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Abstract
Purpose: To develop a knowledge-based decision-support system capable of
stratifying patients for rectal spacer (RS) insertion based on neural network pre-
dicted rectal dose, reducing the need for time- and resource-intensive radiother-
apy (RT) planning.
Methods: Forty-four patients treated for prostate cancer were enrolled into a
clinical trial (NCT03238170). Dose-escalated prostate RT plans were manually
created for 30 patients with simulated boost volumes using a conventional treat-
ment planning system (TPS) and used to train a hierarchically dense 3D con-
volutional neural network to rapidly predict RT dose distributions. The network
was used to predict rectal doses for 14 unseen test patients, with associated
toxicity risks calculated according to published data. All metrics obtained using
the network were compared to conventionally planned values.
Results: The neural network stratified patients with an accuracy of 100%
based on optimal rectal dose–volume histogram constraints and 78.6% based
on mandatory constraints. The network predicted dose-derived grade 2 rectal
bleeding risk within 95% confidence limits of -1.9% to +1.7% of conventional
risk estimates (risk range 3.5%–9.9%) and late grade 2 fecal incontinence risk
within -0.8% to +1.5% (risk range 2.3%–5.7%).Prediction of high-resolution 3D
dose distributions took 0.7 s.
Conclusions: The feasibility of using a neural network to provide rapid decision
support for RS insertion prior to RT has been demonstrated, and the potential
for time and resource savings highlighted.Directly after target and healthy tissue
delineation,the network is able to (i) risk stratify most patients with a high degree
of accuracy to prioritize which patients would likely derive greatest benefit from
RS insertion and (ii) identify patients close to the stratification threshold who
would require conventional planning.
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1 INTRODUCTION

Prostate cancer is the most common cancer in men
in the United Kingdom (UK), with over 48 000 cases
diagnosed and 11 000 deaths per year.1 Thirty percent
of patients receive radiotherapy (RT) as part of their
treatment.1 Despite the latest developments in image-
guided and highly conformal delivery techniques, RT
to the prostate gland may leave patients with rectal
toxicities which can severely impact quality of life. To
combat rectal toxicity, rectal spacing devices can be
surgically inserted through the perineum to lie between
the prostate and the anterior rectal wall. This strategy
has been reported to reduce dose to the rectum with
fewer acute toxicities.2

The use of rectal spacers (RS) has been approved by
the UK National Institute for Clinical Excellence (NICE),2

yet the cost of spacer and surgical insertion is not rou-
tinely funded by the UK National Health Service (NHS).
Hence, with limited resources a decision-support sys-
tem that can accurately prioritize high-risk patients most
likely to derive benefit from RS insertion is required.3

Increased radiation dose to the rectum is associated
with increased acute and late rectal toxicity,4 so predic-
tion of rectal dose is important for estimating toxicity risk
in a decision-support system. Prediction of rectal dose
and associated toxicity could play an especially valu-
able role in dose escalation treatment strategies, cur-
rently being explored in phase III trials,5–7 where rectal
doses are likely to be higher. The conventional method
for predicting rectal dose from RT is to acquire a treat-
ment planning computed tomography (CT) scan, delin-
eate target volumes and healthy organs, and generate a
treatment plan. However, existing methods for RT treat-
ment planning are resource and time intensive, user
dependent, and subject to clinical workload pressures.
Within recent years, neural networks (NNs) have been
developed8–13 to predict dose distributions for unseen
patients, often in a matter of seconds, based on internal
anatomy and knowledge of previous RT distributions.
This works sets out to develop a rapid and streamlined
process to risk-stratify patients in terms of rectal toxicity
directly after anatomical delineation, thus eliminating the
need for risk estimation via time- and resource-intensive
treatment planning.

The aims of this proof of principle study were to
design and train a NN to (i) rapidly predict rectal
dose distributions for unseen patients planned for dose-
escalated prostate RT, and (ii) stratify high-risk patients
for RS insertion.

