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Simple Summary: Molecularly targeted therapies have greatly contributed to the development of
colorectal cancer treatments. Genomic profiling to identify gene alterations is a rapidly developing
field. Liquid biopsies have recently drawn considerable attention because they offer several advantages
over tissue biopsies and can be used to detect several soluble factors, including circulating tumor
DNA. In this review, we discuss the usefulness of analyzing circulating tumor DNA to design more
personalized and effective cancer treatments and discuss several ongoing clinical trials that aim to
evaluate its utility. Genomic profiling using circulating tumor DNA could be integrated into clinical
strategies for cancer treatment in the near future.

Abstract: Genotyping of tumor tissues to assess RAS and BRAF V600E mutations enables us to
select optimal molecularly targeted therapies when considering treatment strategies for patients with
metastatic colorectal cancer. Tissue-based genetic testing is limited by the difficulty of performing
repeated tests, due to the invasive nature of tissue biopsy, and by tumor heterogeneity, which can
limit the usefulness of the information it yields. Liquid biopsy, represented by circulating tumor
DNA (ctDNA), has attracted attention as a novel method for detecting genetic alterations. Liquid
biopsies are more convenient and much less invasive than tissue biopsies and are useful for obtaining
comprehensive genomic information on primary and metastatic tumors. Assessing ctDNA can help
track genomic evolution and the status of alterations in genes such as RAS, which are sometimes
altered following chemotherapy. In this review, we discuss the potential clinical applications of
ctDNA, summarize clinical trials focusing on RAS, and present the future prospects of ctDNA
analysis that could change daily clinical practice.
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1. Introduction

Therapeutic drugs for metastatic cancers are chosen based on the organ of origin.
Cancer treatment has advanced remarkably over the last few decades, and the survival
rate has improved significantly. Molecular targeted therapies have contributed greatly to
the development of cancer treatments. Advances in genomic profiling have enabled the
identification of genetic alterations that cause cancer and have supported the development
of personalized cancer treatments for each gene alteration. Frequently mutated genes in
non-hypermutated colorectal cancer (CRC) include APC, TP53, KRAS, PIK3CA, FBXW7,
SMAD4, TCF7L2, and NRAS [1]. The RAS family is one of the most frequently mutated gene
families and has been extensively studied in metastatic CRC (mCRC). RAS is one of the
major proteins involved in the mitogen-activated protein kinase (MAPK) signaling cascade.
The RAS oncogene family includes KRAS, NRAS, and HRAS. The most common RAS
mutations occur in KRAS; approximately 40% of CRC cases have KRAS mutations, while
HRAS mutations are rarely detected [1]. KRAS and NRAS mutations are negative predictive
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factors for the efficacy of anti-epidermal growth factor receptor (anti-EGFR) monoclonal
antibodies (mAbs), which act as both primary and secondary resistance markers [2,3].
RAS mutations are associated with poor prognosis in advanced stages [4]. Although it
seems likely that constitutive activation of the RAS signaling pathway is involved in tumor
progression, the reason for poor prognosis is still not well understood [5]. BRAF also acts
as a downstream RAS effector in the MAPK signaling cascade. The BRAF V600E mutation,
which is found in 8–10% of patients with mCRC, is also a negative predictive factor for the
efficacy of anti-EGFR mAbs [6–8]. Therefore, analysis of genetic alterations is increasingly
important for developing personalized cancer treatments. Tissue biopsy is extensively used
to determine suitable therapeutic drugs based on the molecular profile of an individual.
However, tissue biopsy has several limitations, including potential complications, difficulty
in performing repeated biopsies due to the invasiveness of the procedure, difficulties in
collecting tissue, and intra- and inter-tumor heterogeneity. Liquid biopsy can overcome
these limitations because it is less invasive and involves the collection of bodily fluids such
as blood and urine. Therefore, it allows for the repeated analysis of gene alterations over
time. Liquid biopsies, including those performed for circulating tumor DNA (ctDNA), are
clinically used to detect RAS and BRAF mutations and perform comprehensive genomic
profiling in CRC [9,10]. This review summarizes liquid biopsy and ctDNA analyses and
their applications to CRC in clinical trials.

