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The activation of stimulator of interferon genes (STING) signalling pathway has been
suggested to promote the immune responses against malignancy. STING is activated in
response to the detection of cytosolic DNA and can induce type I interferons and link
innate immunity with the adaptive immune system. Due to accretive evidence
demonstrating that the STING pathway regulates the immune cells of the tumor
microenvironment (TME), STING as a cancer biotherapy has attracted considerable
attention. Pancreatic cancer, with a highly immunosuppressive TME, remains fatal
cancer. STING has been applied to the treatment of pancreatic cancer through distinct
strategies. This review reveals the role of STING signalling on pancreatic tumors and other
diseases related to the pancreas. We then discuss new advances of STING in either
monotherapy or combination methods for pancreatic cancer immunotherapy.
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INTRODUCTION

Pancreatic cancer remains an exceedingly fatal malignancy and is anticipated to become the second
cause of cancer death in the USA. The survival rate during diagnosis is 10% in the USA (1). Family
history, obesity, type 2 diabetes, and tobacco use are the high-risk factors for pancreatic cancer.
Patients are typically diagnosed with advanced disease levels due to a lack of symptoms during the
early stages (2). It has recently been reported that pancreatic cancer can be linked to many
Abbreviation: STING, Stimulator of interferon genes; TME, Tumor microenvironment; MDSC, Myeloid derived suppressor
cells; TAM, Tumor-associated macrophages; DC, Dendritic cells; Treg, Regulatory T cell; TAM, Tumor-associated
macrophage; APC, Antigen-presenting cells; IFN, Interferon; IFNAR, Interferon-a/b receptor; CAF, Cancer-associated
fibroblasts; cGAMP, Cyclic guanosine monophosphate-adenosine monophosphate; cGAS, cyclic guanosine
monophosphate-adenosine monophosphate synthase; IRF, Interferon regulatory factor; ER, Endoplasmic reticulum;
PAMP, Pathogen-associated molecular pattern; PRR, Pattern recognition receptor; GTP, Guanosine 5′-triphosphate; ATP,
Adenosine 5′-triphosphate; TBK1, Tank-binding kinase 1; STAT, Signal transducer and activator of transcription proteins;
JAK, Janus kinase; ISGF, Interferon-stimulated gene factor; MLKL, mixed-lineage kinase domain-like protein; TNFa, Tumor
necrosis factor alpha; MFN, mitofusins; GPX4, Glutathione peroxidase 4; 8-OHG, 8-Oxyguanine; NOS2, Nitric oxide synthase
HER2, Human epidermal growth factor receptor 2; DMXAA, 5, 6-dimethylxanthenone-4-acetic acid; CDN, Cyclic
dinucleotide; NF-kB, Nuclear factor-kappa B; CXCR3, C-X-C motif chemokine receptor 3; CAR T cells, chimeric antigen
receptor T cells; TLR4, Toll-like receptor 4.
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infections. There is an escalation of risk in patients with
Helicobacter pylori (H-pylori) or hepatitis C infections (3, 4).
Four vital mutated genes significantly distinguish pancreatic
cancer. The most crucial altered gene within cancer comprises
K-ras, the proto-oncogene, which is found active in its mutated
form above 90% of the cases (5). However, the tumor suppressors
are also modified, such as CDKN2A (6), p53 (7), and DPC4/
SMAD4 (8). The treatment process of pancreatic cancer is
complicated because this disease is extremely dangerous. Most
patients are diagnosed late; also, pancreatic cancer has a special
TME that requires more beneficial targeted therapies (9). The
pancreatic tumors avoid immune responses through different
strategies. Firstly, the pancreatic TME has a large variety of
immunosuppressive cells such as myeloid-derived suppressor
cells (MDSCs), regulatory T cells (Tregs), tumor-associated
macrophages (TAMs), and immunosuppressive antigen-
presenting cells (APCs) (10–13). Secondly, the leukocytes,
which promote metastasis, are the important component of
pancreatic tumors (14, 15). Additionally, surgery and
chemotherapy treatments have poor survival results for
pancreatic cancer patients (16). However, immunotherapy has
recently been shown to be another important anti-tumor method
in the treatment of pancreatic cancer because it induces long-
lasting responses and prevents recurrence through long-term
memory function of the adaptive immune system (17, 18) also by
targeting and modulating the immune system, it can increase the
sensitivity of cancer cells to chemotherapy. Many studies have
been conducted and focused on different immunotherapy
strategies in pancreatic cancer, such as immune checkpoint
inhibitors, natural killer cells and dendritic cells, targeting
myeloid cells and tumor-associated macrophages (19, 20).