2 MATERIALS AND METHODS

2.1 Treatment planning

Forty-four patients with histologically proven prostate
cancer were enrolled at Guy’s and St. Thomas’ NHS

Foundation Trust into a local Research and Devel-
opment and ethical review board approved clinical
study (NCT03238170) registered on clinicaltrials.gov.
All patients gave written informed consent and were
treated with standard of care RT. For this study, clinical
target volumes (CTVs) delineated according to institu-
tional protocol were used to grow planning target vol-
umes (PTVs) according to the dose escalation pilot
study,14 which acted as a precursor to the national PIV-
OTALBoost phase III trial.7 PTV60 is CTV60 (prostate
gland) with 5 mm geometric expansion, and PTV53 is
CTV53 (prostate and seminal vesicles) with 9 mm mar-
gin. Thirty consecutive patients were selected for train-
ing. For each of these patients, six simulated lesions
were created on the planning CT, to represent dominant
intra-prostatic lesions (DILs) (Figure 1a). All simulated
DILs were positioned in the peripheral zone where the
majority of foci arise clinically15,16 and where posteri-
orly located lesions result in the highest rectal toxicity
risk.17 For each of the simulated boost DILs, a 3 mm
geometric margin was added to create each CTV68,
then cropped to the edge of the prostate. A geomet-
ric 2 mm PTV margin was added creating six PTVs
labeled PTV68-A to PTV68-F. Boost DIL regions were
intentionally created with volumes similar to those in the
literature6,18: median (range) for boost DIL, CTV68 and
PTV68 volumes were 3.1 cc (0.3–10.8 cc), 6.8 cc (1.1–
19.6 cc),and 13.0 cc (3.0–31.7 cc).For the remaining 14
patients (test cohort), clinically significant boost regions
were delineated by a trained clinical oncologist accord-
ing to PIRADSv2 from multi-parametric magnetic reso-
nance imaging sequences and histological reports. For
all patients, organ at risk (OAR) delineation comprised
the bladder,rectum,and left and right femoral heads.The
full trans-axial extent of the rectum was outlined from
anal verge to recto-sigmoid junction.

One hundred and ninety-four RapidArc™ treatment
plans were created, one for each simulated boost treat-
ment in the training dataset and one for each patient
in the test dataset, in Eclipse v13.6 treatment planning
system (TPS) (Varian Medical Systems, Palo Alto, CA,
USA) by an experienced treatment planner (12 years’
experience) using a standardized planning template to
initialize the optimization stage.PTV and OAR dose con-
straints were based on those detailed in the PIVOTAL-
Boost pilot study.14 OAR planning constraints are shown
in Figure 1b. The single-planner, template-guided plan-
ning strategy, using well-defined tolerances from a pub-
lished clinical study allowed, as far as practicable, to
develop a standardized dataset.

Treatment plans have 95% of PTV60 covered by
60 Gy,greater than 95% of PTV53 covered by 53 Gy,and
median dose of 68 ± 0.3 Gy to PTV68 (the DIL PTV).
PTV dose coverage was optimized to cover entire PTVs
rather than compromising PTVs for rectal sparing. In this
scenario, the planning aim was to reduce rectal dose as
far as possible while maintaining maximal tumor control
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F IGURE 1 (a) Three-dimensional projection of simulated boost regions planning target volume (PTV)68-A to PTV68-F shown as colored
regions within clinical target volume (CTV)60 volume (pink). Rectum (yellow) and bladder (green) are also shown. (Colors shown in online
version only.) (b) Organ at risk (OAR) dose tolerances table modified from Onjukka et al.14 *0.2% tolerance was chosen for practical treatment
planning reasons to replace 0% tolerance

probability (TCP) by complying with the dose prescrip-
tion specified above.