2. Liquid Biopsy

Tissue examination is necessary for cancer diagnosis and management. Histological
analysis can reveal the genetic profile of the tumor and enable a more accurate progno-
sis and prediction of systemic chemotherapy efficacy. However, while tissue biopsy is
necessary for the development of a therapeutic strategy, it is invasive with potential compli-
cations such as bleeding, pain, infections, and neuropathy, and it can be difficult to obtain
tissue samples due to tumor volume or anatomical reasons [11]. The extraction of tumor
tissues is sometimes required after the onset of resistance, and tissue biopsies may be diffi-
cult to repeat for several reasons. In addition to safety, the number of tumor cells obtained
can vary. Fine needle aspiration or core needle biopsies often result in the extraction of less
tumor tissue for molecular analysis [12]. Moreover, tissue biopsies are affected by tumor
heterogeneity. Metastatic tumors could have different genetic profiles, even if they were
derived from a primary tumor within the same patient [13]. When the treatment decision
is based on a single biopsy, intra-tumor heterogeneity can lead to therapeutic failure [14].

As an alternative to traditional tissue biopsy, liquid biopsy is useful for cancer diagno-
sis. Liquid specimens are obtained using minimally invasive techniques and can be used
to detect several soluble factors related to tumor genetics, such as cell-free DNA (cfDNA),
ctDNA, circulating tumor cells, and exosomes. Cancer-associated genetic alterations, such
as point mutations, copy number variations, amplification, rearrangements, aneuploidy,
and fusion and methylation patterns, have been detected in ctDNA [12]. Cancer patients
have higher levels of plasma cfDNA than tumor-free patients; however, high levels of
cfDNA are not specific to cancer [15]. Confounding factors that can contribute to the
release of cfDNA include smoking, pregnancy, exercise, and numerous non-malignant
disorders, such as inflammatory conditions, anemia, heart disease, metabolic syndrome,
and autoimmune disorders [16].

Compared to tissue biopsy, liquid biopsy is minimally invasive and allows repeated
analyses over the course of treatment for the dynamic monitoring of molecular changes in
the tumor. Furthermore, liquid biopsy can overcome difficulties related to both intra- and
inter-tumor heterogeneity.

3. ctDNA

First reported in 1948 by Mandel and Metais [17], cfDNA is used in prenatal assess-
ments. The size distribution of cfDNA in the plasma of pregnant women ranges from
160 bp to 180 bp [18]. Increased cfDNA levels in the blood of patients with various types of
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cancer were first reported in 1977 [19]. Moreover, cfDNA may be released from healthy,
inflamed, or diseased tissues where cells are undergoing apoptosis or necrosis and is de-
tected in body fluids such as blood, urine, cerebrospinal fluid, pleural fluid, ascites, and
saliva [20–24]. In patients without cancer, cfDNA concentrations range from 0–100 ng/mL
(mean, 13 ± 3 ng/mL). In contrast, the mean cfDNA concentration in patients with cancer
is 180 ± 38 ng/mL [19]. ctDNA is a DNA fragment derived specifically from a tumor, thus
differentiating it from cfDNA. The difference in DNA concentration between patients with
and without cancer is reflective of the ctDNA derived from cancer cells.

