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 The recent development of tissue engineering provides exciting new perspectives for the replacement of failing
organs and the repair of damaged tissues. Perivascular cells, including vascular smooth muscle cells, pericytes
and other tissue specific populations residing around blood vessels, have been isolated from many organs and
are known to participate to the in situ repair process and angiogenesis. Their potential has been harnessed for
cell therapy of numerous pathologies; however, in this Review we will discuss the potential of perivascular
cells in the development of tissue engineering solutions for healthcare. We will examine their application in
the engineering of vascular grafts, cardiac patches and bone substitutes as well as other tissue engineering appli-
cations andwewill focus on their extensive use in the vascularization of engineered constructs. Additionally, we
will discuss the emerging potential of human pericytes for the development of efficient, vascularized and non-
immunogenic engineered constructs.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Fig. 1.Venn diagram showing the overlap ofmarkers expression between different classes
of vascular and perivascular cells. Markers shared by 2 or more cell types are indicated
with bold and italic characters.
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1. Introduction

1.1. Perivascular cells: types, characterization and function

Perivascular cells (PCs) can be isolated from multiple tissues in the
body and play a role in tissue repair, vascular homeostasis aswell as an-
giogenesis. Perivascular cells includemainly two types of cells: vascular
smooth muscle cells (SMCs) and pericytes. While SMCs surround large
vessels such as arteries and veins and are separated from endothelial
cells (ECs) by the basement membrane and inner elastic lamina,
pericytes surround smaller vessels and capillaries and are in direct con-
tact with ECs (Crisan, Corselli, Chen, & Peault, 2012).

SMCs are amixed cell populationwith a complex developmental or-
igin (Owens, Kumar, &Wamhoff, 2004), their marker expression profile
has been thoroughly studied. During their synthetic and proliferative
phase SMCs typically express vimentin, non-smooth muscle myosin
heavy chain IIB (SMemb), tropomyosin 4 and cell retinol binding pro-
tein (CRBP1); during maturation, quiescent SMCs express increasing
levels of smooth muscle alpha actin (α-SMA), transgelin and basic
calponin, and finally smooth muscle myosin heavy chain (SM-MHC) at
late stages of development (Wanjare, Kusuma, & Gerecht, 2013).

Pericytes have been more recently isolated, and while many com-
mon markers have been identified, a consensus has not yet been
reached. In particular, pericytes display different expression patterns
depending on their tissue of origin, the activation state and culture/ex-
pansion protocol, andwhether the characterization is carried out in vivo
or in vitro. Furthermore, different nomenclatures have been developed
to describe the various subtypes of micro-perivascular cells. Pericytes
possess similar properties with mesenchymal stem cells (MSCs), such
as the antigenic expression of CD44, CD90, CD105, the lack of hemato-
poietic (CD45) and endothelial (CD31, von Willebrand Factor – vWF,
VE-Cadherin) markers, multipotential differentiation capacity
(adipogenic, osteogenic, chondrogenic and myogenic differentiation),
clonogenicity, immunosuppression, non-alloreactivity, wound healing
contribution and extracellular matrix (ECM) regeneration. Indeed, it
has been hypothesized that pericytes could represent a tissue-resident
perivascular source of MSCs (Campagnolo et al., 2010; Corselli et al.,
2013; Hass, Kasper, Bohm, & Jacobs, 2011; Kovacic & Boehm, 2009).

A summary of the most commonly described markers and their co-
expression by related cell types is reported in Table 1. It is important
to highlight the partial overlapping in the expression of markers be-
tween different cell types, as clarified in Fig. 1 (Covas et al., 2008;
Valente et al., 2014). The classification of the mesodermal derived line-
ages is the topic of heated ongoing debate; while beyond the scope of
this review to provide extensive definition of the cell identity, we look
forward to the definition of a more precise immunophenotype charac-
terization for these cell types.

This review will focus on the tissue engineering (TE) applications of
perivascular cells: SMCs, pericytes and pericyte-associated cells.Wewill
provide a summary of themain studies involving the use of perivascular
cells for vascular, skeletal and cardiac muscles, bone and dermal TE.
Since the description and definition of SMCs is well established, we
will give an introductory overview of the several populations of
Table 1
Comparison of marker expression between mesenchymal stem cells (MSCs), vascular smooth

Cell type Source Phenotype

MSCs Bone marrow, adipose tissue, peripheral
blood, other tissues

CD44+/CD90+

SMCs Arteries, veins Synthetic: vim
Contractile: α

Pericytes and
pericyte-associated cells

Capillaries/microvessels from various
tissues

NG2+/PDGFR
CD146+or−/
CD44+/CD90

ECs Vascular intima CD31+/CD144
pericytes and pericyte-associated cells that have been used for TE
purposes.
1.2. Definition and characterization of pericytes from different sources

Pericytes are perivascular cells that surround ECs in capillaries, ve-
nules and arterioles; their shape, size, distribution, attachment and den-
sity depend on their location. Pericytes derived from different body
districts share similar phenotype and functional properties; however,
since the nomenclature of tissue-derived microvessel perivascular
cells is still debated, we remand this issue to a more specialized article.
For the scope of this review the term peri-microvascular cells or pericytes
will be adopted to indicate several of the populations so far described:
these include both (i) de facto pericytes, surrounding microvessels of
different tissues and (ii) adventitial pericyte-associated cells found
within the vasa vasorum of vein and arteries and in the heart tissue
(Avolio, Rodriguez-Arabaolaza, et al., 2015; Campagnolo et al., 2010;
Chen et al., 2015; Corselli et al., 2013; Kovacic & Boehm, 2009).