Another interesting application of immunotherapy in
pancreatic cancer is the activation of type I interferons (IFNs).
Type I IFNs, all of which bind to a cell surface receptor complex
(IFNAR), are anti-tumor cytokines and the regulators for innate
immunity activation (21). Downregulation of IFNAR1 (one of
the chains in the receptor complex) lets tumor elude the IFN
pathway which causes cancer development (22). It has also been
reported that inactivation of the IFN1-IFNAR1 pathway by
cancer-associated fibroblasts (CAFs) results in stromagenesis
and growth of tumors in the colon and pancreatic cancer (23).
Besides, to deal with the role of IFN I in pancreatic cancer,
another research showed that type I interferons such as IFNa
and IFNb have radiosensitizing effects in pancreatic cancer,
which can enhance the responses to treatment (24). Also,
another research introduced an important function of IFNb in
growth inhibition in pancreatic cancer even at low
concentrations (25). Hence it is worth studying pathways that
stimulate the production of type I IFNs. To date, multiple
stimulators for IFN I have been identified, among which
stimulator of interferon genes (STING) represent a crucial one.
STING resides in the endoplasmic reticulum (ER). It initiates
phosphorylation and activation of the transcription factor IRF3
(interferon regulatory factor 3), which can enter the nucleus to
promote the transcription of inflammatory genes, such as IFNb
(26). This pathway influences the pancreas by modulating T cell
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production so that when STING is activated in human cells, it
can decrease the infiltration of T cells (27). In recent years,
cGAS-STING signalling has become a popular mechanism to
improve the immune system against malignancy. In this article,
we describe the effect of cGAS-STING signalling on the pancreas.
We further show the recent advances of this pathway in
pancreatic cancer treatment.
THE BASIC OUTLINE OF
cGAS-STING PATHWAY

The Innate Immunity is activated through recognition of the
different pathogens, which depends on pattern recognition
receptors (PRRs), and pathogen-associated molecular patterns
(PAMPs), which are the ligands of PRRs (28). Cytosolic DNA
(cDNA), an important PAMP over infection, makes DNA sensors
to prompt downstream of innate immunity (29). Innate immunity
performs an important function in recognizing cDNAby activating
a special pathwaycalledcGAS-STING(30).Thispathwayacts as the
detector of self-DNA released from tumor cells and dying cells (31).
The destruction of cellular homeostasis will result in the
accumulation of DNA in the cytoplasm, which can bind to the
cGAS and result in its activation. The cGAS remodels adenosine
5′-triphosphate (ATP) and guanosine 5′-triphosphate (GTP) to
activate cyclic GMP–AMP (cGAMP). Subsequently, cGAMP acts
as a messenger and transmits the signal to the downstream
endoplasmic reticulum (ER) protein named stimulator of
interferon genes (STING also known as MITA [mediator of IRF3
activation], ERIS [endoplasmic reticulum IFN stimulator], MPYS
[N-terminal methionine–proline-tyrosine–serine plasma
membrane tetraspanner], or TMEM173 [transmembrane Protein
173]).When the activated STING is translocated toGolgi, it triggers
the essential signals through tank-binding kinase 1 (TBK1)/
interferon regulatory factor 3 (IRF3) for production of type I
IFNs and NF-kB (through IKKa/b cascades). Next, IRF3 and
NF-kB target the nucleus and increase the infiltration of type I
IFNs and Interleukin 6 (32–34). The type I IFNs binds to the
IFNAR1/2, heterodimeric receptor, which initiates Janus kinase
(JAK)- signal transducer and activator of transcription proteins
(STAT) pathway (35). The JAK kinases phosphorylate STAT1, and
STAT2 and interferon regulatory factor 9 (IRF9) joins STAT1/2 to
make the interferon-stimulated gene factor 3 (ISGF3) complex.