The half-life of ctDNA is approximately 2 h [25], while that of protein biomarkers is
several days [26]. Therefore, with ctDNA, real-time changes in the genetic status of the
tumor can be evaluated, which is in contrast to commonly used protein biomarkers such as
carcinoembryonic antigens. ctDNA can quickly reflect changes in tumor burden following
surgery and chemotherapy and can be used to predict disease progression and recurrence.
Protein markers are not involved in tumorigenesis, whereas genetic alterations detected in
ctDNA are generally the cause of tumorigenesis. Therefore, ctDNA is a more sensitive and
specific biomarker than protein biomarkers because it reflects genetic alterations derived
from tumors in real-time [27]. Compared to tissue biopsy, ctDNA may have the advantage
of a short turn-around time (TAT), which is defined as the number of days between the test
order date and the report date [28]. ctDNA genotyping significantly shortened the screening
duration in SCRUM-Japan GOZILA, an observational ctDNA-based screening study that
evaluated the utility of ctDNA in patients with advanced gastrointestinal cancer [29]. In
CRC, the median TAT when detecting ctDNA using comprehensive ctDNA testing with the
Guardant360® assay was significantly lower than that for tissue testing when the complete
process from sample acquisition to results was considered [30].

High analytical sensitivity and specialized equipment are required for the detection
of ctDNA. Current techniques used for the quantification of tumor-associated genetic
alterations can result in false-negative results; however, concordance between tissue and
plasma tests for ctDNA is generally high in CRC [9,31]. Both tissue and plasma tests for
ctDNA sometimes yield false-negative and false-positive results, but they can be more
reliable when used in combination [32,33]. Utilizing ctDNA analysis alongside tissue
tests increases the identification of biomarkers by 19.5% because it allows identification
even without conclusive tissue results due to tissue insufficiency, test failure, or false
negatives [30].

The amount of ctDNA in an individual is lower than that of cfDNA, and it is sometimes
as low as 0.01–1.70% in curable CRC [34]. This makes it difficult to detect and quantify
ctDNA with the sensitivity required for meaningful clinical use. The amount of ctDNA
produced is influenced by several factors. ctDNA detection depends on the ctDNA shed-
ding rate per cancer cell, but this can vary by multiple magnitudes between patients. Thus,
the discordance between plasma- and tissue-based analyses could be due to low ctDNA
shedding from tumors; the median variant allele frequency (VAF) between concordant and
discordant cases was statistically different [9]. In addition, ctDNA levels reflect the total
systemic tumor burden and size [25,35]. ctDNA levels decrease after complete surgery
or in response to chemotherapy and generally increase with disease progression before
radiological examination. Furthermore, the ctDNA detection rate varies for each organ.
Because of the difficulty in detecting ctDNA, the detection rate of RAS mutations is low
in patients with CRC with lung and peritoneal metastases [9,36]. This may be caused by
differences in the distribution of DNAase depending on the metastatic site [37]. ctDNA
is detected in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder,
gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but it is
detected in less than 50% of patients with primary brain, renal, prostate, or thyroid cancers.
In addition, ctDNA from neoplasms confined to the central nervous system and mucinous
neoplasms is frequently undetectable [38]. Circulating tumor cells can also release ctDNA
and therefore influence the detection of ctDNA [39].
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Measuring ctDNA levels could be confounded by biological signaling arising from
somatic mosaicism. Clonal hematopoiesis (CH) is a somatic mosaicism resulting from the
accumulation of somatic mutations in hematopoietic stem cells. CH is influenced by age,
prior radiation therapy, chemotherapy, and tobacco use and can be detected by ctDNA
analysis. However, we must consider the possibility that CH can be interpreted, incorrectly,
as a mutation [40,41]. In CRC, TP53, GNAS, PTEN, and KRAS mutations have been reported
as CH; however, the complete distinction between tumor-derived mutations and CH is
difficult to achieve [42,43].

3.1. Approaches for ctDNA Detection

Several techniques exist for evaluating ctDNA; however, these techniques require
high sensitivity because of the low amount of ctDNA. Liquid biopsy analyses are available
and include polymerase chain reaction (PCR)- and next-generation sequencing (NGS)-
based platforms.