It is general consensus that most pericytes express neural/glial anti-
gen 2 (NG2) and platelet-derived growth factor receptor beta (PDGFRβ)
and lack the expression of hematopoietic and endothelial markers, such
as CD45 and CD31 (Campagnolo et al., 2010; Chen et al., 2015; Crisan et
al., 2008). A summary of the expression profile of pericytes and
pericyte-associated cells in relation to their source and strategy of isola-
tion is reported in Table 2.

In terms of function, the general role of pericytes is the control of
vascular permeability, however cells from different districts have
shown remarkably different characteristics, which can be exploited for
specific TE applications.

Brain pericytes (BPs) constitute an important part of the blood brain
barrier (BBB) by sequestering small molecules before they reach the ex-
tracellular fluid of the brain (Bouchard, Shatos, & Tracy, 1997). This abil-
ity has been harnessed for engineering a BBB model where astrocytes,
pericytes and ECs are placed in a 3-dimensional (3D) hydrogel matrix
of collagen type I (Tourovskaia, Fauver, Kramer, Simonson, &
Neumann, 2014).
muscle cells (SMCs), pericytes and endothelial cells (ECs).

References

/CD105+/CD73+/CD146+/CD34−/CD45−/CD14− Hass et al. (2011)

entin+/Smemb+/tropomyosin+/CRBP1+
-SMA+/Transgelin+/SMMHC+

Wanjare, Kusuma, and
Gerecht (2014)

β+/vimentin+
CD34+or−
+/CD105+/CD73+/CD31−/CD45−/CD56−

Campagnolo et al. (2010)
Chen et al., (2015)
Avolio, Meloni, et al. (2015)

+/vWF+/CD34+/CD45− Bompais et al. (2004)
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Table 2
Characteristics of pericytes and pericyte-associated isolated from different sources.

Pericytes and source Strategy of isolation Phenotype in culture Characteristics/functions References

Saphenous vein pericytes
(SVPs), from saphenous
vein

CD34+/CD31− magnetic bead selection

Positive: NG2, PDGFRβ,
CD44, CD90, CD105,
CD73, VIMENTIN
Negative: CD146, CD45,
CD31

Stabilization/control, blood vessel
permeability, blood pressure, vasculogenesis,
angiogenesis;
Physiological/pathological repair process.

Campagnolo et al.
(2010)

Cardiac pericyte-associated
(CPs), from neonatal
atrium/ventricle

CD34+/CD31− magnetic bead selection

Positive: NG2, PDGFRβ,
CD44, CD90, CD105,
CD73
Negative: CD146, CD45,
CD31

Angiogenesis,
ECM protein secretion.

Avolio,
Rodriguez-Arabaolaza,
et al. (2015)

Myocardial pericytes
(MPs), from fetal/adult
hearts

CD146+/CD34−/CD45−/CD56−/CD117−
Fluorescent activated cell sorting

Positive: NG2, PDGFRβ,
CD44, CD90, CD105,
CD73, VIMENTIN,
CD146
Negative: CD34, CD45,
CD31

Angiogenesis;
vascular permeability control;
blood flow regulation;
trophic functions;
ECM protein secretion.

Chen et al. (2015)

Skeletal muscle pericytes
(SkPs), from Skeletal
muscle

CD146high/CD34−
Fluorescent activated cell sorting

Positive: CD146
Negative: CD34, CD45,
CD144, CD56, CD31

Myogenic potential;
Role in muscle ontogeny and regeneration;
Promote assembling of new vasculature in
skeletal muscle.

Crisan et al. (2008)

Brain pericytes (BPs), from
brain microvasculature

Cloning and morphology
Positive: PDGFRβ, α-SMA,
3G5, RGS5, MHC I-II
Negative: CD45, vWF

Control of BBB integrity
Regulation of microvessel architecture;
ECM protein secretion;
Regulation of capillary diameter and blood
flow;
Phagocytic functions.

Bouchard et al. (1997)
Winkler, Bell, and
Zlokovic (2011)

Liver pericytes (LPs) from
hepatic tissue

Density gradient
or
Fluorescent sorting based on endogenous
retinol
or
Liver explant outgrowth

Positive: α-SMA, NG2,
DESMIN, GFAP

Retinol transport and storage;
TGFβ-dependent ECM regulation;
Angiogenesis and sinusoidal remodelling.

Friedman and Roll
(1987); Matsuura et
al. (1989)
Blazejewski et al.
(1995)
Yokoi et al. (1984)
Friedman (2008)

Dental pulp pericytes
(DPPs), from dental pulp

STRO1+ magnetic bead selection
Positive: STRO-1, CD146,
3G5, α-SMA
Negative: vWF

High proliferative potential; Regeneration of
mineralized structure as bone and dentin;
Support hematopoiesis.

Shi and Gronthos
(2003)
Alliot-Licht et al.
(2005)
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Liver pericytes (LPs) participate in the vitamin A (retinol) metabo-
lism, the repair of hepatic tissue through the recruitment of inflamma-
tory cells and the ECM remodeling through the secretion of degrading
enzymes - metalloproteinases (MMPs) - and their inhibitors (Sims,
2000). LPs are involved in diseases such as cirrhosis, hypertension of
portal vein and hepatic cancer, as well as in their treatment. In addition,
LPs have been used in TE applications such as the repopulation of
decellularized human liver matrix, showing excellent viability, motility,
proliferation and remodeling of ECM (Mazza et al., 2015).