This complex functions as a transcriptional factor and prompts the
expression of IFN-stimulated genes (ISGs) (36) Figure 1. All the
details mentioned above indicate that cGAS functions as an
adjuvant for STING. The activated cGAS binds to STING, which
triggers the phosphorylation of IRF3. Following the cytosolicDNA,
the cGAS-STING pathway induces immune responses (37).
cGAS-STING PATHWAY AND PANCREAS

The cGAS-STING signalling pathway can release the type I IFNs
and inflammatory cytokines, affecting the immune responses
November 2021 | Volume 12 | Article 781032
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against different diseases variously (38). Inflammation of the
pancreas, known as pancreatitis, is a common digestive disease,
and if it develops quickly, it can cause severe damages (39). The
cGAS-STING pathway has been discovered to have opposing
effects on different types of pancreatitis (acute pancreatitis and
chronic pancreatitis). Zhao et al. demonstrated that the STING
pathway exacerbates acute pancreatitis by increasing TNFa and
IFNb (40). However, this pathway has a protecting impact on
chronic pancreatitis by modulating the infiltration of Th17 (41).
As chronic pancreatitis increases the risk of pancreatic cancer
(42), exploring the role of STING signalling in pancreatitis
provides insights into the application of STING for the
diagnosis and treatment of pancreatic cancer. Pancreatic islets
also function as an endocrine gland which means that it secretes
hormones such as insulin and glucagon. The pancreatic islets
include different cells that among them b cells are responsible for
releasing insulin (43). Interestingly, it has also been found that
STING is hugely expressed in mouse and human islet b cells (44),
and the STING pathway has been reported to be implicated in
even some islet b-cell damages (lipotoxic injury of b cells) (45).
The lipotoxic injury of pancreatic b cells is one of the major
hallmarks of type 2 diabetes (46). Moreover, the STING pathway
has been suggested to cause suppression of diabetogenic T cells
Frontiers in Immunology | www.frontiersin.org 3
(47), which means that STING can impact diabetes and influence
the integration and secretion of insulin. Based on the facts
mentioned above, it is understandable that the cGAS-STING
pathway has a wide and diverse range of effects on the
pancreas Figure 2.
STING AND PANCREATIC CANCER

The relationship between DNA damage and cancer has been well
studied. There are multiple networks in a cell that respond to
DNA damage. There are two aspects in the link between cancer
and possible outcomes of immunotherapy. Firstly, DNA damage
can improve anti-tumor immunity in both natural immune
reactions and treatment procedures. Secondly, genome
instability is a hallmark and a driving force of cancer (48).
STING is a vital component for promoting tissue repair
pathways which also responses to intestinal damages because
DNA damage induces STING activity leading to cytokine
production. These results can indicate the possible role of the
STING pathway in preventing tumorigenesis (49). The cGAMP
activates the STING signal pathway, which promotes the
formation of IFN-g from CD8+ T cells to reduce MDSCs and
FIGURE 1 | Illustrates the cGAS- STING pathway. The cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) functions as an
adjuvant for stimulator of interferon genes (STING). cGAS detects the cytosolic DNA and then binds to STING and activates it. The activated STING is translocated
to Golgi and stimulates the production of type I IFNs and NF-kB through tank-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3). The type I IFNs binds to
the Interferon-a/b receptor (IFNAR) and activates Janus kinase (JAK)- signal transducer and activator of transcription proteins (STAT) pathway. The phosphorylated
STAT1 and STAT2 join interferon regulatory factor 9 (IRF9) and make the interferon-stimulated gene factor 3 (ISGF3) complex, which increases the expression of IFN-
stimulated genes.