PCR-based assays can only detect targets with known driver mutations, and they fail
to detect complex genomic alterations. Highly sensitive PCR-based assays, such as droplet
digital PCR (ddPCR) and beads, emulsion, amplification, and magnetics (BEAMing), have
been developed [44]. ddPCR is a highly sensitive and accurate quantification method that
detects low-frequency variants by amplifying single DNA molecules. Amplicon sequencing
and hybridization capture reduces the background error rates of sequencing [45]. The limit
of detection for ddPCR is 0.01–0.10% [46]. BEAMing is a PCR-based technique that uses
flow cytometry to detect ctDNA [47]. The OncoBEAMTM RAS CRC Kit, which detects
34 mutations in KRAS/NRAS codons 12, 13, 59, 61, 117, and 146, is a platform for detecting
RAS mutations in the plasma using BEAMing technology. The OncoBEAMTM RAS CRC
Kit detects alterations at a 0.01% allele frequency [47]; it received market approval on 1 July
2019, from Japan’s Ministry of Health, Labour, and Welfare, and it has been covered under
insurance since 1 August 2020. In a study comparing four commercial platforms that detect
KRAS/NRAS ctDNA mutations, BEAMing exhibited higher sensitivity than the IdyllaTM

KRAS Mutation Test, ddPCR, and NGS [48–50]. There is a high degree of concordance, of
86.4–93.3%, between ctDNA analysis with BEAMing and tissue analysis [9,51–53]. However,
discordance was observed between plasma and tissue analyses employing BEAMing of RAS
mutations associated with lung metastasis [9]. Other factors associated with discordance
include peritoneal metastasis, mucinous carcinoma type, administration of treatment prior to
liquid biopsy, longest diameter, and lesion number. Due to high concordance, we do not have
to consider the cutoff for patients with only liver metastases; however, we need to consider
the cutoff when patients have peritoneal metastases alone with a lesion diameter <20 mm,
lung metastases alone with a lesion diameter <20 mm, or <10 lesions in total [9,36,53].
Therefore, caution should be exercised when assessing RAS mutations with BEAMing.

NGS can be used to analyze a large number of genes (hundreds to thousands). NGS is
designed to detect multiple classes of genetic alterations, including indels, rearrangements,
and copy number alterations, in both known and unknown driver genes [54]. NGS is
limited by its relatively low sensitivity and high cost; however, the last decade has witnessed
improvements in NGS in terms of reliability and cost [55,56]. The Guardant360® assay
(Guardant Health, Inc., Redwood City, CA, USA) and FoundationOne® Liquid (Foundation
Medicine, Cambridge, MA, USA.) are among the most popular NGS-based ctDNA testing
methods. FoundationOne® Liquid received market approval on 22 March 2021, from
Japan’s Ministry of Health, Labour, and Welfare and has been covered under insurance
since 1 August 2021. Caris AssureTM liquid biopsies, whole exome DNA sequencing, and
whole transcriptome RNA sequencing are comprehensive tumor profiling technologies
that include all 22,000 genes. This comprehensive approach identifies cancer biomarkers
and assesses the molecular features of the patient using circulating nucleic acid sequencing,
which is a novel molecular profiling approach that analyzes cfDNA, cell-free RNA, genomic
DNA, and RNA from circulating white blood cells [57].
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Methods for evaluating ctDNA are divided into tumor-informed and tumor-agnostic,
with the previously mentioned techniques for evaluating ctDNA being tumor-agnostic
(Table S1). The tumor-informed approach requires genomic profiling of the tumor tissue.
This approach identifies the alterations derived from tumors. However, the tumor-agnostic
approach does not require the mutational status of tumor tissue and is based on panel-based
sequencing. Many studies based on a tumor-informed approach have been conducted. The
advantages of the tumor-informed approach include personalized analysis and accuracy in
tracking the molecular responses [58]. SignateraTM is a novel, highly sensitive, and specific
approach for ctDNA detection. This is a personalized and tumor-informed approach for
minimal residual disease (MRD) assessment. A primary tumor sample was used for whole-
exome sequencing to assess the differences in over 20,000 genes between a patient’s tumor
sample and a normal DNA sample. Sixteen highly ranked patient-specific mutations were
selected for the panel. The samples are amplified using a patient-specific assay, barcoded,
pooled, and sequenced using an NGS platform. Somatic alterations derived from tumors
are then detected in the plasma [59]. SignateraTM has been useful in assessing MRD in
recent clinical studies. Personalized approaches have advanced with the development of
methods to detect cancer-specific genomic alterations.