Saphenous vein-derived CD34+/CD146- adventitial pericytes
showed remarkable pro-angiogenic capacity when injected directly
into an ischemic area, both in hindlimb ischemia and in myocardial in-
farction. These cells were able to migrate into damaged site, stimulate
the angiogenesis through direct contact with ECs, and contribute to
the neo-angiogenesis and blood flow restoration (Avolio, Meloni, et
al., 2015; Campagnolo et al., 2010; Gubernator et al., 2015; Katare et
al., 2011).

CD146+ pericytes were isolated from skeletal muscle (SkPs) and
several other human tissues, including pancreas, adipose tissue and pla-
centa. As they present a remarkable myogenic ability, Crisan et al. have
exploited their characteristics for muscle regeneration. Briefly, these
cells, purified using fluorescent activated cell sorting, can been cultured
in a muscle proliferation medium to form myotubes and contribute to
muscle regeneration when injected in a mouse model of muscular dys-
trophy (Chen et al., 2015; Crisan et al., 2008; Park et al., 2011).

Adipose tissue is a useful source of cells for regenerativemedicine pur-
poses due to its abundance and easiness of harvesting. Several
multipotent populations associated with the micro-vascular niche have
been isolated anddescribed. Both CD34positive andnegative populations
were described as residing perivascularly and exhibiting pericyte-like
markers (NG2, PDGFRb), with the CD34- fraction expressing the in
sensu stricto pericyte marker CD146 (Crisan et al., 2012; Traktuev et al.,
2008; Zannettino et al., 2008). Interestingly, some of these populations
display characteristics useful in the context of regenerative medicine,
such as promoting the recovery of hind-limb ischemia (Miranville et al.,
2004) and bone reconstruction (Zannettino et al., 2008) in murine
models. Umbilical cord perivascular cells (UCPCs) represent an interest-
ing population for TE due to their easy accessibility and availability.
UCPCs are CD146+, clonogenic, highly proliferative, immunosuppressive
and capable of differentiation into themesenchymal lineages. Additional-
ly, UCPCs were able to efficiently engraft in the defective bone, indicating
their suitability for bone regeneration (Sarugaser, Lickorish, Baksh,
Hosseini, & Davies, 2005; Tsang et al., 2013).

Dental pulp tissue contains a perivascular niche with odontoblast-
like progenitor cells that co-express CD146 and STRO-1, an osteogenic
precursor marker (Alliot-Licht et al., 2005; Shi & Gronthos, 2003).

More recently, pericyte-like cells have also been isolated from the
human heart. They are clonogenic and committed toward the vascular
SMCs lineage and secrete a variety of pro-angiogenic and chemotactic
factors able to attract cardiac progenitor cells and ECs (Avolio,
Rodriguez-Arabaolaza, et al., 2015). In the same year Chen and col-
leagues isolated a population of myocardial pericytes (MPs) from fetal
and post-mortem adult myocardial samples. MPs are able to differenti-
ate into cardiomyocyte-like cells both in vitro and in vivo when
transplanted in infarcted mouse hearts (Chen et al., 2015).

Pericytes have been derived also from human induced pluripotent
stem cells (iPS) following multi-step differentiation protocols (Dar et
al., 2012; Kusuma, Facklam, & Gerecht, 2015; Kusuma & Gerecht,
2016; Orlova, van den Hil, et al., 2014; Wanjare et al., 2014). The appli-
cation of stem cell derived pericytes in TE has been suggested and is
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probably under investigation, the main advantage being the easy avail-
ability and the potential to obtain patient-derived cells through induc-
tion of pluripotency in somatic cells (Dar & Itskovitz-Eldor, 2015).
Indeed, the obtained pericytes are functionally competent, as demon-
strated by the cooperation with other vascular cells during the forma-
tion of vascular-like structures in vitro (Kusuma, Macklin, & Gerecht,
2014; Orlova, Drabsch, et al., 2014) and their angiogenic capacity in
vivo (Dar et al., 2012).

Overall, thanks to their capacity to stabilize blood vessels, regulate
angiogenesis and immunological response and contribute to physiolog-
ical and pathological repair processes, perivascular cells are great candi-
dates for TE applications (Gokcinar-Yagci, Uckan-Cetinkaya, & Celebi-
Saltik, 2015).

2. Tissue engineering

The development of cell therapy has improved the therapeutic op-
tions for many diseases. So far, the majority of preclinical studies and
clinical trials have focused on the delivery of cells suspensions by injec-
tion in the area of damage; however, the benefits of cell therapy have
been limited by the poor survival and rapid removal of cells (Naderi-
Meshkin, Bahrami, Bidkhori, Mirahmadi, & Ahmadiankia, 2015). Evi-
dence shows that the injected cells do not contribute to the reconstitu-
tion of the damaged tissue, highlighting the urgency of new solutions
for organ/tissue replacement. Based on these considerations, clinicians
and biologists are developing new techniques in the attempt to gener-
ate biological tissues (“grafts”) in vitro, developing the new field of TE.

The reconstruction of tissues can be achieved by the combination of
a support material (“scaffold”) with cells and/or bioactive factors (BFs).

