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Abstract: Leak detection is nowadays an important task for water utilities as leakages in water
distribution systems (WDS) increase economic costs significantly and create water resource shortages.
Monitoring data such as pressure and flow rate of WDS fluctuate with time. Diagnosis based on
time series monitoring data is thought to be more convincing than one-time point data. In this paper,
a threshold selection method for the correlation coefficient based on time series data is proposed
based on leak scenario falsification, to explore the advantages of data interpretation based on time
series for leak detection. The approach utilizes temporal varying correlation between data from
multiple pressure sensors, updates the threshold values over time, and scans multiple times for
a scanning time window. The effect of scanning time window length on threshold selection is also
tested. The performance of the proposed method is tested on a real, full-scale water distribution
network using synthetic data, considering the uncertainty of demand and leak flow rates, sensor noise,
and so forth. The case study shows that the scanning time window length of 3–6 achieves better
performance; the potential of the method for leak detection performance improvement is confirmed,
though affected by many factors such as modeling and measurement uncertainties.

Keywords: leak detection; water distribution system; data interpretation; time series;
hydraulic models

1. Introduction

The urban water supply network system can be seen as a mobile data carrier which transmits
the information of pipe flow rate, nodal pressure, and water quality under the condition of satisfying
energy balance, pressure balance, and water quality balance. Being the city’s primary infrastructure,
the system provides security for urban development and residential life, which requires a guarantee
of the system’s safe, efficient, and economical operation. As all water distribution systems (WDS)
have a certain degree of leakage, leakage management of pipe networks becomes one of the most
concerning problems for water supply companies.

Over the past few decades, several researchers have conducted extensive research on leak detection
in water distribution systems; a number of methods have been proposed to identify pipe bursts/leaks [1].
Leak detection techniques can be divided into two categories: external and internal [2]. External methods
include radar detection, hydrophone, and acoustic logging, and are time-consuming and can only be
searched locally. Internal methods are divided into four main categories: (1) transient-based methods,
(2) calibration-based approaches, (3) data-driven methods, and (4) model-based techniques.

Transient-based methods determine the location of leaks through time domain or frequency
domain analysis of pressure signal observations [3]. Time domain methods were introduced by Jönsson
and Larson [4] and have since been derived in a number of techniques [5–8]. It consists of time domain
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reflection techniques, impulse response techniques, and inverse transient analysis (ITA) methods.
Gong et al. [9] utilized frequency response diagrams for pipeline leak detection; Colombo et al. [10]
reviewed these types of methods. However, water distribution systems are usually complex pipe
networks with looped and branching topology, and contain many other components, any one of which
may lead to severe attenuation of the transient phenomenon. In addition to attenuation, the method
has difficulty distinguishing the transient wave responses caused by leaks from responses caused by
the change of water demand and pipe fittings.

Calibration-based approaches are based on the inverse problem of parameter identification,
comparing the checked model parameters with historical values, and judging whether there is a leak in
the water network according to the change of parameters. Examples include leak modeling based on
flow ejector principles [11], water distribution model calibration based on genetic algorithms [12,13],
and pressure-dependent leak detection (PDLD) [14,15]. The disadvantage of these proposed methods
is that evolutionary algorithms require a large number of solution evaluations and large-scale decision
variables; meanwhile, the algorithms may fall into premature convergence easily, which further affects
the accuracy of model calibration.

Extracting valid information from a large number of data samples to construct data-driven models
is the core principle of the data-driven methods [3]. Traditional methods based on experiential learning
theory, such as artificial neural networks (ANN) [16,17] and Bayesian inference methods [18,19],
are usually based on statistical analysis. However, the ANN methods have some drawbacks, such as (1)
requiring the user’s experience and prior knowledge in order to produce a good network configuration,
and (2) needing sufficient training samples to achieve adequate accuracy. Meanwhile, the ANN
training time increases as the size of the training samples increases. Although the Bayes methods avoid
the unavoidable modeling and measurement uncertainties, the recognition accuracy is usually very low
when the assumed probability distribution is different from the real probability distribution. Besides, it is
difficult to accurately estimate the variance matrix. Only when the number of training samples tends to
be large enough can these methods achieve better results. In order to solve the small sample problem,
a machine learning method based on statistical learning theory such as support vector machine (SVM) is
established [20–22].