3.2. Assessment of Prognosis

Cancer prognosis is assessed based on clinical observations, tumor type, staging, and
histopathological and biomolecular characterization. The amount of ctDNA could be a
prognostic factor (Table S2) [60–66]. In the CORRECT trial, a retrospective exploratory analysis
evaluating the efficacy and safety of regorafenib in mCRC patients, high baseline KRAS
mutant allele frequency (MAF) and circulating DNA concentrations were associated with
a shorter median overall survival (OS) [60]. ctDNA measured using VAF at baseline was
a prognostic factor potentially related to initial tumor volume in patients with RAS wild-
type (WT) mCRC who were eligible for initial therapy with panitumumab plus FOLFOX
(fluorouracil, leucovorin, and oxaliplatin) [61]. In addition, several reports have revealed an
association between the amount of baseline ctDNA, VAF or MAF and prognosis in mCRC
patients [62–66]. ctDNA methylation markers are gaining attention for the diagnosis and
prognosis of CRC. A model using five selected cfDNA methylation markers was useful as
an independent prognostic risk factor in multivariate analysis [67]. In addition, PIK3CA
mutations at baseline are associated with poor outcomes in patients with RAS WT mCRC [68].
ctDNA analysis may allow us to obtain information on the factors influencing prognosis.

3.3. Detection of Recurrence: Minimal Residual Disease

The early detection of micrometastatic lesions that are undetectable by radiological
examination is essential to reduce the risk of incurable metastasis. Recurrence was mon-
itored following cancer treatment. ctDNA is sufficiently sensitive for the detection of
MRD following surgical resection [35]. Positive ctDNA detection in resected early-stage
colon cancer (CC) precedes the radiological detection of recurrence by more than a few
months [69,70]. ctDNA analysis following surgery is a promising prognostic assessment
and can aid in the identification of patients with a very high risk of recurrence [71–73],
which could reduce unnecessary chemotherapy. A ctDNA-guided approach for treating
pathological stage II CC reduces adjuvant chemotherapy (AC) without compromising
recurrence-free survival [74]. Patients who did not previously require AC may benefit from
AC if ctDNA predicts recurrence.

A prospective, multicenter cohort study indicated an association between ctDNA and
recurrence in patients with stage I–III CRC following curative surgery. Following curative
surgery, 10.6% of patients tested positive for ctDNA on postoperative day 30. Notably,
ctDNA-positive patients were seven times more likely to relapse than ctDNA-negative
patients (hazard ratio (HR), 7.2; 95% confidence interval (CI), 2.7–19.0; p < 0.001). Moreover,
seven patients who were positive for ctDNA following AC had recurrences. Among
75 patients with longitudinally collected plasma samples, 14 of 15 ctDNA-positive patients
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experienced recurrence compared to 2 of 60 ctDNA-negative patients. ctDNA indicative
of recurrence was detected 8.7 months earlier than the diagnosis using standard-of-care
radiologic imaging [69]. Similar results have been reported in breast, lung, and bladder
cancer [75–77]. Thus, ctDNA could help clinicians decide to pursue more intense therapy in
patients with a higher risk of recurrence. ctDNA can be used to stratify patients according
to their risk of recurrence, enabling therapeutic intervention before the development of
clinical metastasis.