The scaffold can be of natural or synthetic origin and ismeant to pro-
vide support to the forming tissue and a matrix for cell retention and
controlled BF release. Natural matrices are made of biologically-derived
polymers, such as collagen, elastin, fibrin, fibronectin, alginates
electrospun or made into a hydrogel. Alternatively, they can consist of
entire decellularised tissues, commonly xenografts of porcine or bovine
origin. Conversely, synthetic matrices are composed of synthetic poly-
mers like polyglicolyc acid (PGA), poly(DL-lactide-co-glycolic acid)
(PLGA), poly-L-lactic acid (PLLA) and polycaprolactone (PCL) (exten-
sively revised in Keane & Badylak, 2014; Lee, Kasper, & Mikos, 2014;
Li, Meng, Liu, & Lee, 2015; Vashist & Ahmad, 2015).

On the one hand, biological matrices have the advantage of providing
an adequate anatomic structure (for example the porcine decellularised
valve) and are bioactive, stimulating the recruitment of cells to the graft.
On the other hand, however, synthetic matrices are available in limitless
supply and allow tailoring thematerial characteristics tomeet the desired
porosity (pores dimension), topography (surface characteristics, for ex-
ample to promote cell adhesion) and mechanical properties according
to the organ in which the graft will be implanted.

The addition of cells to the scaffold structure contributes to the me-
chanical stability through the release of ECM. Furthermore, the seeded
cells provide an immediate non-immunogenic surface and release a
plethora of growth factors (GFs) attracting host cells and regulating
the inflammatory response. Also, the cellular component promotes the
creation of a living tissue that is integrated with the recipient organ
and accelerates the full achievement of the therapeutic activity. The
cells are selected based on the desired functional properties, with autol-
ogous cells being the preferred choice for clinical applications to avoid
immunosuppression of patients.

Last, BFs can be integrated within the biomaterial to improve the
biocompatibility or create chemoattractant gradients and recruit cells
to the graft or to support cell survival, accelerating the formation of a
functional tissue (Andreas, Sittinger, & Ringe, 2014).

In addition, there is also an alternative TE strategy, named scaffold-
free, based on the generation of cell sheets in vitro through stacking of
multiple layers of cells together. This is the case, for example, of cardiac
patches (Sakaguchi, Shimizu, & Okano, 2015).
3. Vascularization of biomaterials

To date, one major obstacle to the clinical application of large TE
constructs is the poor perfusion, leading to cells in the central parts of
the graft undergoing necrosis or ischemia due to inadequate support
of oxygen and nutrients. This is a crucial problem for large and demand-
ing vital organs like the liver, the kidney and heart. Considering the dif-
fusion limit of oxygen is 150–200 μm, constructs greater than this size
have to be properly vascularized in order to survive. Vessels growth in
vivo is a very slow process, depending on the colonization of the con-
struct by host cells that integrate and build a new capillary network. A
further limitation is given by the development of vascular networks
poorly organized, characterized by fluid leakage and hemorrhages and
by the lack of proper anastomoses with the host vascular system. Im-
portantly, TE might help overcome these problems, promoting the vas-
cularization of big constructs.

3.1. Methods of vascularization

Two main strategies have been proposed to vascularize TE grafts
(reviewed in Laschke & Menger, 2012; Rouwkema & Khademhosseini,
2016). The first one is the stimulation of neoangiogenesis in situ by
host ECs and mural cells that colonize the graft post-implantation;
this process relies on the expansion and growth of the hostmicrovascu-
laturewithin the graft (Laschke&Menger, 2012). Aswill be discussed in
more details in the further session of this review, the scaffolds can be
tailored to encourage the host cells invasion both by tuning its physical
characteristics and by incorporating angiogenic factors (AFs).

The second strategy is based on the creation of a vascular network
within the graft in vitro, pre-implantation. Once the graft is implanted,
the pre-formed vascular network establishes connections with the
host vasculature, process named inosculation (Laschke, Vollmar, &
Menger, 2009). This process can be favored by the manufacture of ma-
terials guiding the formation of new tubular structures (see Section
3.3). Even if more elaborated, the establishment of pre-formed vascula-
ture allows for a rapid connection to the host vascular network through
newly formed anastomoses, guarantying a quick perfusion of the im-
plant and better grafting chances.

For example, the transplantation of prevascularized collagen skin
constructs inmice accelerated the formation of functional perfused ves-
sels compared to non-vascularized grafts, corroborating the concept
that the inosculation technique may favor the preservation of the TE
graft, reducing the occurrence of ischemia (Tremblay, Hudon, Berthod,
Germain, & Auger, 2005). Again, the prevascularization of fibrin con-
structs with human umbilical vein ECs (HUVECs) and fibroblasts prior
to subcutaneous implantation in mice, promoted the perfusion of the
grafts, accelerating the formation of anastomoses between the host
and the engineered vascular network (Chen et al., 2009). Some litera-
ture reports underline that the formation of anastomoses to the host
vasculature can be limited, as it happened for TE bone constructs
vascularized with HUVECs prior to implantation into mice
(Rouwkema, de Boer, & Van Blitterswijk, 2006). However, this latter
might represent a limitation of the xenotransplant rather than a failure
of the pre-vascularization method.

As illustrated in Fig. 2, both vascularization strategies reported above
can be optimized by themodification of several parameters: (1) the selec-
tion of the cellular candidate, (2) the design and fabrication of the scaffold
structure and (3) the incorporation of AFs within the scaffold. In the fol-
lowing paragraphs we will briefly report on these points.

