not correctly interpreted [34,35].

J. Zhang et al. [35] proposed CNN for skin classification. A deep convolutional neural
network (DCNN) was used to investigate the network’s inherent ability to pay attention to
itself. With the use of attention maps at lower layers, each ARL block develops residual
learning mechanisms that help it better categorize input data. On the basis of the ISIC 2017-
19 datasets, Iqbal et al. [36] developed a DCNN model for classifying multi-class skin lesions.
In the beginning, the model transmits feature information from the top to the bottom of the
network; their model employs 68 convolutional layers, which are made up of interconnected
blocks. In addition, a similar approach was used by Jinnai and colleagues [37]. They classify
melanoma using 5846 clinical photos rather than dermoscopy using the FRCNN algorithm.
To prepare the training dataset, they manually drew borders around lesion locations. Ten
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board-certified dermatologists and ten dermatology trainees were outperformed by the
FRCNN, which had a better level of accuracy. Barata et al. [38] offered an inquiry into
boosting the performance of the ensemble CNN model in terms of accuracy by developing
the proposed model. The fusion of data generated by four separate classification layers
was utilized to create an ensemble model for three class classifications from GoogleNet,
AlexNet, VGG, and ResNet Classification accuracy can be improved by taking into account
the patient’s metadata as proposed by Jordan Yap et al. [39]. Dermoscopic and macroscopic
pictures were both sent into the ResNet50 network and then were utilized to classify them
together. Multimodel classification outperformed the simple macroscopy-based model
with an AUC of 0.866. The ISIC 2019 dataset was used by Gessert et al. [40] to develop an
ensemble model that incorporated EfficientNet, SENet, and ResNeXt WSL. They used a
cropping approach to deal with photos having different resolutions from different models.
In addition, a technique of loss balancing was created to deal with datasets that were
unbalanced. On the HAM10000 dataset, Srinivasu et al. [41] classified lesions by employing
a deep convolutional neural network (DCNN) equipped with MobileNetV2 and long short-
term memory (LSTM). MobileNetV2 was a CNN model that offered several advantages
over existing CNN models, including a cheaper computational cost, a smaller network size,
and compatibility with mobile devices. In the LSTM network, the features of MobileNetV2
were each given a timestamp as they were stored. When MobileNetV2 was combined with
LSTM, there was an improvement in accuracy of up to 85.34 percent.

A straightforward and efficient method for improving images is known as histogram
equalization. Because the equalizing method has the potential to dramatically alter the
luminance of a picture in certain circumstances, it has never before been used in a video
system; this is the reason why the technology has never been used. In this research, a
novel histogram equalization method known as equal area dualistic sub-image histogram
equalization is proposed [42].

Huang et al. [43] proposed deep learning techniques to create a lightweight model
for classifying skin cancer that might be used to improve medical care. In this study,
they looked at the clinical images and medical records of patients who had received
a histological diagnosis of basal cell carcinoma, squamous cell carcinoma, melanoma,
seborrheic keratosis, or melanocytic nevus in the Department of Dermatology at Kaohsiung
Chang Gung Memorial Hospital between the years 2006 and 2017. In order to develop a
skin cancer classification model, they used deep learning models to differentiate between
malignant and benign skin tumors in the KCGMH and HAM10000 datasets. This was
accomplished by binary classification and multi-class classification. In the KCGMH dataset,
the deep learning model achieved an accuracy of 89.5% for binary classifications (benign
vs. malignant), whereas in the HAM10000 dataset, the accuracy of the deep learning model
was 85.8%.

Thurnhofer-Hemsi et al. [44] introduced a deep learning model, namely MobileNet
V2 and long short-term memory-based deep learning, to identify skin cancer. Experiments
were conducted on the HAM10000 dataset, a sizable collection of dermatoscopic images,
with the aid of data augmentation techniques to boost results. The investigation’s findings
indicate that the DenseNet201 network is well suited for the undertaking at hand, as it
achieved high classification accuracies and F-measures while simultaneously reducing the
number of false negatives [45].