Different from the calibration-based approaches, the model-based techniques consider the model
to be calibrated and then establish correlations between the measured data provided by the monitoring
points and the model parameters. Perez et al. [23,24] considered various uncertainties—the leakage
location is carried out by comparing the threshold with the pressure residuals and combining with
the leakage sensitivity matrix. The threshold is a value; when the indicator is greater than it, the leakage
is considered to occur and then an alarm is issued. Casillas et al. [25] proposed a model-based leak
location approach based on a new representation called the Leak Signature Space (LSS). Based on
error-domain model falsification, Goulet et al. [26] and Moser et al. [27] used explicit representation
of the uncertainty distribution of modeling and measurement at each location. The threshold limit
for falsifying model instances in error-domain modeling is calculated to determine the candidate
leak nodes. Meseguer et al. [28] proposed a model-driven decision support system which integrates
the model-based leak location method based on the use of online telemetry information and a water
network calibrated hydraulic model. The data and model combination methods based on Kalman filter
principle [29–31] have the advantages of high computational efficiency, fast detection speed, and no
requirement for a large amount of training data.

Most of the existing model-based or data-driven methods mentioned above consider single-time
data or mean-time series data; there is a lack of research on combining temporal with spatial information
extracted from data. In addition, they suffer from low precision and can only localize the leakage
locally due to the uncertainty of the model used and the uncertainty of the measurement data received.
The varying mode of daily water demand is indistinguishable from the leak fluctuation mode of pipe
networks. How to distinguish exactly which behavior mode the data fluctuation corresponds to is
the challenge for leak detection.
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The monitoring data of the WDS is a typical time series, and there is a certain spatial correlation
between the monitoring devices distributed at different locations of the WDS. After the leakage occurs,
multiple monitoring sensors will respond at the same time, producing synchronous pressure changes
and showing spatial correlation; besides, the changes will often last for a period of time, and there is
autocorrelation in time.

This paper proposes a threshold selection method for leak detection in water distribution systems.
It is characterized by (1) fully utilizing temporal varying correlation between the data from multiple
pressure sensors; (2) updating threshold values over time; and (3) scanning multiple times for a scanning
time window (STW). The main objective is to explore the advantages of data mining based on time
series data for leak detection, and to reduce the rate of missing detection and the rate of false alarms
for the leakage events effectively. The state of the WDS is changing all the time, and the real-time
update of the threshold is beneficial to reduce the influence of the model and measurement uncertainty.
Section 2 describes the principle of this methodology in detail. In Section 3, a case study is presented,
which uses the water supply network of J City of China to carry out the research on the performance of
the leak detection method. Finally, a discussion of the relevant results is given in Section 4.

2. Methodology

Figure 1 shows the framework of leak detection and localization methodology based on
monitoring data and hydraulic model. In this framework, the supervisory control and data acquisition
(SCADA) system supplies raw pressure and flow rate data for the prediction and detection process.
In the prediction process, it is assumed that such a tool is available to forecast the spatial and temporal
demand distribution at the specified time window. Water demand forecasting is based on a combination
of pattern recognition and time series models by using the historical water demand database.
Then, a simulation is run to obtain the leakage residual database by adding the nodal leakage
to normal water demand during the time window. Comparing the measurements from SCADA to
the leakage residual database, the leak detection and identification algorithm is used to determine
whether the leak occurs. If the detection alarm is not triggered, the network status is classified
as a non-fault state, and the prediction hydraulic model of the next specified time window is updated
using the current measurement information. Conversely, if the detection alarm is triggered, the next
step is to locate the leakage position. The prediction process can be found in many studies [32–34].
This paper focuses on the detection process and has the following assumptions: there is only one leak
that appears at one time and leaks occurs at a node in the water distribution system model; pressure
sensors in the water network are placed in the selected nodes and are working well, and the measured
pressures are synthetically generated from the simulated pressure value by adding random noise;
the error of the prediction model is considered by adding the noise of the nodal demand to the real
nodal demand; sudden special events that may produce significant relevant demand variations are
not considered. To achieve the time series threshold estimation process, a few concepts should be
recalled here:

• Detection Probability (DP): the proportion of leak events detected in the total number of natural
random leak events, and the rate of non-detection (false negative rate) is described as ‘1-DP’.

• Rate of False Alarm (RF): the proportion of false alarms in the total number of natural random
events that occur without a leak.