2.2 Data preparation for NN input

For each patient,PTV68A-F,PTV60,PTV53, rectum,and
bladder were converted to binary masks using Tomo-
Mask v1.4.1 (www.tomomask.com) and loaded into
a Python environment with the corresponding dose
distribution created using the TPS. Dose arrays
were resampled using a third-order spline function
to 512 × 512, 0.98 mm in-plane resolution correspond-
ing to the binary structure masks and normalized using
the maximum dose within all training datasets. In order
to focus dose prediction on the area of interest, training
and testing were cropped to 3D volumes (array size
128 × 128 × 64) centered left–right according to PTV53
geometric center of mass, craniocaudally according to
the rectal center of mass and anterior–posteriorly such
that the entire rectum was sampled. The entire rectal
volume was encompassed by the 3D array for all patient
plans.

2.3 Network architecture and training

A five-level, 3D Hierarchically Densely Connected U-
Net8 (HD U-net) was constructed with (3 × 3 × 3) con-
volutions reducing the feature size from 128 × 128 × 64
pixels to 8 × 8 × 4 pixels. Rectified linear unit activation

functions were performed after each convolution in the
contracting and expansive paths, and a linear activation
function utilized for the final (1 × 1 × 1) convolution. The
Adam optimizer was used, with learning rate 10−4, and
mean squared error loss function was minimized.

Initial network hyper-parameter tuning of learning
rate, kernel size, number of network levels, and epochs
was performed using 20 of the 30 training patients
in a leave one-out cross-validation approach (valida-
tion cohort), with 19/20 patients comprising the training
set for each fold. Leave one-out cross-validation was
chosen as it is more informative than validation with
larger folds (e.g., fivefold). The process is however more
time consuming, hence the decision to perform valida-
tion and tuning with 20 patients from the full 30-patient
training cohort. The sampled 3D volumes consisted of
128 × 128 × 64 pixels, therefore each training fold had
input dimensions [114, 5, 128, 128, 64] where the first
element represented six boost plans for the 19 patients
and the second element the five binary structure masks:
PTV68, PTV60, PTV53, rectum, and bladder. Loss was
calculated against the manually planned dose distribu-
tions [114, 1, 128, 128, 64] for each training treatment
plan. The dose distributions were then predicted for the
six treatment plans for the left-out patient, with output
dose predictions rescaled to dose using the maximum
dose from the validation cohort.

The tuned network parameters were utilized for train-
ing on all 30 training patients, to generate a model ready
for testing on the test cohort of unseen 14 patients with
clinically derived lesions.

http://www.tomomask.com
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2.4 Rectal dose and toxicity risk
modeling

Predicted rectal dose–volume histograms (DVHs)
were extracted from the predicted dose arrays and
compared with manually planned DVHs. Rectal DVHs
from manual plans and predicted plans were imported
into the commercially available software BioSuite.19

Lyman–Kutcher–Burman (LKB) model parameters
(TD50 = 97.7 Gy, m = 0.27, n = 0.085, α/β = 3 Gy) were
applied to predict the risk of grade 2 (G2) late rectal
bleeding (LRB), and the risk of late fecal incontinence
(LFI) (TD50 = 105 Gy, m = 0.43, n = 1, α/β = 3 Gy) as
adopted by Onjukka et al.14 In all cases, DVHs were
corrected for 2 Gy per fraction equivalence using α/β of
3 Gy.

To assess the accuracy of predicted 3D dose distri-
butions, all isodoses fully encompassed within the pre-
dicted 128 × 128 × 64 voxel volumes were evaluated
against planned isodoses using the dice similarity coeffi-
cient (DSC = 2(A ∩ B)/(A + B),where A and B represent
the voxels within NN predicted and manually planned
isodoses contours, and ∩ is the intersection).

To put our prediction results into clinical perspective,
in a retrospective investigation, prostate and rectal vol-
umes, as well as rectal doses were collated for a sepa-
rate cohort of 100 consecutive patients receiving RT for
prostate cancer at our institution, with the rectal doses
converted to toxicity risk using LKB parameters above.

2.5 RS stratification

Four methods for dose-derived RS stratification were
simulated for this work: treatment plans where (i) optimal
rectal DVH constraints were exceeded, (ii) mandatory
rectal DVH constraints were exceeded, (iii) risk of G2
LRB, or (iv) risk of LFI was higher than specified thresh-
olds. Network performance was evaluated for multiple
risk thresholds to determine accuracy at differing strati-
fication levels.