Ioannis Kousis et al. [46] presented a convolutional neural network (CNN) for de-
tecting skin cancer; using the HAM10000 dataset, they trained and evaluated 11 different
CNN architectures for identifying seven distinct types of skin lesions. In order to combat
the imbalance issue and the great similarity between images of some skin lesions, they
employed data augmentation (during training), transfer learning, and fine-tuning. Ac-
cording to their results, the DenseNet169 transfer model outperformed the other 10 CNN
architecture variants.
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3. Materials and Methods
3.1. Dataset

The standard skin lesion dataset HAM10000 was used for experimentation. It contains
10,015 skin lesion images of divergent populations distributed in seven major classes, as
shown in Table 1. The sample image of each class is shown in Figure 1.

Table 1. Distribution of skin lesion images in seven major classes and total images in the dataset.

Class Count

Melanocytic nevi (nv) 6705
Basal cell carcinoma (bcc) 1113

Melanoma (mel) 1099
Vascular lesions (vasc) 514

Benign keratosis-like lesions (bkl) 327
Actinic keratoses (akiec) 142

Dermatofibroma (df) 115
Total 10,015
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3.2. Data Balancing and Augmentation

To overcome variable-sized images in the dataset, all images were resized to (28, 28, 3).
In addition to this, we found a significant disparity in the numbers of images contained
inside the various classes. For example, the melanocytic nevi (mel) class has a large number
of samples as compared to the rest of the classes. Further, vascular lesions (vasc) and
dermatofibroma (df) classes have fewer samples. The bar visualization of the class-wise
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sample distribution of the original dataset is shown in Figure 2; however, to efficiently
train a deep-learning-based model, we require a reasonable amount of balanced data.
Further, the imbalanced data may cause the model training to remain biased towards some
particular classes with a comparatively large number of samples; therefore, to avoid biased
training of the model, data balancing is performed by artificially generating the required
samples [47–49].
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The visual representation of class-wise images in the balanced dataset is shown in
Figure 3. Now, the dataset has an almost equal number of images in every class of skin
lesions, which ensures the unbiased training of the model. Now, for the sake of training,
testing, and validation, we perform a random split of the data, as shown in Table 2.
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Table 2. Distribution of skin lesions in train and testing data.

Classes nv mel bkl bcc akiec vasc df Total

# Training samples 5323 5360 5289 5371 5004 5308 4949 36,604
# Testing samples 1382 1318 1305 1311 1209 1366 1261 9152

# Validation samples 1338 1391 1303 1314 1271 1295 1239 9151

# represents”Number of”.

After splitting the dataset, augmentation is performed to improve the robustness of
the trained model so that the model can perform adequately for unseen samples; therefore,
training samples are horizontally and vertically flipped, randomly rotated (−10 to +10),
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horizontally and vertically shifted (0.2), zoomed-in and zoomed-out (20%), and empty areas
in the samples are filled by nearest pixels; whereas testing data samples are augmented to
estimate the performance of the presented model over actual data. We perform random
rotation for smaller angles as we are already performing horizontal and vertical flips.

3.3. Architecture Overview

Figure 4 depicts the overall design of the model that is being suggested. The model
has shown better performance with fewer parameters and computation time as compared
to other state-of-the-art models. Kernels and activation functions play a vital role in the
training of any convolution-based model. Performance and resource utilization of the
model depends on the size and number of kernel and activation functions used in the
network. Motivated by the astounding abilities of kernels and activation functions, we have
proposed a network with dynamic-sized kernels and two different activation functions
in the network. The network has five layers; each layer comprises convolution operation,
activation function, and pooling operation. The input of shape 28 × 28 × 3 is given to
the first layer of the network, and the first layer has 15 kernels and each of size 3 × 3.
Fewer kernels are used in the first layer. The starting layer’s kernels are used to identify
some basic features only; therefore, using fewer kernels reduces the number of parameters,
computation times, and can easily identify basic features. During convolution operation,
the padding remains the same so that the size of the feature maps remain the same as the
input image. These feature maps are passed through the ReLU activation function to reduce
the linearity. Further, max pooling is applied on the feature maps with a pool size of 2 × 2.
In the pooling layer also, padding is the same to avoid input dimension problems during
max pooling operation. In the starting layers, the feature maps contain fewer complex
features; therefore, we used the ReLU activation function to reduce linearity. Further, in the
starting layers, we have a slight chance of information loss due to the activation function. In
the second layer, we increase the number of kernels from 15 to 32 to extract more complex
features as compared to layer 1, and used the ReLU activation function and max pooling
with a pool size of 2 × 2.
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The configuration of layer 3 is the same as layer 2. In layers 4 and 5, we further
increased the number of kernels from 32 to 64 with a size of 5 × 5. Further, the leakyReLU
activation function is used instead of the ReLU activation function. In the last two layers, to
obtain more complex features, we have increased the number of parameters by increasing
the kernel size and number of kernels.