The authors define:

• Scanning Time Window (STW): it is shown in Figure 2. It is a time container covered by continuous
time steps. Its length is the number of the covered time step, namely, the scanning time window
length (STWL).

• Scanning Process: for STWL of k, one complete scan process performs a total of k scans. The data
is numbered in order of reception time. The k scans use the data of time step at t = 1, t = {1, 2}...,
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t = {1, 2..., k}. The scanning process is shown in Figure 2. The RF of the kth scan in a STW, RFk,
is assigned to calculate the threshold Ck. A scanning process for an STW requires a corresponding
threshold set {Ck}, and the number of elements in the collection is equal to STWL.

• Cumulative Rate of False alarm (CRF): for an STW containing k time steps (if STWL = k), CRF is
the proportion of the total number of false alarms in the total number of natural random events
without leakage when a scanning process is completed in that STW.
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2.1. Leak Scenario Falsification

The core idea of the error-domain model falsification method is to falsify model instances
(parameter sets). Then, the maximal plausible errors are determined by combining modeling
and measurement uncertainties. There is model uncertainty (umodel) in the numerical model, as well
as measurement uncertainty in the actual measured value. As shown in Equation (1), the predicted value
(Pi) plus modeling error (umodel) corresponds to the real quantity (R), which is equal to the measured
value (y) plus measurement error (umeasurement) [35–37].

Pi + umodel = R = y + umeasurement (1)
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The residual difference between the model prediction and the measurement is equal to the difference
between the measurement error and the model error by reorganizing the terms of Equation (1).
This relation is expressed in Equation (2).

Pi−y = umeasurement−umodel (2)

Using the residual of these two uncertainties (representing the expected residual between
the predicted and measured values), the corresponding threshold boundaries (by taking the 95%
interval of the probability density function) are calculated to evaluate the recognition performance of
error-domain model falsification [27].

A set of possible leakage scenarios is traversed based on the set of the given parameter values.
Each scenario represents one leakage state of the water distribution system (the leakage location
and the leakage flow rate are used in this article). It is thought that the scenarios cover the extensive
range of possible leakage states of systems, from 20 m3/h to 50 m3/h with increment of 1 m3/h for
every node and from 50 m3/h to 350 m3/h with increment of 5 m3/h for every node. As shown in
Figure 3a, using the EPANET pressure-driven model to simulate the leak scenario [38], the simulation
is a 24-hourly Extended Period Simulation (EPS) based on forecasted water demands. Random
noise is added to each node demand value to synthetically generate the node demand value of
the predictive model, d̂n = dn + ∆d, ∆d is the uncertainty of nodal demands. For each leakage scenario,
the estimated pressures are calculated where the sensors are placed in the water distribution network.
Then, the pressure residual database of the leakage scenarios is obtained by comparing the estimated
pressure with leakage to that without leakage. The total number of scenarios in the database equals
the number of nodes multiplied by the number of leakage intensities considered.

As shown in Figure 3b, the pressure measurement (simulating raw pressure data supplied by
the SCADA system) is synthesized by adding the noise to the simulated pressure value for the leakage
scenario or no-leakage scenario. It is compared with the estimated pressure without leakage to obtain
the measurement pressure residual. For large quantity leakage scenarios, their pressure residuals form
a residual database of the leakage scenario set.

The predicted pressure residual vector r (r = p̂ − p̂0) of the leakage scenario can be obtained
from the leakage residuals database. It characterizes the pressure deviation of all monitoring nodes.
The size of the residual vector r depends on the number of pressure sensors in the network ns. p̂ and p̂0
are the predicted pressure vector of the nodes, where the pressure sensors are placed under the leakage
and no-leakage conditions, respectively.

The measurement pressure residual vector can be obtained by comparing the SCADA data (in this
paper, the synthetic pressure is substituted for the real SCADA data) to the estimated pressure without
leakage, shown in the residual vector form:

r̃ = p̃− p̂0 (3)

where the size of the residual vector r̃ depends on the number of pressure sensors in the network ns.
p̃ is the pressure vector measured in the nodes where the pressure sensors are placed.