3 RESULTS

All manually generated plans met PTV objectives. Opti-
mal and mandatory rectal constraints were exceeded for
161 and 57 of the 194 treatment plans, respectively, pri-
marily at the higher doses as demonstrated for valida-
tion cohort and test cohort in the Supporting Information
(Tables S1 and S2). This was anticipated as the treat-
ment planning process aimed to maintain TCP by pre-
serving PTV dose coverage. Median LKB predicted risk
of G2 LRB toxicity in the study cohort was 7.4% (range
3.3%–10.4%) and median LKB predicted risk of LFI was
3.9% (range 2.3%–7.1%) (Figures S1 and S2). All man-
ually generated treatment plans met femoral head and
bladder tolerances.

3.1 Dose prediction

Training of the final network for 200 epochs took 5.4 h
on a 12 Gb Titan Xp GPU. Deployment of the trained
model on each 128 × 128 × 64 3D volume in the test
cohort took less than 0.7 s.

Figure 2 shows the dose prediction and evaluation
process for one representative patient plan.

Unless explicit reference is made to validation cohort
or study cohort, the results quoted below refer to model
testing on the unseen test cohort of patients with clini-
cally derived boost regions.

Dose prediction using the network was highly accu-
rate for PTVs (Table S4),with prediction of median dose
0.1 Gy higher than manual plans on average, with a
low standard deviation (SD) of 0.3 Gy. PTV maximum
(Dmax) and mean (Dmean) doses were also accurately
reported (Table S5), with average absolute dose dif-
ferences less than 2.1% (1.3 Gy) and 0.5% (0.3 Gy),
respectively.

Rectal dose prediction resulted in low bias for rectal
DVH parameters above 40 Gy as shown in Figure 3,
with mean dose prediction error less than 2%,and below
7.2% for the entire dose range.

Average absolute dose differences for rectal Dmax
and Dmean were 1.4% (0.8 Gy) and 3.9% (2.3 Gy),
respectively (Table S5). Results for 3D dose prediction
accuracy are included in the Supporting Information,
where average DSC for predicted isodoses up to and
including the prescription dose was 0.94 (range 0.90–
0.96), with mean SD of 0.011 (Figure S3).

When comparing test results with those at the valida-
tion stage (Figure 3) it can be seen that the positive bias
was higher for the former but ranges were similar. An
increase in predictive accuracy is witnessed at higher
and lower doses for both test and validation cohorts.

Figure 4 shows representative examples of dose
prediction using the network compared with manually
planned dose, representing three distinctly different out-
comes. All examples show the concave distribution of
isodoses within the rectum, indicating that the manually
planned dose distribution has been optimized for rec-
tal sparing and that the network also predicts this effect.
The figure shows situations where rectal dose sparing
is (a) predicted accurately, (b) underestimated, and (c)
overestimated. In each example, the isodose agreement
improves around the PTVs, as the influence of the rec-
tum is reduced.

3.2 Risk prediction

The Bland–Altman plots in Figure 5a,b show good
agreement between toxicity estimations from manual
plans (ground truth) and from estimations predicted
by the network. Mean error for G2 LRB is -0.1% with
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F IGURE 2 Dose prediction for patient 1 in test dataset. Structures shown are bladder (magenta), rectum (red), planning target volume
(PTV)53 (cyan), PTV60 (brown), and PTV68 (orange). The predicted dose–volume histogram (DVH) follows the ground truth as visualized in the
bottom right graph (Colors shown in online version only.)

+1.7% and -1.9% upper and lower 95% confidence lim-
its, respectively. For LFI, mean error is 0.4%, with +1.5
and -0.8% upper and lower 95% confidence limits.