3.2. Use of perivascular cells to support angiogenesis

A combination of vascular ECs and perivascular/mural cells, such as
fibroblasts, SMCs and pericytes, that physiologically form blood vessels
and reside within the vascular niche, has largely been the preferred



Fig. 2. Strategies of vascularization of tissue-engineered grafts. Scaffolds used for TE applications (a) have to be uniformly vascularised in order to ensure the perfusion and survival of the
inner parts. 3 main strategies have been proposed to promote this process: (b) combination of the material with cells able to support angiogenesis, (c) design of the scaffold structure
reproducing vascular like-structures that will act as a guide for the angiogenic process, and (d) incorporation of angiogenic factors during the manufacture of the graft. The result
should be a vascularised graft (e), in which new-formed vessels are mature and functionally competent.
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solution to promote the process of vascularization (Costa-Almeida,
Granja, Soares, & Guerreiro, 2014).

The important role of PCs is supported bymultiple literature reports.
The implantation inmice of fibronectin/collagen I scaffolds seededwith
HUVECs and MSCs enhanced the formation of a stable and functional
vascular network; importantly, MSCs can differentiate into vascular
mural cells, thus stabilizing the vessel structure (Koike et al., 2004).
Sathy et al. used amix of pericytes and ECs in order to optimize the vas-
cularization of thick bone constructs, adopting a particular strategy
based on the alternation of osteogenic and angiogenic layers, up to
400 μm in thickness. This peculiar organization allowed the Authors to
generate functionally vascularized bone grafts after subcutaneous im-
plantation in mice (Sathy et al., 2015). Also a study based on cell sheet
technology for generation of bone constructs corroborated the impor-
tance of using PCs to achieve the formation of stable vascular networks.
The integration of ECs, PCs and MSCs and the culture in osteogenic me-
dium resulted in the generation of a well vascularized osteogenic con-
struct (Mendes et al., 2012). Moreover, the seeding of 3D
polyurethane scaffolds with human endothelial progenitor cells
(EPCs) and MSCs yielded the formation of a vascularized graft present-
ing vascular structures made of cells positive for ECs markers and
perivascular cells expressing antigens typical of pericytes, possibly de-
rived from MSCs (Duttenhoefer et al., 2013).
3.3. Scaffold design and fabrication

As discussed above, the scaffold structure can influence the level of
vascularization achieved both pre and post implantation. In particular,
the porosity of the graft is a crucial parameter, since it determines the
migration of cells inside the material, promoting blood vessels in-
growth. Pores bigger than 250 μm have been associated with a faster
vascularization compared with smaller sizes (Druecke et al., 2004).
Moreover, the connection between pores is essential to develop anasto-
moses between capillaries and build a functional vascular network.
Complex scaffold design prone to vascularization can be obtained by
controlled manufacture processing such as electrospinning or
microfluidic technologies.

Gafni et al. designed a biodegradable filamentous polymeric scaffold
demonstrating this structure, combined with ECs, was able to guide the
angiogenesis both in vitro and in vivo. Interestingly, the degradation of
the polymer left space to a functional capillary network perfused by
blood one month post-implantation in mice (Gafni et al., 2006). Again,
the microfabrication of micro-channels scaffolds enhanced the vascu-
larization of 2 mm thick alginate grafts by ECs both in vitro and in vivo
(Zieber, Or, Ruvinov, & Cohen, 2014). A micromachining technology
was employed to design complex branched silicon tubular networks
able to act as a template for vascularization; integration of this system
with hepatocytes and ECs allowed the Authors to engineer 3D liver tis-
sue before implantation (Kaihara et al., 2000).

A recent study reports on the fabrication of 3D vascular structures
using hydrogel electrospinning as templates for formation of new vas-
culature by ECs, pericytes and SMCs. Fibrinmicrofibers allowed the gen-
eration of complex and self-supporting vascular structures including
not only the tunica intima made of ECs but also the tunica media com-
posed of SMCs (Barreto-Ortiz et al., 2015).

The geometry of the engineered graft is also of paramount impor-
tance. A structure favoring the proper alignment of ECs in cord struc-
tures rather than the random formation of vascular networks can
improve the functional properties of the vascularized graft in vivo
(Zieber et al., 2014).

3.4. Incorporation of angiogenic factors

The embedding of AFs within the biomaterial is another strategy to
promote the vascularization and the stabilization of newly formed ves-
sels. Commonly employed AFs are PDGF, vascular endothelial growth
factor (VEGF) and Angiopoietin 1 (Ang1), factors able to recruit ECs
but also PCs (Chen, Silva, Yuen, & Mooney, 2007; Hirschi, Skalak,
Peirce, & Little, 2002). Additionally, the matrix can be loaded with
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factors stimulating the secretion of AFs by other cells, such as Sonic
Hedgehog (SHH). SHH is able to stimulate the production of Ang1,
Ang2 and VEGF in interstitial mesenchymal cells, boosting indirectly
the angiogenesis in mice ischemic limbs (Pola et al., 2001). Also, the in-
corporation of VEGF and fibroblast growth factor-2 (FGF2) into a porous
acellular scaffold increased the formation and maturation of new ves-
sels 3 months after subcutaneous implantation in rats (Nillesen et al.,
2007). Another study demonstrated that the functionalization of PLGA
scaffolds pores with VEGF enhanced the vascularization in vivo after
subcutaneous implantation. In the same study, the Authors provide a
method of VEGF encapsulation within PLGAmicrospheres that improve
the release of the GF over time, further boosting the process of angio-
genesis (Ennett, Kaigler, & Mooney, 2006).

4. Use of perivascular cells for tissue engineering

The amenability of PCs to TE applications has promoted their appli-
cation for the repair of several tissues and organs. Below, we report on
the engineering strategies adopted for the generation of vascular grafts
and tissue-specific constructs aiming at the repair of the heart, skeletal
muscle, bone and skin (Fig. 3).