Then, the measurement residual is compared to the leak residual database to calculate their
correlation coefficient:

Cr,̃r =
cov(r, r̃)√

cov(r, r)cov(̃r, r̃)′
(4)

where Cr,̃r is the correlation coefficient; r is one of the pressure residual vectors in the leak
residual database; r̃ is the measurement residual at time step t associated with a potential leakage;
cov(r, r̃) = E

[
(r− r̃)

(̃
r− r̃

)]
is the correlation function between two variables r and r̃, where r = E(r)

and r̃ = E(̃r).
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2.2. Leak Detection

The larger the correlation coefficient is, the greater the similarity between the current scenario
and the leak scenario and the greater the likelihood that the leakage is occurring. The maximum
correlation value Cr,̃rmax can be used to characterize the most similar leak scenario in the leakage
residual database. The maximum correlation is usually used to diagnose the leakage events. When it
is less than the threshold value, there is no leak at this time step and, conversely, an alarm is triggered.

Figure 2 shows the schematic diagram of real-time leak detection when the STWL equals 3.
From the viewpoint of judging whether a leakage happened at one certain time point, we not only
use the current data at that time step to diagnose the leakage (first scan: t = k), but also wait to get
the data at the next time step, combine it with the data at the former time step to diagnose the leakage
(second scan: t = k, k + 1), and finally combine all of the data of the continuous three time steps
(third scan: t = k, k + 1, k + 2). A complete scanning process at each STW performs three scans. After
that, the STW moves forward in the direction of time to judge the WDS at the next time step. Leak
detection follows a given rule: when the maximum correlation coefficient of all data at the kth scan
are greater than the kth threshold (Ck), it is marked as abnormal condition and an alarm is triggered.
If there is no alarm, after the time window moves forward, the qualified data is updated to the historical
database to predict the hydraulic model of the next time window. From the viewpoint of the data
stream, the data at the current time step is used to diagnose the leakage of WDS at the current time
step, t = k, and the former two time steps, t = k − 1, and k − 2.

2.3. Estimation of Threshold Values

The threshold estimation can be calculated by the given RF and the cumulative probability
distribution function, if only the data of one time step is used. If more data at continuous time steps is
used, the corresponding threshold will be declined by the given RFt and the cumulative probability
distribution function for those continuous time steps, with the CRF value of multiple time steps
the same as RF value of one time step.

A large number of measurement results of simulated no-leak scenarios are generated using
the Section 2.1 method; the cumulative probability distribution function of maximum correlation
coefficient (Cr,̃rmax) can be obtained by traversing the correlation analysis between the measurement
results and the leak residual database. As data is updated over time, the cumulative probability
distribution function curve of the maximum correlation coefficient (Cr,̃rmax) at different time steps can
be obtained. A curve of a certain time step is shown in Figure 4. From the cumulative probability
distribution, we can get the threshold of Cr,̃rmax by given RFt.

For single-time data, the corresponding threshold (Ct) can be obtained by assigning RFt to
the cumulative probability distribution function curve. Figure 4 shows the threshold estimation
Ct = 0.83 corresponding to RFt = 10% for single-time data. For continuous time-serial data, Figure 5
gives the schematic diagram of estimation for a set of thresholds {Ck} required for a complete scanning
process, taking the STWL = 3 and RFt = 10% (t = 1, 2, 3) as an example. The complete equations
and explanation involved in Figure 5 are provided in Appendix A.

The threshold estimation method of the first scan (Figure 5a) in the STW is consistent with
the estimation method of the single-time threshold. The second scan (Figure 5b) in the STW uses
the threshold C2 to decide the false alarm events, and the third scan (Figure 5c) uses the threshold
(C3). The threshold (C1, C2, and C3) is given to satisfy the RFi of different scans in an STW. The sum
of the RFi for the different scans should equal CRF. The average allocation is used in this article
(i.e., RF1 = RF2 = RF3).
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For an STW with STWL = k, according to the assigned rate of false alarm (RF1, RF2...RFk)
and the cumulative probability distribution function curve of Cr,̃rmax, the corresponding threshold
set {Ck} can be obtained. As the time step advances, each time new time data is received, a scan is
performed, and the maximum correlation coefficient at the corresponding time is calculated to obtain
a cumulative probability distribution function curve. The rule is that when the maximum correlation
coefficients of all data at the kth scan are greater than the kth scan threshold value (Ck) simultaneously,
the alarm is triggered (marked as abnormal). The cumulative rate of false alarm of k scans (t = 1, t = {1,
2}..., t = {1, 2..., k}) should be equal to the given CRF. (CRF = RF1 + RF2 + ... + RFk). Equations (5)–(8)
summarizes the formulas involved in kth scan:

Nk = N({CIk−1} ∩ {CIk−2} · · · {CIk−k}) (5)

Nk = Nk−1 −Nk−1 (6)

RFk =
Nk

Nk
(7)

N{CI1−1}+ N({CI2−1} ∩ {CI2−2}) + · · ·N({CIk−1} ∩ {CIk−2} · · · {CIk−k})

N
= CRF (8)

where CIk-k is the set of candidate scenario, the first k of the subscript represents the kth scan in an STW,
and the second one represents the kth time data; N ({CIk-1}∩{CIk-2}...{CIk-k}) represents the number
of intersection elements for candidate scenarios for the data of k different time steps; Nk indicates
the number of elements marked as abnormal at the kth scan; RFkis the rate of false alarm of the kth
scan; Nk is the total number of samples for the kth scan (the samples identified as abnormal for the kth
scan will not appear in the total sample of the (k + 1)th scan, as shown in Equation (6)); N refers to
the total number of simulated scenarios, that is, the total number of samples scanned for the first time.
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3. Case Study

The leak detection and location methodology are applied to a real water network model with
synthetic data. The network is located in a city in Zhejiang Province, China. It consists of 509 pipes,
491 nodes, and 3 water sources, as shown in Figure 6. A total of 20 pressure sensors (red nodes in
Figure 6) are arranged in the network. A model of this network is created using the software EPANET.
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3.1. Uncertainties

Uncertainty consists of modeling error and measurement error. Modeling errors are caused by
model simplification and errors related to model parameters. Model parameters are divided into
two groups. The first group contains the main parameters characterizing the leak situation. For leak
detection, as mentioned above, these are the leak location and leak strength. Other parameters (referred to
as secondary parameters) do not clearly characterize the scenario, mainly including pipe diameter, pipe
length, pipe roughness, node elevation, node requirements, and so forth. [27]. The sensitivity studies of
these uncertainty values have been conducted to estimate the relative importance of each parameter.
The results show that the relative importance of the uncertainty of node demand exceeds 99%.

Random noise is added to each node demand value to synthetically generate the node demand
value of the predictive model. Random error follows the standard normal distribution N (0, σ) where σ
is the standard deviation of each value, and is set to σ = pµ/3.27 [39], where p is the perturbation ratio,
and µ is the true nodal demand value. Random noise N (0, 0.2 m) is added to the pressure measurement
to characterize the measurement errors. Two different data sets are generated with different precision.
In data set 1, the disturbance ratio is p = 5% for water demand and standard deviation is σ = 0.2 m for
all pressure measurements. In data set 2, disturbance ratio is p = 10% for water demand and standard
deviation is σ = 0.2 m for all pressure measurements. Thus, set 1 is expected to be more accurate than
set 2.

3.2. Leak Scenario and Simulated Measurement

The parameter value boundary of the leakage residual database is set as follows: leakage position
traverses all nodes (Nnodes = 491), and the leak intensity ranges from 20 m3/h to 350 m3/h (according to
the historical leakage event database compiled by the Water Division, most of the leakage flow rate is
concentrated in 20~350 m3/h, including small leakage and large burst, and when the leakage flow rate
is less than 20 m3/h, the pressure fluctuation caused is too small, which is lower than the measurement
accuracy of the sensor), with increment of 1 m3/h for intervals of 20 m3/h to 50 m3/h and 5 m3/h
for intervals of 50 m3/h to 350 m3/h. The total number of scenarios is equal to the number of nodes
multiplied by the number of intensities considered (491 × 91).
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For the sample of the simulated leak scenarios, the parameters of the simulated measurement are
set as follows: the amount of leakage is divided into six flow rate intervals: 20~30 m3/h, 30~40 m3/h,
40~50 m3/h, 50~100 m3/h, 100~200 m3/h, 200~350 m3/h. A node is selected as the leak position randomly,
and a random leakage flow rate in the corresponding interval is selected using a random number
generation function in C/C++. For every leakage event, a simulation is run to obtain the pressures
at the measurement points. Each sample set corresponds to a scenario where a new leak occurs at time
k, and the proportion of samples in each flow rate interval of leak is: 10%, 10%, 10%, 20%, 30%,
20%, respectively.

For samples which simulate no-leak scenarios, as described in Section 3.1, two comparison data
sets are generated. On the one hand, for evaluating leak detection performance, the number of samples
per data set is equal to the number of samples that simulate leak scenarios (this article uses N = 104);
on the other hand, for threshold estimation, the number of samples is set as 105.