Rectal volumes in the study cohort (mean
(M) = 69.3 cc, SD = 19.7 cc) were not significantly
different (p = 0.903, T-test) from the 100 clinically
treated patients (M = 69.7 cc, SD = 20.6 cc). Prostate
volumes within the study (M = 42.3 cc, SD = 15.7 cc)
were comparable (p = 0.016) to the patient data
(M = 51.3 cc, SD = 22.0 cc). Toxicity risk for the last
100 clinically treated patients had a similar distribution
to the study population of 44 patients (Figures S1
and S2), with slightly higher mean LFI risk (4.8%
compared with 4.2%) likely on account of larger PTV

margins but slightly lower mean LRB risk (6.8% com-
pared with 7.5%) probably due to absence of a dose
escalation region. The network predicted late G2 LRB
toxicity risk with a SD (0.9%) for prediction error lower
than the SD (1.3%) of manually planned clinical risk
(p = 0.114, using statistical F-test). Prediction of LFI
risk has significantly lower SD, with 0.6 compared to 1.2
(p = 0.005).

3.3 Dose-based RS stratification

In the test cohort, five patient plans met optimal rec-
tal DVH planning constraints and nine plans exceeded
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F IGURE 3 Prediction error from manually planned rectal dose–volume histogram (DVH) parameters for validation cohort (dark gray), and
test cohort (light gray). Boxes represent interquartile range (IQR), within which are shown the median (line) and mean (cross). Top whisker
represents the largest value within 1.5 times the IQR, above the box. Lowest whisker represents the smallest value within 1.5 times the IQR,
below the box

TABLE 1 Number of manual treatment plans and network predicted treatment plans meeting or exceeding (a) optimal and (b) mandatory
rectal dose–volume histogram (DVH) constraints

Manual plans Network prediction

(a)

Within optimal DVH tolerances 5 (35.7%) True negative 5 (100.0%)

False negative 0 (0%)

Exceeding optimal DVH tolerances 9 (64.3%) True positive 9 (100.0%)

False positive 0 (0%)

Sensitivity 100.0%

Specificity 100.0%

Accuracy 100.0%

(b)

Within mandatory DVH tolerances 10 (71.4%) True negative 9 (90.0%)

False negative 1 (10.0%)

Exceeding mandatory DVH tolerances 4 (28.6%) True positive 2 (50.0%)

False positive 2 (50.0%)

Sensitivity 50.0%

Specificity 90.0%

Accuracy 78.6%

Note: Four manual treatment plans exceed mandatory tolerances due to tumor control probability (TCP) prioritization over normal tissue complication probability
(NTCP) as described previously.

the constraints. In a scenario where RS insertion
would be offered to patients considered high risk
(whose treatment plan failed optimal rectal dose con-
straints), the prediction network resulted in a stratifica-
tion accuracy of 100% into high- and low-risk groups
(Table 1a), correctly predicting those that passed the
constraints (five plans) and those that failed (nine
plans). Based on mandatory constraints, stratifica-
tion accuracy was 78.6% (Table 1b), whereby nine
out of the 10 plans meeting mandatory rectal DVH
constraints were correctly identified and two out of

four exceeding mandatory constraints were correctly
stratified.

Network sensitivity to out-of -tolerance plans was
1.0 when considering optimal treatment planning con-
straints and 0.5 for mandatory constraints.

3.4 Risk-based RS stratification

The accuracy of the network to stratify patients based
on predicted toxicity risk was above 71% for LRB for all
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F IGURE 4 Axial slice through planning target volumes PTVs and rectum for (a) patient 14, (b) patient 4, and (c) patient 7. Solid lines
indicate anatomical contours: rectum (red), PTV53 (blue), PTV60 (green), and PTV68 (orange). Dashed and dotted lines indicate manually
planned and predicted isodoses, respectively. 24.6 Gy (orange), 32.4 Gy (blue), 40.8 Gy (green), 48.6 Gy (magenta), 60 Gy (red), and 68 Gy
(black) (Colors shown in online version only.)

thresholds (Figure 6a). The median G2 LRB risk for the
test cohort was 6.4%. If a center could afford to offer RS
insertion to half of their patients with risk ≥6.4%, 86%
of patients would be correctly stratified. A similar trend
was seen for stratification based on predicted LFI risk,
with 71% correctly stratified around the cohort median
LFI risk of 3.8% (Figure 6b).