4.1. Vascular grafts

4.1.1. Limits of current grafting solutions
The progressive ageing of the world population and the rise of car-

diovascular disease incidence have led to a growing number of bypass
surgeries. The internal mammary artery and the saphenous vein are
the surgeon's first choices; however while arterial grafts perform well
Fig. 3. Application of perivascular cells for tissue engineering strategies of damaged
tissues. The strategies of delivery of perivascular cells (PCs) for the repair of tissue
defects are very divers and depend on the tissue/organ of interest: (a) bone
reconstruction was achieved by incorporating PCs in 3D scaffolds; (b) heart patches
obtained by stacking multilayers of PCs combined grown on matrix substrate were
devised for myocardial infarction; (c) topical application of dermal patches containing
PCs improved skin wound healing.
both in the short and long term, about 50% of vein grafts become
narrowed or occluded at 10 years, increasing to 85% after 15 years
(Kannan, Salacinski, Butler, Hamilton, & Seifalian, 2005). The recurrence
of the occlusion and thewidespreadpresence of concurrent vascular pa-
thologies lead to the compelling need of an artificial alternative for
revascularization.

However, current clinically approved polymer-based grafts such as
Dacron and ePFTE (polytetrafluoroethylene) have shown promising re-
sults as large vessel substitutes, but perform poorly for small diameter
vessel bypass (b6 mm) (Kannan et al., 2005).

Themain complications observed are thrombosis and intima hyper-
plasia in the short/medium term and the development of stenosis and
graft atherosclerosis in the long term (Yahagi et al., 2016), mainly due
to compliance mismatch and thrombogenicity of the blood contacting
surface.

The challenge of providing an adequate synthetic solution for small
diameter vascular grafts has been taken up by TE. Many different solu-
tions have been devised in terms of material science, ranging from
decellularized vessels (Campagnolo et al., 2015; Tsai et al., 2012) to
electrospun natural or synthetic fibers (as reviewed in Hasan et al.,
2014).

Most commonly, tissue-engineered vascular grafts (TEVG) are seed-
ed with ECs to mimic the natural blood-contacting surface, aiming at
preventing the occurrence of blood clotting (Zhou et al., 2014). Howev-
er, similarly towhat discussed for the vascularization of TE scaffolds, the
complete reconstruction of the EC lining is not sufficient to recapitulate
the innate structure and physiological characteristics of the natural ves-
sel, leading to poor mechanical characteristics and immature
phenotype.

4.1.2. Perivascular cells for vascular grafts
PCs are an obvious choice for vascular repopulation as they originate

from the same anatomical district and can improve mechanical func-
tion, increase vessel contractility and reduce leaking. Furthermore, the
natural crosstalk between PCs and ECs is re-established after implanta-
tion, leading to increased ECs proliferation andmigration and promising
a faster and more efficient re-endothelialization (Fig. 4).

The most common choice of PCs for TEVG is vascular SMCs, which
are naturally located in the media layer of large vessel.

In a seminal Science study, Weinberg and Bell produced a tri-layer
vascular graft incorporating 3 bovine primary cell populations: adventi-
tial fibroblast, vascular SMCs and ECs in combination with a Dacron
mesh, providing adequate support and an optimal barrier function
(Weinberg & Bell, 1986). This initial proof-of-principle demonstrated
the importance of recapitulating the vessel structure in the synthetic
graft in order to incorporate all the physiological features of a natural
vessel.

SMC phenotype and function are tightly regulated by their sur-
roundingmicroenvironment and by their organizationwithin the tissue
(Rensen, Doevendans, & van Eys, 2007). For these reasons, the design of
the graft material has to be informed by the knowledge of the biological
environment in order to reduce complications derived by the over-pro-
liferation of SMCs and improves themechanical features of the synthetic
graft. For example, it has been demonstrated inmultiple studies that the
rigidity of thematrix directly influences the phenotype of SMCs and the
differentiation of progenitor cells (as reviewed in Liu, 2012).

Indeed, engineering approaches such as the production of grafts pre-
senting aligned fibres (Agrawal et al., 2015) or the harnessing of the
differentiative effect of the substrate stiffness (Floren et al., 2016)
were able to produce functionally superior vascular grafts.

For example, to improve the mechanical properties of the grafts,
SMCs were seeded circumferentially around a central tubular mould
(Agrawal et al., 2015; L'Heureux, Germain, Labbe, & Auger, 1993) or
on highly organized collagen fibres (Barocas, Girton, & Tranquillo,
1998). The addition of cyclic strain (Seliktar, Black, Vito, & Nerem,
2000) alone or in combination with GFs (Stegemann & Nerem, 2003)

Image of Fig. 3


Fig. 4. Role of perivascular cells in the generation of tissue engineered vascular grafts. The seeding of vascular grafts with perivascular cells increases their contractility and mechanical
properties, regulating permeability. The release of growth factors by the perivascular cells regulates endothelialization and endothelial cell function. Additionally, perivascular cells
contribute to the reconstitution of the perivascular niche, favoring the long-term graft success.

89E. Avolio et al. / Pharmacology & Therapeutics 171 (2017) 83–92
also determined an improvement in themechanical features of the graft
and provided an optimal orientation of the medial cells. Additionally,
the material design can be implemented by incorporating a matrix pro-
viding slow release of an anti-proliferative drug to control the SMC phe-
notype (Wu, Liu, Chen, Yang, & Zhu, 2016).