The generation principle of the above three types of samples has been described in Section 2.1
in detail.

3.3. Estimation of Threshold Values and Leak Detection

The threshold value used was obtained from the method of Section 2.2 and the synthetic data
from Section 3.2 for leak detection testing. The time series is normalized before the data at different
times is processed to obtain a threshold, as shown in Equations (9) and (10).

Rnor(t) = Max
{
Cr,̃r max(1) , Cr,̃r max(2) · · · Cr,̃r max(N)

}
(9)

Cr,̃rmax(N)nor =
Cr,̃rmax(N)

Rnor(t)
(10)

where Rnor(t) is the normalization coefficient at time t; N represents the total number of samples;
Cr,̃rmax(N) is maximum correlation coefficient of the Nth sample at time t; Cr,̃rmax(N)nor indicates
the maximum correlation coefficient of the Nth sample after normalization.

The online monitoring k-hour scenario is simulated, and then the corresponding k-group thresholds
are obtained for a given STWL of 1~24 by threshold analysis. Table 1 shows threshold set for each STW
with entire time horizon obtained by threshold analysis when CRF = 10%, STWL = 3. The threshold
set corresponding to the scanning process varies over time.

Table 1. Threshold set of the kth scan window when STWL = 3, CRF = 10%.

Time of Data Reception (/h) C1 C2 C3

1 0.8505 0.8096 0.79414
2 0.86942 0.83346 0.81404
3 0.89819 0.85094 0.83715
4 0.89095 0.86504 0.84344
5 0.92704 0.87481 0.84578
6 0.8965 0.85363 0.83573
7 0.8902 0.85424 0.83336
8 0.9067 0.86027 0.84362
9 0.89703 0.86366 0.85382
10 0.91036 0.89074 0.85721
11 0.93878 0.88023 0.84261
12 0.89223 0.844 0.81992
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Table 1. Cont.

Time of Data Reception (/h) C1 C2 C3

13 0.88657 0.84464 0.82792
14 0.88874 0.85232 0.8236
15 0.90972 0.85166 0.83497
16 0.88232 0.85288 0.83348
17 0.90894 0.86886 0.84315
18 0.90221 0.8549 0.81224
19 0.8947 0.82221 0.80851
20 0.85178 0.83041 0.80646
21 0.91813 0.86093 0.84623
22 0.87678 0.85378 0.8401
23 0.92034 0.88474 0.83387
24 0.91538 0.83861 0.80631

4. Results and Discussion

Two different predicted water demand errors (p = 5% and 10%) are considered. The cumulative
rate of false alarm (CRF) is set from 5% to 30%, with an increment of 2.5%. The RFk is set to average
allocation in this paper. Noticeably, it has been confirmed that there is a better allocation ratio scheme
(see the Appendix B for details); it is necessary to automatically optimize the allocation ratio by
using optimization methods in the future. For every CRF, the DP versus STWL curves are obtained.
The curves shown in Figure 7a are the scenarios of CRF = 10%, 15%, 20%, and 30%, with leak intensity
ranges from 20 m3/h to 350 m3/h. Compared to the single-time STW, we can clearly see that the proposed
method using multitime STW can effectively improve the detection probability for a given cumulative
rate of false alarm.

The detection probability increases with the STWL and then descends with the STWL. In the initial
STWLs, when the STWL is set from 1 to 4 (the time step of one hour is used in this paper), the detection
probability is significantly improved. After that, the detection probability shows a downward trend
with the increasing STWL. There is an optimal range of STWL for detection probability. A wide STW
means a large number of scans in an STW. The last number of scans cover continuous monitoring
data over the STW. For successful leakage detection, all correlation coefficients of the data should
support the same judgments. However, the data includes random demand noise and pressure
measurement noise. The longer the data series is used, the harder it is to make consistent judgment.
Thus, the detection probability descends with the increase of the STWL when the STWL is over
a certain value.