In CIRCURATE-Japan, three clinical trials using SignateraTM are ongoing to evaluate
the clinical benefits of ctDNA and refine AC for CRC. The GALAXY study was designed to
monitor ctDNA status in stage II–IV patients who were eligible for curative surgery [78].
ctDNA was analyzed before surgery and at 4, 12, 24, 36, 48, 72, and 96 weeks after surgery.
The VEGA trial (jRCT1031200006) is a randomized phase III study to evaluate CAPOX
therapy as an AC for high-risk stage II or low-risk stage III CC patients with ctDNA-negative
status four weeks after curative surgery. Patients were randomized in a 1:1 ratio to receive
either CAPOX therapy for three months or surgery alone. AC may not be required after
curative surgery in patients with ctDNA-negative CC. The ALTAIR trial (NCT04457297)
is a randomized, phase III study to evaluate preemptive trifluridine/tipiracil therapy in
patients with CC who are positive for ctDNA after curative surgery for up to 2 years. The
BESPOKE study (NCT04264702) examined the effect of SignateraTM use on AC decisions.

The benefit of preemptive therapy in patients who are positive for ctDNA before
radiologic imaging is unknown. Several clinical trials on AC using ctDNA analysis
are currently ongoing. The DYNAMIC-II (ACTRN12615000381583), MEDOCC-CrEATE
(NL6281/NTR6455), COBRA (NCT04068103), and IMPROVE-IT (NCT03748680) trials are
investigating the administration of AC depending on ctDNA levels in patients with stage
I or II CRC. In these trials, ctDNA-positive patients receive AC or follow-up if ctDNA
is negative. The PEGASUS (NCT04259944) and DYNAMIC-III (ACTRN12617001566325)
trials including resected stage III or T4N0 stage II CC are also ongoing. Both trials are
investigating ctDNA-guided AC. ctDNA-negative patients will receive de-escalated AC
and ctDNA-positive patients will receive escalated AC. OPIMIZE (NCT04680260) is an
open-label, randomized phase II trial for patients receiving radical treatment for metastatic
spread of CRC. Patients were randomized between the standard-of-care and ctDNA-guided
treatments. ctDNA-positive patients receive FOLFOXIRI (fluorouracil, leucovorin, oxali-
platin, and irinotecan), and ctDNA-negative patients receive capecitabine or observation
only. The results from these trials could shift AC from a conventional strategy to a ctDNA-
guided strategy.

3.4. Predicting Response to Treatment and Monitoring Acquired Resistance

Genetic alterations in tumor DNA are important markers for deciding the treatment
regimen and predicting the response to treatment. High levels of KRAS mutant (MT) alleles
in the plasma are a clear indicator of response to treatment in metastatic CC [79,80]. ctDNA
allows the design of specific treatments according to genetic alterations. Combinations of
BRAF inhibitors and anti-EGFR mAbs are effective in mCRC patients harboring a BRAF
V600E mutation. The use of ctDNA analysis to detect BRAF V600E offers an opportunity to
administer BRAF inhibitors. ctDNA can be used to detect BRAF V600E in the plasma of
patients in whom it was not detected in tissue analysis due to spatial heterogeneity [81]. Mi-
crosatellite instability (MSI) is associated with a higher risk of cancer and has been assessed
in solid tumors. MSI-high tumors are sensitive to immune checkpoint inhibitors (ICIs).
MSI is typically assessed in tumor tissues using immunohistochemistry and PCR-based
assays. Recently, a high concordance rate between MSI measured using conventional tissue
and ctDNA-based approaches has been reported. In the near future, ctDNA-based ap-
proaches to detect MSI could be used to identify patients who could benefit from ICIs [82].
In melanoma, assessment of the ctDNA baseline could indicate clinical outcomes in pa-
tients receiving ICI treatment [83–85]. In patients with mCRC with HER2 amplification,
a combination of pertuzumab and trastuzumab may be effective. The TRIUMPH trial
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is a prospective phase II study involving mCRC patients with HER2 amplification and
investigating pertuzumab and trastuzumab as a second-line or later treatment. Twenty-five
patients with HER2 amplification, confirmed using ctDNA, received pertuzumab plus
trastuzumab and achieved an overall response rate (ORR) of 28%, compared to 30% in
27 tissue-positive patients [86]. In the HERACLES trial, which evaluated trastuzumab
plus lapatinib or pertuzumab plus trastuzumab-emtansine in patients with HER2-positive
mCRC, comprehensive ctDNA analysis identified that more than 85% of patients showed
primary resistance when treated with lapatinib and trastuzumab [87]. Moreover, an ad-
justed ERBB2 plasma copy number has been correlated with progression-free survival (PFS)
and best objective response [88]. Therefore, ctDNA analysis could be useful for identifying
patients who would benefit from HER2 blockade. ctDNA analysis could provide relevant
molecular profiling required for tumor-agnostic treatment. NTRK fusion is an oncogenic
driver that is also present in CRC. The FDA granted tumor-agnostic approval to the TRK
inhibitors larotrectinib and entrectinib. Tissue testing is routinely used to detect NTRK
fusions; however, these fusions can also be detected using ctDNA with a high positive
predictive value [89].