Despite the success of the use of mature SMCs and ECs in preclinical
models, their use in the clinical setting is hampered by the difficulty in
sourcing of patients' autologous cells due to the early SMCs senescence
(McKee et al., 2003) and the lack of elastin production by mature cells,
leading to insufficient compliance (Long & Tranquillo, 2003).

This observation led to the proliferation of protocols aimed at
obtaining pure populations of vascular cells from embryonic stem cells
(ES) and iPS precursors as well as the isolation of SMC precursors
from bone marrow derived SMCs (Swaminathan, Sivaraman, Moore,
Zborowski, & Ramamurthi, 2016).

The application of these technologies is still limited by the lack of a
simple and safe protocol for differentiation, leading to lengthy and cost-
ly reprogramming and scale up procedures mostly based on viral infec-
tions and xeno supplements (Kusuma & Gerecht, 2016; Patsch et al.,
2015).

4.1.3. Pericyte potential for vascular graft engineering
Pericytes are an interesting choice for vascular graft repopulation as

they present progenitor cell characteristics but their differentiation ca-
pacity and proliferation is restricted, reducing the risk of tumorigenesis.
Human pericytes isolation, characterisation and expansion at clinical
level are relatively recent but it has already given rise to several impor-
tant preclinical studies (Avolio, Meloni, et al., 2015; Campagnolo et al.,
2010; Carrabba et al., 2016; Chen et al., 2015; Gubernator et al., 2015;
Katare et al., 2011). Their use for vascular graft repopulation is still lim-
ited but the studies published to date indicate a very promising route of
investigation.

Human SkPs have been used to repopulate a poly(ester-
urethane)urea 1.3 mm diameter scaffold and cultured in a bioreactor
before implantation in rats. The aims of this report were limited to
assessing the feasibility and efficiency of uniform cell seeding using a
new vacuum-based technique and the in vivo performance of the
resulting graft in a xeno-transplantmodel. However, the results showed
an impressive performance of the seeded grafts in terms of patency and
an active remodelling and rapid invasion from the host cells, with for-
mation of medial and intimal layers (He et al., 2010). The study of the
mechanisms involved in the remodelling and the improved migration
of the host cells into the graft as a consequence of the pericyte seeding
warrants further investigation and harbours the potential for
harnessing the unique characteristics of pericytes into the engineering
of better forming vascular grafts. Our unpublished data show how the
synthetic graft material can be modified to incorporate bioactive pep-
tides capable of retaining and releasing SVP-produced growth factors.
This design innovation combined with spatially organized EC-specific
adhesion peptides greatly improved the endothelial coverage of the
graft (Campagnolo et al., 2016).

As shown by previous in vitro studies, pericytes possess the innate
ability to increase ECs proliferation/survival and migration. In a proof
of concept paper, Chong et al. utilized the readily available UCPCs to en-
gineer an in vitro pseudo-vessel where they seeded pericytes on a hy-
drogel-modified PCL film and then tethered EPCs on the other surface
by functionalizing it with anti-CD34 antibody. This study demonstrates
that the pro-angiogenic potential of pericytes can be harnessed for reca-
pitulating the vessel structure and that a bioengineering approach can
be applied to design a complex multicellular in vitro model to study
cell mechanisms and interactions at basic level and to elucidate patho-
logical processes (Chong, Chan, Choolani, Lee, & Teoh, 2009).

Pericytes' therapeutic capacity lays in their ability to release a large
variety of GFs and cytokines and in the context of TEVG these substances
contributes to the recruitment of vascular cells from the neighbouring
vessel. The remodelling determined by the invasion of the host cells
and in particular of the vascular resident progenitor cells is fundamental
for thedigestion of bioresorbable vascular graftmaterials and the reduc-
tion of compliance mismatching (Chen et al., 2013; Pasquinelli et al.,
2007). Importantly, the release of paracrine substances such as TGFβ,
in combination with the expression of the major histocompatibility
complex (MHC) class I on the cell surfaces is also responsible for the re-
ported immunomodulatory effect of pericytes (Domev, Milkov,
Itskovitz-Eldor, & Dar, 2014). The pericyte's ability to elude the immune
system andmodulate the inflammatory response opens the way for the
creation of allogeneic and off-the-shelf TEVG incorporating a
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perivascular cellular component, reducing the costs of production and
scaling up the availability. This is particularly compelling given the re-
cent findings elucidating the epigenetic mechanisms underlying the di-
vergent success of the expansion of different cell lines and therefore
suggesting a rapid way of assessing the suitability of selected cell lines
for scale-up (Gubernator et al., 2015).

Ultimately, the use of pericytes in TEVG might help recreating the
adventitial vasa vasorum niche, which is fundamental for the healthy
functionality of the large vessels and therefore contributing to the suc-
cessful integration of the graft (Guillemette et al., 2010; Orrico et al.,
2010).

4.2. Skeletal and cardiac muscle grafts

Heart failure, particularly MI, is one of the leading causes of morbid-
ity and mortality in the world. Stem cell transplantation therapy has
emerged as a popular strategy to treat heart dysfunction. Direct injec-
tion of cell suspensions using catheters or open chest heart surgery is
the most common method employed. Despite the increasing number
of clinical trials carried out using direct injection approach, no cell ther-
apy has been shown to be effective in a conclusive manner
(Sanganalmath & Bolli, 2013). TE offers an alternative approach for
cell delivery that can improve cell retention, survival and communica-
tion with the neighboring native tissue. A number of studies have ex-
plored the use of this approach to deliver pericytes into cardiac
(Avolio, Rodriguez-Arabaolaza, et al., 2015; Wendel et al., 2015) and
skeletal (Dellavalle et al., 2007; Fuoco et al., 2014; Rossi et al., 2011)
muscles. Wendel et al. produced a cardiac patch by enmeshing human
BPs and human iPS derived cardiomyocytes into a fibrin gel (Wendel
et al., 2015). Once transplanted onto the infarcted myocardium of a
rat, this pericytes/cardiomyocytes patch survived, improved cardiac
function and reduced infarct size.We have recently isolated and charac-
terized human neonatal CPs and shown that, when engrafted into a
decellularized xenograft (CorMatrix® ECM®), the pericyte-engineered
tissue offers a new option of autologous cardiovascular grafts for correc-
tive surgery of congenital heart defects (Avolio, Rodriguez-Arabaolaza,
et al., 2015).