In comparison with the clustering-based method using cosine distance to evaluate dissimilarity
between data from multiple flow sensors to detect bursts [40], we can find a similar trend where RF
increases with the decrease in window size when the DP remains constant, although different analysis
methods are used for multitime series data. Using the optimal STWL value can enhance DP by 3%,
compared to using single-time STW (STWL = 1) for leak detection. When STWL increases beyond
16, the detection probability is lower than that of single-time STW. The discussion of the influence of
STWL on detection performance can be found in many other leak detection methods. Abokifa et al. [41]
demonstrated that an optimal window period can be selected to achieve the best performance,
while smaller and larger windows would generally yield less accurate results. Wu et al. [42] drew
the conclusion that detection performance of the method changes only slightly when STWL varies
from 1 to 6 days.

Figure 7b shows that the predicted water demand error has an obvious effect on the proposed
leakage detection method. The water demand disturbance of set 1 (p = 5%) is smaller than for set 2
(p = 10%), and the leakage detection probability of set 1 is higher than for set 2. On the other hand,
the leakage detection probability shows a similar trend for different cumulative rates of false alarm
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between set 1 and set 2. The higher the cumulative rate of false alarm, the higher the leakage detection
probability. Eliminating model errors improves leakage detection probability.Sensors 2019, 19, x FOR PEER REVIEW 13 of 20 
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In order to exploit the advantages of the proposed method using multitime STW, the DP versus
STWL curves for different leakage flow rate intervals are shown in Figure 8 when the CRF is set
at 10%. Six intervals are divided: 20~30 m3/h, 30~40 m3/h, 40~50 m3/h, 50~100 m3/h, 100~200 m3/h,
200~350 m3/h. The optimal solution points indicate the optimal STWL value corresponding to
the highest detection probability within the corresponding flow rate interval. The curves of each
flow rate interval show a similar trend for differently tested data sets. The detection performance of
the large flow rate interval is better than that of the small flow rate interval. This is primarily due to
the relationship between the fluctuation caused by the leakage and the degree of uncertainty. Small



Sensors 2019, 19, 3070 15 of 20

leakages located in areas with high uncertainty are not detectable due to the small variations caused
by them; the fluctuation caused by the leakage is smaller than the fluctuation of the uncertainty of
the affected node and may be overlooked. In short, fluctuation caused by larger leakages is greater
and less likely to be masked under uncertainty at a given level. The STWLs that have optimal detection
performance for different flow rate intervals are concentrated from 3 to 6 for the tested data set.
Similarly, Wu et al. [40] chose the STWL of approximately 6 h for burst detection. However, in his paper,
every STW only scans once, while a total of k scans (t = 1, t = {1,2}...,t = {1,2,...,k}) are performed for
every STW in this paper.

In comparison with the single-time model-based leak detection methodology [24], the method
in this paper fully uses the temporal varying (multiple time rather than single time) correlation
between the data from multiple pressure sensors, and the detection performance is improved.
In addition, Casillas Ponce et al. [43] proposed a model-based approach for leak detection and location,
which considers an extended time horizon analysis of pressure sensitivities. To extract data information
in the time horizon, the authors look for the mean value or mode in an STW for different metrics
(binarization, correlation, angle between vectors, and Euclidean distance). The advantage of the method
using the correlation coefficient metric in this paper is that multitime series residual analysis can be
more sensitive to leakage than using mode or mean value in an STW.

Figure 9 shows the trade-off curve for the given cumulative rate of false alarm and rate of missing
detection of the tested data set when selecting the optimal solution of STWL. The users can make
the decisions to choose a combination between the false positive rate (rate of false alarm) and false
negative rate (rate of missing detection) according to the actual situation, and every point of the curve
corresponds to the solution of the optimal STWL. For the leakage detection performance at the optimal
STWL, the demand error of p = 10% decreased the DP of 1% more than that of p = 5%.
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Figure 9. Relationship between cumulative rate of false alarm and rate of missing detection. (Each STWL
was tested for 24 different start times, and the vertical coordinate value of the point in Figures 7 and 8 is
the average of 24 different DPs. Figure 9 utilizes a similar processing method to obtain an average of 24
1-DPs when selecting the optimal solution of STWL.)

5. Conclusions

This work proposes a leak detection method combined with multitime series. Leak detection is
based on the comparison between real-time online data (simulated measurements) and predictive
model data. The proposed method is about threshold selection method based on time series monitoring
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data. The detection is based on multitime series residual analysis. The influences of the uncertainty of
the prediction model and measurement noise are considered for this proposed method.