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delay their immune-suppressive activities (50). Moreover,
STING can have an important anti-tumor impact on TME by
producing type I IFN and priming T cells via CD8a+ DCs. In
addition, Batf3-lineage DCs respond to IFN-b produced
downstream of STING growth and can present the antigens to
CD8+ T cells (51). STING can be activated by tumor DNA which
produces type I IFN through the STING-IRF3 axis, or cytosolic
DNA activates the cGAS-STING pathway and type I IFN
production, independently of APC phagocytosis (52). Thus far,
a piece of research showed that the cGAS–STING pathway,
activated in APCs by cytosolic DNA, provides an important
source of type I IFN signalling, and it is essential for checkpoint
blockade and anti-PD1 therapies (53). However, current trials
are still trying to confirm the effectiveness of combination
STING/anti-PD1/PD-L1 approaches. Some other studies
reported the correlation between defective STING pathway
activity and cancer incidence (54, 55). For example, a recent
study revealed that the downregulation of the STING pathway
could cause cancer resistance to immune effectors because
downregulated STING pathway causes reduction of
intratumoral CD8+ T cell infiltration (56). Furthermore,
cancer cells can survive and evade immune responses through
harboring deficiencies in the cGAS-STING pathway (57). IFN
plays an important role in tumor-specific T cell responses which
means that the cGAS-STING pathway is a crucial mechanism to
drive inflammation-driven tumor growth. It has been reported
that STING signaling plays an important role in regulating
Frontiers in Immunology | www.frontiersin.org 4
immune cell infiltration in the TME (58). These findings prove
that cGAS-STING signalling is an important pathway for anti-
tumor responses and immunotherapy purposes. On the other
hand, Pancreatic cancer is an example of a solid tumor that
evades the immune system’s surveillance. As mentioned earlier,
cGAS-STING signalling can control the immune responses
against different pancreatic diseases. Besides, many recent
studies have been carried out to find the relationship between
this pathway and pancreatic cancer so that it can be applied for
pancreatic cancer therapy aims. In this part, we want to focus on
the current achievements of the STING pathway in the diagnosis
and treatment of pancreatic cancer.
STING AFFECTS PANCREATIC TUMORS
THROUGH DIFFERENT STRATEGIES

STING and DNA Damage
The cGAS-STING pathway acts as a cDNA detector that
activates the immune responses against cancer cells. This
ability of the STING pathway has sparked developments in
cancer immunotherapy. For example, the inhibition of Ataxia
telangiectasia mutated (ATM) protein stimulates the cGAS-
STING pathway. ATM is an essential kinase for repairing
DNA double-stranded breaks. Importantly, the deficiencies in
ATM can release the mitochondrial DNA into the cytoplasm,
which initiates the STING pathway and infiltration of T cells
FIGURE 2 | Shows the effect of the cGAS-STING pathway on different types of cells in the pancreas. The cGAS-STING pathway exacerbates acute pancreatitis by
increasing tumor necrosis factor-alpha (TNFa) and IFNb. On the other hand, this pathway regulates the production of Th17, which protects against chronic
pancreatitis. The cGAS-STING pathway is also involved in the lipotoxic injury of b cells.
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(59). Recent work has shown that deficiency of ATM and
activation of cGAS-STING pathway improve the immune
checkpoint blockade responses in pancreatic cancer by
stimulating type I IFN (60).

STING and Cell Death
The cGAS–STING pathway can connect DNA damage to anti-
tumor responses such as cell death and immune surveillance.
Constant stimulation of the cGAS–STING pathway leads to cell
death, promoting resistance to tumorigenesis (61–63). To
support the interaction between the cGAS-STING pathway
and cell death, several pieces of evidence prove this pathway
causes different types of cell death such as necroptosis (64),
apoptosis (65), pyroptosis, and ferroptosis (63). The early stages
of different cancers are developed from faulty cell death (66, 67).
For instance: activation of the STING pathway prompts
necroptosis in colon cancer cells by increasing the expression
of RIPK3 and MLKL, which are crucial proteins for the
necroptosis process (68). Furthermore, STING has been
reported to interact with spleen tyrosine kinase (Syk) and
regulate pyroptosis in colitis-associated colorectal cancer (69).
In small cell lung cancer, DNA damage activates the STING
pathway and consequently stimulates the expression of PD-L1
and related apoptotic responses (65). Recent analysis reveals that
ferroptosis, a regulated cell death, depends on iron and is
specified by the accumulation of oxidative damage. Induction
of ferroptosis is not just dependent on those mutations involved
in the Ras pathway; it means that it can occur in a Ras-
independent manner as well (70–72). Ferroptosis has been
Frontiers in Immunology | www.frontiersin.org 5
found in pancreatic tumors (73) and is associated with
autophagy (74). As it is presented in Figure 3, ferroptosis
interacts with STING and affects pancreatic cancer. For
example, a recent study revealed that STING promotes
mitochondrial fusion-induced ferroptosis. STING can bind to
mitofusins (MFN1/2) and activate mitochondrial fusion,
increasing ferroptosis in pancreatic cancer cells (75). However,
the interplay between STING and ferroptosis can cause
aggravation of pancreatic cancer. Glutathione peroxidase 4
(GPX4), an important antioxidant enzyme, removes oxidative
damage to membrane lipids and protects against ferroptosis (76).