Diagnostics 2022, 12, 2048 8 of 13

LeakyReLU is preferred in the last two layers due to its ability to maintain non-linearity
in the feature maps and to reduce the chances of information loss of salient features in the
feature maps. Moreover, the output of the last layer is flattened and provided as input to the
densely connected neural network. The input layer of the dense network has 64 neurons,
and ReLU is used as an activation function. In contrast, the output layer has 7 neurons,
equal to the number of classes in the dataset with a SoftMax activation function.

4. Result and Discussion

This section provides comprehensive information about the dataset, the process of
data balancing and augmentation, experimental setup, evaluation metrics and performance
analysis, and comparative studies with various state-of-the-art methods.

4.1. Evaluation Metrics and Performance Analysis

Precision, recall, f1-score, and accuracy are calculated to evaluate the performance of
the trained model with testing samples. Testing samples are skin lesion images without aug-
mentation. The objective here is to know the performance of the model for unseen samples.
Mathematical formulas for calculating these metrics are shown in Equations (1)–(4).

Accuracy (ACC) =
TP

TP + TN + FP + FN
(1)

Precesion (PRE) =
TP

TP + FP
(2)

Recall (REC) =
TP

TP + FN
(3)

f 1 − score =
2 ∗ TP

2 ∗ TP + FP + FN
(4)

These formulas include true positive (TP) and true negative (TN), which represent
a number of positive and negative samples identify correctly. Further, false positive (FP)
and false negative (FN) indicate the number of positive and negative samples identified
incorrectly. The confusion matrix is shown in Figure 5 to summarize the class-wise predic-
tion information of the model. Providing the number of TP, TN, FP, and FN predicted by
the model also highlighted the non-zero numbers in ascending order with increasing color
density to improve the readability of the confusion matrix.
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Model is trained using Adam optimizer for 20 epochs with a batch size of 64. With
efficient utilization of number and kernel size, very few trainable parameters are used to
train the model with an initial learning rate of 0.001. The model is broadly summarized in
Table 3. Activation function ReLU is used in some starting layers of the model, whereas
leakyReLU is used in the last two layers before flattening.

Table 3. Broad summary of the model.

Optimizer Batch Size # Epochs Activation Optimizer Batch Size

Adam 64 20 ReLU & LeakyReLU 0.001 172,362
# represents”Number of”.

The ReLU activation function only propagates positive values received from previ-
ous layers to output or hidden layer, whereas the leakyReLU activation function allows
some small negative values. The graphical representation of ReLU and leakyReLU are
shown in Figure 6, where f (x) for ReLU and leakyReLU activation functions are defined in
Equations (5) and (6), respectively. For leakyReLU α = 0.01, which allows a small part of
negative values instead of 0.

f (x) =
{

x f or x ≥ 0
0 f or x < 0

(5)

f (x) =
{

x f or x ≥ 0
αx f or x < 0

(6)
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During training, the accuracy of the model increases with celerity until the 7th epoch;
thereafter, it increases at a moderate pace until the 15th and the growth slows from the 16th
to the 20th. Similarly, loss also decreases in almost similar paces. The accuracy and loss
curves for training and validation data are shown in Figure 7.