Additionally, the myogenic capacity and the pro-angiogenic ability
of SkPs were harnessed by organizing them in a poly(ethylene glycol)
PEG hydrogel-based construct for the repair of ischemic muscle
(Fuoco et al., 2014). The presence of the matrix significantly increased
the effect of the cells by recreating the niche necessary for the survival
of the transplanted cells. A similar approach has been previously applied
to satellite cells, a distinct skeletal muscle progenitor cell population
(Dellavalle et al., 2007), by including them in a hyaluronan-based hy-
drogel (Rossi et al., 2011).

4.3. Bone regeneration

In orthopedics and related specialities, bone loss and repair are clin-
ically and economically very important. As the population continues to
age, skeletal diseases' costs are expected to rise. TE has the promise to
improve bone regeneration (formation) in skeletal diseases. Bone mar-
row mesenchymal stem cells (BMSCs) are the main source of stem cell
for bone regeneration (Deans &Moseley, 2000). However, when autog-
enous BMSCs are in short supply, purified perivascular cells from adi-
pose tissue could offer an attractive alternative. A recent study has
shown that, when human adipose tissue PCs are engrafted into a scaf-
fold of morselized cortical and cancellous bone chips mixed with sodi-
um hyaluronate and implanted in a rat model of spinal fusion, these
adipose tissue PCs differentiated into osteoblasts and osteocytes
(Chung et al., 2014). Additionally they triggered new bone formation
of host origin, most likely, through direct and paracrine mechanisms.

Scaffolds containing a high dose of human adipose tissue PCs com-
bined with the osteogenic protein NELL-1 have been shown to increase
spinal fusion in osteoporotic rats. In contrast, regular doses of adipose
tissue PCs or NELL-1 achieved only modest fusion rates suggesting
that the combination synergistically enhances spinal fusion in osteopo-
rotic rats. This study confirmed the potential of adipose tissue PCs and
NELL-1 as a novel therapy for osteoporotic patients (Lee et al., 2015).

Furthermore, human adipose tissue PCs seeded onto a PLGA scaffold
were shown to increase healing of mouse critical-size calvarial defects
within 2weeks of delivery (James et al., 2012). This is yet another exam-
ple showing human PCs potential in skeletal regenerative medicine.

In addition to adipose tissue, UCPCs showed great potential in bone
TE. Indeed when delivered together with a collagen sponge scaffold or
an alginate gel, UCPCs significantly increased bone repair in a calvarial
osteotomy model after 4 weeks of transplantation (Kajiyama et al.,
2015). Similarly human CD146+ UCPCs seeded onto gelfoam-alginate
3D scaffold and transplanted subcutaneously into immunodeficient
mice, resulted in the formation of bone matrix with embedded osteo-
cytes of donor origin (Tsang et al., 2013).
4.4. Dermal tissue engineering

The current treatments of skin diseases fail to result in optimal
healing. This is in part due to their inability to completely restore the
function and structure of the dermis. Dermal tissue engineering has re-
volved around using different cell types for the treatment of cutaneous
wounds by direct injection or scaffold-based delivery system. Human
UCPCs have recently been shown to have great potential for the treat-
ment of skin wounds (Zebardast, Lickorish, & Davies, 2010). Compared
to human BMSCs, already used in clinical treatment of skin defects,
UCPCs exhibited a higher proliferative rate. Furthermore, UCPCs pro-
moted healing of full thickness murine skin defects when delivered in
the wound site via a polymerized fibrin patch. This study demonstrated
that UCPCs represent a great cell source for dermal tissue engineering
and dermal repair.
5. Future directions

PCs have contributed substantially to the shaping of the TE field.
Their use has been extensive, in particular for the vascularization of con-
structs and for repopulation of vascular grafts. Mature PCs, such as
SMCs, have found wide application in the past. However their laborious
and patient-specific sourcing, limited expansion capacity and the lack of
standardized isolation protocols hinder their therapeutic application.
The recent emergence of human pericytes led to the development of
new routes for the preparation of off-the-shelf engineered tissues,
thanks to their immunomodulatory effect and high proliferative
capacity.

Despite some interesting publications in the recent years, the explo-
ration of the potential of pericytes for TE still requires further research to
establish the effect of the scaffold materials on their function and phe-
notype and to study in details themechanisms involved in the remodel-
ing post-implantation. Importantly, while the safety of pericyte
transplantation has been evaluated in terms of immunological response
and no neoplastic behavior has been reported in vivo or in vitro, long
term studies in immune deficient models is warranted to exclude any
potential for tumorigenesis.

Furthermore, the design of materials for TE needs to be developed to
enhance and improve the cellular function and include features to direct
cell differentiation and behaviour. In this way, the biological function of
PCs will inform the design and development of advanced healthcare
materials.
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