4 DISCUSSION

RS insertion reduces rectal dose in patients treated
with RT to the prostate, however where resources are

not routinely available for spacer insertion, centers must
make decisions on an individual patient basis. Much of
the patient- and resource-related factors3 are known
at the time of decision-making, apart from radiation
dose to the rectum which may take days to estimate
using standard RT planning. This study demonstrates
a method for rapidly predicting rectal dose and rectal
toxicity directly after target and OAR delineation, with
sufficient accuracy to assist in decision-making. There
has been recent interest in designing NN dose predic-
tion models to assist the treatment planning process,8–13

with models that act as direct decision-support systems
the next logical step.
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F IGURE 5 Bland–Altman plots of neural network (NN) risk prediction in the test cohort for (a) grade 2 (G2) late rectal bleeding (LRB) and
(b) late fecal incontinence (LFI), where mean accuracy is shown as thick solid line and upper and lower 95% confidence limits as dotted lines

F IGURE 6 Agreement between neural-network (NN) predicted and manually planned risk stratification as a function of risk threshold for (a)
late rectal bleeding (LRB) and (b) late fecal incontinence (LFI)

PTV dose prediction was highly accurate, which is to
be expected as the manual treatment planning process
stipulates homogeneous dose to each PTV, yielding a
simple relationship between PTV geometry and PTV
dose distribution.Prediction of dose outside the PTVs is
more complex as patient anatomies differ, and the man-
ually interactive treatment planning process gives rise to
variations in dose fall-off and dose distribution between
patients and plans.20

In terms of rectal DVH prediction, a small and clini-
cally negligible bias was seen for each DVH parameter
in the validation cohort, with larger positive bias seen
in the test cohort (Figure 3). This discrepancy can be
partially attributed to a bias in the training dataset to
posterior boost regions. The clinical test dataset con-
tained some boost regions further from the rectum for
which the network was unfamiliar and consequently
over-predicted rectal dose. For both cohorts better net-
work performance is seen at the upper and lower extents
of the DVH. The lower doses were mostly in the regions
superior and inferior to the PTVs which tend to be more
similar between patients, determined by the craniocau-
dal rectal length relative to PTV length, and the way in

which the TPS models scattered dose from the primary
beam. The network also performed better in the dose
region above 53 Gy on account of restrictive treatment
planning constraints. The largest uncertainties occurred
in the mid-range doses, where dose is primarily dictated
by the axial dose fall-off from PTV53 through the rec-
tum. This dose gradient is directly influenced by patient
anatomy and by the operator-guided inverse optimiza-
tion procedure within the treatment planning process,
resulting in more variation.

It is difficult to make comparisons with the exist-
ing dose prediction literature due to differing patient
cohorts, treatment modalities, clinical protocols, and
analysis, but the closest example is Nguyen et al.11 who
reported a dose prediction network for single dose level
prostate plans. The overall mean absolute errors were
1.8% ± 1.1% (1 SD) and 1.0% ± 0.6% for PTV Dmax
and Dmean,respectively,which compares favorably with
our results of 1.2% ± 1.0% and 0.2% ± 0.2% for the pri-
mary target (PTV60) Dmax and Dmean. Likewise, pre-
diction of rectal Dmax had similar mean absolute errors
of 1.6% ± 1.1%11 compared with 1.4% ± 0.9% in the
current study.Absolute errors in rectal Dmean prediction
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were however greater in our study at 3.9% ± 2.8% com-
pared with 1.6% ± 1.1% in the published work.Reasons
for this may include our network being tasked with pre-
dicting the more complex dose fall-off from a three dose
level plan rather than a single prescription level plan. In
addition, our study was aimed at predicting dose distri-
butions from volumetric modulated arc therapy (VMAT)
plans with more degrees of freedom than the standard-
ized seven-field intensity modulated RT (IMRT) plans
used in the work by Nguyen et al. However, the main
reason for the larger errors we observed is likely to be
the smaller size of our training dataset,which comprised
30 patients with six augmented plans compared to the
72 patients in Nguyen et al., as larger training datasets
make for a more robust and accurate network. While
mean dose is a good indicator of general DVH agree-
ment, it should be noted that the toxicity models used
within this work (especially LRB) are reliant on accurate
prediction of mid to higher rectal doses, and therefore
evaluation of mean dose, which applies the same level
of weight to all parts of the rectal DVH,may be less clin-
ically relevant.