The model has shown remarkable performance over unseen tenting samples. The class-
wise accuracy (ACC), precision (PRE), recall (REC), and f1-score of the model are shown in
Table 4. The model obtained 97.858% as the overall accuracy. Further, the performance of
the model was evaluated using the k-fold cross-validation approach. The dataset is divided
into k = 10 equal parts (folds), the model is trained with k-1 folds (training set), and the
remaining fold is used as a test set. This process continued for k times and each fold was
used once as a test set. The average accuracy, precision, recall, and f1-score calculated with
each fold of data using k-fold cross validation methods are shown in Table 5.
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Table 4. Class-wise accuracy, precision, recall, and f1-score obtained by the model.

Label ACC PRE REC F1-Score

nv 0.87 1.00 0.87 0.93
mel 0.98 0.94 1.00 0.97
bkl 0.99 0.94 0.99 0.97
bcc 1.00 0.99 1.00 0.99

akiec 1.00 1.00 1.00 1.00
vasc 1.00 1.00 1.00 1.00
df 1.00 1.00 1.00 1.00

Average 0.978 0.981 0.98 0.98

Table 5. Accuracy, precision, recall, and f1-score with each fold of data calculated using k-fold
cross-validation method.

Folds 1 2 3 4 5 6 7 8 9 10

ACC 0.94 0.91 0.94 0.97 0.98 0.99 1.00 0.98 1.00 1.00
PRE 0.95 0.97 0.94 0.98 0.98 0.98 1.00 0.96 0.98 0.98

RECALL 0.96 0.97 0.95 0.98 0.98 0.98 1.00 0.97 0.98 0.98
F1-score 0.95 0.97 0.94 0.98 0.98 0.99 1.00 0.96 0.98 0.98

4.2. Experimental Setup

The proposed model was implemented using python 3.8.8 with Keras API of the
TensorFlow 2.7.0 library. The model was trained using a Jupyter notebook with a CPU
for computation. Further, the model was trained separately on a Kaggle notebook using a
GPU. With the efficient utilization of a number and size of kernels, the proposed model
was trained in much less computation time and with only 172,363 parameters.

The training times of the model with CPU and GPU are 375.17 and 82.48 s, respectively.
We have used an Adam optimizer with a batch size of 64, 20 epochs, and an initial learning
rate of 0.001, which was reduced to 0.0001 after the 11th epoch.

4.3. Comparison with Some State-of-the-Art Methods and Other Existing Models

The performance of the model in terms of the number of parameters, precision, recall,
and f1-score are compared with some existing models over a similar dataset, which is
shown in Table 6. It has been found that the proposed model has shown outstanding
performance with very few trainable parameters and computation time.
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Table 6. Comparison of proposed work with some standard models and other existing models.

Ref. Model Data Set ACC %

Ref. [42] Histogram equalization HAM10000 85.80
Ref. [43] Deep leaning HAM10000 89.5
Ref. [44] DenseNet201 network HAM10000 92.83
Ref. [45] MobileNet + LSTM HAM10000 85.34
Ref. [46] DenseNet169 HAM10000 91.10

Proposed Work HAM10000 97.85

5. Conclusions and Future Scope

Nowadays, skin disease is a global challenge affecting a major proportion of the
world’s population. Multiple classes of skin disease may extend from minor to major
types of involved danger. Skin cancer is rapidly increasing and becoming a significant
health concern. Correct and timely treatment plays a pivotal role in reducing this life threat;
therefore, an accurate and fully automatic classification system is a major requirement of
the medical field; however, there are multiple machine learning and deep-learning-based
methods that have been proposed to solve this purpose. As per the literature review,
we find opportunities to propose a better lightweight model with high accuracy. As a
result, we proposed a CNN-based model with efficient utilization of kernels and activation
functions. The proposed model has shown a remarkable class-wise (seven classes) accuracy
and overall accuracy of 97.85% on the test dataset with fewer parameters than is standard
(172,363). The proposed model can also be used for disease classification with a dataset
that has more classes. The model still has room for more accurate prediction of benign
keratosis-like lesions, melanoma, and melanocytic nevi classes of skin lesions.
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