Dai E and his colleagues demonstrated that oxidative DNA
damage induces Kras-driven cancers through the infiltration of
macrophages. They found that Gpx4 deficiency or excessive iron
accumulation causes more production of 8-OHG (an oxidized
nucleobase), then it activates macrophages and produces
cytokines abnormally, such as IL-6 and NOS2. STING plays
the main role in 8-OHG-induced macrophage activation and
infiltration. Importantly, both overload of iron and Gpx4
reduction can induce ferroptosis and boost the release of 8-
OHG, which leads to activation of STING pathway and
infiltration of macrophages during Kras-driven pancreatic
cancer (77). Based on this research, it is clear that modulation
of ferroptosis is becoming a therapeutic potential in pancreatic
cancer because macrophage reduction or inhibition of the 8-
OHG-STING pathway decreases ferroptosis-mediated
pancreatic carcinogenesis. Additional studies will be required
to delineate the possible effects of the cGAS-STING pathway on
other types of cell death in pancreatic tumors.
FIGURE 3 | Highlights the relationship between STING and ferroptosis. The excessive amount of iron and Gpx4 reduction can induce ferroptosis and production of
8-OHG, which leads to activation of the STING pathway and infiltration of macrophages during Kras-driven pancreatic cancer. However, when STING binds to
mitofusins (MFN1/2) activates mitochondrial fusion, which increases the ferroptosis in pancreatic cancer cells.
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STING Modulates Immune Responses
The cGAS-STING pathway is also implicated in immune
surveillance of tumors because type I IFNs can increase the
infiltration of T cells and NK cells (78, 79). However,
immunosuppressive cytokines reduce the number of cytotoxic
and helper T cells in pancreatic cancer (80). In pancreatic tumors,
the NK cells are functionally impaired (81, 82). As mentioned
earlier, pancreatic TAMs have a large population of TAMs with
immunosuppressive activities. Type I IFNs have been found to
reduce the production of TAMs and stimulate anti-tumor
functions of macrophages (83). Hence STING pathway plays an
important role in modulating the anti-tumor responses in
pancreatic cells through enhancing the expression of type I IFNs.
STING PLAYS AN IMPORTANT ROLE IN
PANCREATIC CANCER BIOTHERAPY

Interaction Between STING Pathway
and Metformin
Metformin is a basic anti-diabetes medication suggested to benefit
different types of cancers, including pancreatic cancer, by
modulating various pathways (84). On the other hand, it has
been suggested that cytosolic sensing of DNA triggers the HER2–
AKT1 axis, which STING promotes and modifies TBK1. HER2
(a kind of receptor tyrosine kinase) is crucial to mediate the
suppression of cytosolic DNA sensing. HER2 lets tumor cells
tolerate the anti-tumor immunity more effectively because it can
reduce cellular death and senescence in cancer cells. It inhibits
tumors from responding to the production of IFNs as well (85).
Notably, HER2-AKT signaling regulates the STING pathway
negatively. A piece of research demonstrated that metformin
could increase the production of CD4+ and CD8+ T cells in the
TME through decreasing AKT phosphorylation and enhancing the
STING expression in pancreatic cancer (86). Therefore, metformin
would have the ability to inhibit pancreatic cancer growth through
promoting the STING/IRF3/IFN-b pathway and can be applied in
combination with other types of immunotherapy.

STING Agonists and Vaccines as
Monotherapy or Combined With
Other Treatments
The application of the cGAS-STING pathway in cancer therapies
is complex because it varies in different cancer types, and there are
still some challenges in utilization of STING, for example, it can
activate the adaptive immune responses by type I IFN production,
but it is difficult to control the local level of type I IFNs in tumor
cells. However, it has been suggested that STING signaling can
boost cancer immunotherapies via cancer vaccines. For instance,
Luo et al. suggested that STING-dependent vaccines can inhibit
tumor growth and make a long-term anti-tumor memory (87).