Prediction of 3D dose distribution in the vicinity of the
rectum is important as it provides qualitative validation
of the network’s numerical DVH prediction results and
a visual representation of the high doses delivered to
the rectum, which may indicate to the clinical care team
and patient any need for RS implantation. Our results
gave consistently high values for 3D dose prediction
over the sampled dose range, with average DSC of
0.94 — a similar accuracy to the NN-derived dose
predictions of Nguyen et al.11 (mean DSC of 0.91). In
many cases the predicted isodoses in the vicinity of the
rectum were close to manually planned isodoses, as
shown in Figure 4a. Figure 4 also illustrates isodoses
for two of the plans with lowest prediction accuracy.
Local isodose disagreement is witnessed inside the
rectum, with higher accuracy around the PTVs. It is
encouraging to see the predicted isodose lines affected
by the presence of the rectum, forming visibly concave
isodoses, but for these extreme cases rectal dose is
either under- or over-predicted. Several factors may be
involved. Firstly, the small training dataset likely restricts
network performance, meaning the network does not
generalize well to some unseen patient anatomies. The
second factor may lie in the inherent variability in the
manual planning process.

Prediction of toxicity risk was good for G2 LRB as the
LKB parameters focus on mid- to high-dose range within
the DVH where the network performs well. Despite the
larger uncertainties in DVH prediction at the low- to mid-
dose range, the 95% accuracy of predicting LFI risk was
better than LKB, albeit with a positive bias.

To evaluate the results further and put them into clin-
ical context, it is noteworthy that the process of man-
ual planning is an iterative, trial and error approach
where the planner navigates to a solution in the

time allowed, leading to variation in plan quality.20

There is inherent variability in manually planned rec-
tal DVHs21 and subsequent rectal toxicity risk for RT
to the prostate.22 Scaggion et al.21 reported interquar-
tile ranges (IQRs) for rectal V30Gy, V40Gy, V50Gy,
V60Gy, V65Gy, V70Gy, and V75Gy of 17.37%, 11.69%,
6.70%, 4.26%, 3.51%, 2.79%, and 0.81%, respectively.
Our network performed with similar or better accu-
racy, with IQRs of 9.03%, 9.61%, 6.47%, 4.35%, 3.31%,
1.88%, and 1.24%, respectively (doses equated by lin-
ear quadratic conversion to equivalent dose in 2 Gy
fractions, with α/β = 3 Gy). Moore et al.22 assessed the
increased late rectal toxicity risk introduced by subop-
timal manual planning quoting increases of up to 17%,
with a mean excess risk of 4.7% (±3.9% SD). For LRB,
our dose prediction network had limits of agreement
which are small compared to the amount of variation
in risk prediction arising from manual planning.

The similarity between target and rectal volumes in
the study cohort and clinically treated patients provides
some assurance that the network is likely to be suffi-
ciently robust for clinical application at our center. Also
in relation to the clinically treated cohort of 100 patients
at our center, the network performed well within the
observed variation of toxicity risk estimations.

Several authors have performed cost–benefit analy-
ses for RS insertion2 but there is an awareness that
the cost-effectiveness for healthcare providers can be
increased through appropriate selection of suitable
patients.3 The network performed well when stratifying
patients for RS insertion based on prediction of out-of -
tolerance DVH planning constraints, with good sensitiv-
ity to out-of -tolerance treatment plans, and acceptable
prediction accuracy.