The higher the CRF, the higher the leakage detection probability. Under given parameters,
detection performance for the large leakage is better than for the small leakage because the pressure
change caused by the low-intensity leakage may be overlooked by the modeling and measurement
uncertainties. For the optimal STWL, the DP with demand error of p = 10% decreased by 1% over
p = 5%. The future improvement of the water demand prediction method and installing of extra sensors
can reduce the effects of uncertainty. For different flow rate intervals and different cumulative rate of
false alarm, the leakage detection performance and the STWL show a positive correlation trend firstly,
and then the trend is a negative correlation. The STWLs for achieving optimal detection performance
for different conditions are concentrated from 3 to 6 for the tested data set. Using the optimal STWL
can enhance DP of 3% more than using single-time STW for leak detection.

The multitime series analysis method is used to enhance the detection probability and to reduce
the rate of missing detection and the rate of false alarm effectively, compared with the single-time
series method. Many factors (the STWL, RFk, CRF, ∆d, etc.) will affect the performance of the detection
method. The diversity combination of the parameter settings will be the next research work. The main
purpose of this paper is to prove the feasibility of the method. In addition, various leakage indicators
can be obtained by different metrics, and then leakage detection methods derived can be coupled with
this method, which has wide applicability. Future work will consider the minimum detectable leak
depending on the resolution of sensors. In addition, flow sensors will be tested and compared with
pressure sensors in order to assess which is the best option. A real-case test will be performed when
real data become available in the future. Finally, the applicability of the method will be evaluated by
comparison with other methods.
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Appendix A

The equations involved in Figure 5 in this study are summarized as follows:

N1 = N (A1)

P
(
Cr,̃r max 1 ≥ C1

)
∗N = N{CI1−1} (A2)

N1 = N{CI1−1} (A3)

RF1 =
N1

N
(A4)

where N1 is the total number of samples for the 1st scan; P
(
Cr,̃rmax1 ≥ C1

)
is the probability that

the maximum correlation coefficient of the first time is greater than the threshold value (C1); N refers
to the total number of simulated scenarios; CI1-1 is the set of candidate scenario indexes representing
the first scan threshold (the former 1) for the first time data (the latter 1); N1 indicates the number of
elements marked as abnormal at the first scan; RF1 is the rate of false alarm of the first scan.

N2 = N −N1 (A5)
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P
(
Cr,̃r max 1 ≥ C2

)
∗N2 = N{CI2−1} (A6)

P
(
Cr,̃r max 2 ≥ C2

)
∗N2 = N{CI2−2} (A7)

N2 = N({CI2−1} ∩ {CI2−2}) (A8)

RF2 =
N2

N
(A9)

where N2 is the total number of samples for the second scan; P
(
Cr,̃rmax1 ≥ C2

)
, P

(
Cr,̃rmax2 ≥ C2

)
are the probability that the maximum correlation coefficient of the first time and second time are
greater than the threshold value, respectively, when the threshold value is C2; CI2-1, CI2-2 are the set of
candidate scenario indexes representing the second scan threshold for the first time data and second
time data, respectively; N2 indicates the number of elements marked as abnormal at the second scan;
RF2 is the rate of false alarm of the second scan.

N3 = N2 −N2 (A10)

P
(
Cr,̃rmax1 ≥ C3

)
∗N3 = N{CI3−1} (A11)

P
(
Cr,̃rmax2 ≥ C3

)
∗N3 = N{CI3−2} (A12)

P
(
Cr,̃rmax3 ≥ C3

)
∗N3 = N{CI3−3} (A13)

N3 = N({CI3−1} ∩ {CI3−2} ∩ {CI3−2}) (A14)

RF3 =
N3

N
(A15)

where N3 is the total number of samples for the third scan; P
(
Cr,̃rmax1 ≥ C3

)
, P

(
Cr,̃rmax2 ≥ C3

)
,

P
(
Cr,̃rmax3 ≥ C3

)
are the probability that the maximum correlation coefficient of the first time, second

time, and third time are greater than the threshold value, respectively, when the threshold value is C3;
CI3-1, CI3-2, CI3-3 are the set of candidate scenario indexes representing the third scan threshold for
the first time data, second time data, and third time data, respectively; N3 indicates the number of
elements marked as abnormal at the third scan; RF3 is the rate of false alarm of the third scan.

RF1 = RF2 = RF3 (A16)

CRF = RF1+RF2+RF3 = 30% (A17)
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Appendix B

Results of different allocation ratio schemes are shown as follows:
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