Recently, many kinds of STING agonists have been introduced for
anti-tumor activities. 5, 6-dimethylxanthenone-4-acetic acid
(DMXAA) is one of the STING agonists and can modulate the
immune system and result in anticancer responses. Still, it can
promote the cGAS-STING pathway only in mice, which cannot be
Frontiers in Immunology | www.frontiersin.org 6
a functional treatment for cancer patients. Another example of
cGAS-STING pathway agonists is cytosolic cyclic dinucleotides
(CDNs) which can enhance the production of type I interferons
through activating TBK1/IRF3, NF-kB, and STAT6 pathways
(88). STING agonists can also be involved in cancer vaccines
and activate the immune system against carcinogenesis. Many
other kinds of STING agonists can be used for cancer treatment.
Still, their ability to target human STING and induce anti-tumor
responses in clinical trials makes them more efficient and reliable.

Clinical data reported that KRAS andMYC oncogene signaling
causes the suppression of type I IFN responses in pancreatic
cancer cases (89). STING ligands activate inflammatory responses,
which help to improve the adaptive immune responses to antigens
released by radiation therapy. In addition, the combination of
radiation therapy and STING agonists controls local and distant
tumors through developing T cell immunity in murine models of
pancreatic cancer (90). STING agonists can promote the activation
of cytotoxic T cells and the production of cytokines and inhibit
pancreatic cancer progression, so it is clear that STING agonists
modulate the immune microenvironment of pancreatic cancer
(91). Jing, W et al. reported that chemokines attracted by C-X-C
Motif Chemokine Receptor 3 (CXCR3), which are also dependent
on IFN, can be produced through STING activation, and it means
that CXCR3 has a crucial role in the anti-tumor activity of STING
agonist treatment in pancreatic cancer (92). However, a recent
study showed that using STING agonist alone only extends
survival time and all the experimental cases still died from
tumor progression. It has also been suggested that biopolymers
containing the combination of STING agonists and specific
modified chimeric antigen receptor (CAR) T cells promote
immune responses against tumor cells and significantly improve
the overall survival of pancreatic cancer and melanoma mouse
models (93). Lorkowski et al. also reported that the delivery of
STING agonist plus a Toll-like receptor 4 (TLR4) agonist through
immunostimulatory nanoparticle (immuno-NP) could increase
the local infiltration of IFNb in pancreatic tumors. As a result,
these immune-NPs are a potent way to enhance the innate
immune responses against pancreatic cancer (94). Nowadays,
the utilization of vaccines for cancer treatment has been a
fascinating topic, and some vaccine-based studies have been
administrated in pancreatic cancer as well (95). Kinkead et al.
used a different kind of vaccine based on STING in murine
pancreatic cancer models. This vaccine targets neoantigens that
are arisen from somatic mutations, and its integration with
checkpoint modulators (anti–PD-1 and agonist OX40
antibodies) increases anticancer immune responses (96). Based
on this body of research, different kinds of STING agonists have
been applied to treat pancreatic cancer, shown in Table 1.
CONCLUSION

The genetic instability of cancer cells causes the presence of
cytosolic DNA, which plays the main role in the activation of the
cGAS-STING pathway. The cGAS-STING pathway has recently
provided insights into its influences on cancer development.
STING signaling performs an anti-tumor function in the tumor
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microenvironment through type I IFNs, associated with a better
prognosis. Also, several studies have aimed to discover the exact
role of STING in tumor immunity and treating multiple cancers.
Pancreatic cancer, which has a special tumor microenvironment,
has been studied to get more information about the effectiveness
of immunotherapy for its treatment. Many pieces of research
revealed that STING is an effective strategy for inducing the
progression of pancreatic cancer and consequently anti-tumor
activity, which has been recently applied to other therapies such
as vaccines and immune-targeted nanoparticles. Although we
have tried to sum up the potential roles of STING signaling in
more detail in pancreatic cancer, it is still required to carry out
deep studies to clarify different mechanisms in which STING can
be activated and utilized for treatment purposes.
Frontiers in Immunology | www.frontiersin.org 7
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