The current model predicts patient toxicity risk with
95% confidence limits in the region of 1.5%; the same
order of magnitude as observed toxicity risk ranges of
around 5% (Figure 5). When evaluating the significance
of this in terms of risk-based RS stratification, this level
of accuracy results in good stratification performance for
both LRB and LFI with accuracy over 71% irrespective
of threshold used.To put this into practice,centers would
need to perform a cost–benefit evaluation whereby a
suitable threshold is based on their own patient popula-
tion, and available resources. While it may be advisable
to manually plan those plans where network predicted
toxicity risk is close to the tolerance level (to confirm
stratification result), the network performance allows a
considerable amount of manual planning to be avoided,
thus saving time and valuable planning resources.

While the dose prediction itself takes less than a
second this must be incorporated within a workflow to
extract anatomical data from the TPS, perform the NN
dose prediction, estimate toxicity, and stratify the patient
as high or low risk. With suitable hardware available to
the clinician, this whole process takes less than 5 min
and can be carried out directly after delineation of the
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required targets and healthy tissue. This amounts to a
significant reduction in time over conventional treatment
planning and can be actioned immediately rather than
being subject to clinical pathway and workload pres-
sures.When combined into a pipeline with artificial intel-
ligence (AI)-based auto-segmentation,a decision on RS
stratification could be established directly after imaging
the patient. In addition,such rapid prediction of dose and
toxicity could be applied to simulated “virtual spacers”23

to predict the magnitude of rectal toxicity reduction and
the associated cost–benefit of spacer insertion.

This study has some limitations. The treatment plan-
ning was performed by only one operator. This optimal
situation allows the model to be trained on consistently
planned data subject only to intra-operator variation in
plan quality, with no inter-operator variation. In a clin-
ical situation however, this ideal may not be realized
due to clinical resource restrictions. It is also acknowl-
edged that as the DILs were simulated within the train-
ing cohort, their position and size will differ from clini-
cally derived lesions despite our process of matching
DIL volumes to data reported in the literature. This is
seen to some extent by the positive bias when mov-
ing to our test cohort (Figure 3), and future work will
involve simulating boost regions in the training dataset
further from the rectum. The training dataset had few
cases compared to other published dose prediction
networks8,9,12,13 which have used between 72 and 195
training datasets, nonetheless accuracy was encourag-
ing. Further training datasets will likely increase the rec-
tal dose prediction accuracy.

It is acknowledged that should the patient be stratified
for RS,a repeat RT planning CT scan would be required
post-insertion, which incurs additional cost and imaging
dose for the patient. Further benefits in terms of patient
pathway, utilization of staff resources, and patient imag-
ing dose could therefore be realized by predicting rectal
dose and toxicity from pre-existing diagnostic imaging
rather than the RT planning CT scan. However, diagnos-
tic imaging is performed on curved couches, with the
patient in non-RT position, and is typically performed
prior to months of androgen deprivation therapy which
can significantly alter the volume of the prostate.For the
time-being, the decision-support tool is most accurately
used at the point of RT planning as described in this
study.

5 CONCLUSIONS

This study proposes a dose prediction NN as a
resource-efficient decision-support system for stratify-
ing patients at high risk of toxicities for surgical insertion
of RS prior to RT and is, to our knowledge, the first to
do so in the literature. In the arena of highly complex,
dose-escalated, toxicity-guided prostate RT the network
predicted rectal dose distributions in only 0.7 s with an

encouraging level of accuracy, correctly stratifying over
86% of patients for the procedure and identifying those
patients close to tolerance where standard treatment
planning would be required. While not yet ready for
clinical implementation, the accuracy of toxicity risk
prediction translates into an encouraging level of strat-
ification accuracy using our model. As such, this work
provides proof-of -principle that a real-time dose predic-
tion model can be used in a novel way to support rapid
decision-making when stratifying patients for an inter-
vention,and thus can play an important role in improving
value of care through better utilization of resources.
However, further network training followed by a more
expansive clinical implementation study on a larger
number of patient datasets is needed prior to clinical
deployment.
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