Monitoring tumor responses using ctDNA during the course of treatment could
allow for changes in the drugs administered before the observation of disease progression
on radiological examination. A small or absent early decrease in ctDNA levels during
mCRC treatment was associated with short PFS and OS in a systematic review and meta-
analysis [90]. Targeted therapies are effective for specific genetic mutations; however, most
patients eventually develop secondary resistance. Designing the next treatment requires the
identification of the mechanism of acquired resistance. The advantages of liquid biopsies
include the simplicity of specimen collection and the ability to provide snapshots to detect
the emergence of resistant clones. Almost all patients with CRC acquire resistance to
KRAS mutation inhibition during anti-EGFR mAb therapy [91,92]. Multiple alterations
conferring resistance to anti-EGFR mAbs, other than RAS mutations, were also observed.
The cfDNA profiles of 42 patients with EGFR extracellular domain (ECDs) mutations,
which are implicated in acquiring resistance to anti-EGFR mAbs, harbor MEK1 and BRAF
mutations and KRAS, MET, ERBB2, and KIT amplifications [93,94]. FLT3 amplification
and MAP2K1 are resistant to anti-EGFR mAbs [95]. Multiple alterations were observed in
most cases. Predictive markers for sensitivity to anti-EGFR mAbs include RAS and several
other alterations. In patients with HER2 blockade in CRC, the emergence of resistance
alleles such as PIK3CA is observed, which indicates that they might be sub-clonal [88].
In addition, some patients showed clear progression in one lesion, whereas the response
was stable in the other. This indicates heterogeneity within a single patient [88]. Acquired
resistance has also been observed against BRAF-targeted therapy in the form of NRAS
and MEK1/2 mutations, BRAF amplification, or CRAF overexpression [96]. ctDNA can be
used to track the emergence of resistant clones throughout the course of treatment because
of the accessibility of plasma from patients. Understanding the mechanisms underlying
acquired resistance to treatment could lead to improved personalized anticancer therapy
and the development of combinatorial treatment strategies. Changes in resistance to
anticancer therapy are not fully understood. Comprehensive gene profiling rather than
single molecular evolution should be used to understand drug resistance.

4. Anti-EGFR Monoclonal Antibody Rechallenge

The concept of anti-EGFR mAb rechallenge was first reported by Santini et al. [97].
They assessed the activity of cetuximab rechallenge in patients with mCRC. The results were
promising, with a response rate (RR) of 53.8% and median PFS (mPFS) of 6.6 months. How-
ever, they did not distinguish between anti-EGFR mAbs rechallenge and reintroduction.
Rechallenge is defined as anti-EGFR mAb re-administration after an anti-EGFR-mAb-free
period in patients with prior resistance to anti-EGFR mAbs. Reintroduction, on the other
hand, is defined as anti-EGFR mAb re-administration after prior anti-EGFR discontinuation
in patients without resistance. Additionally, an intermittent anti-EGFR mAb strategy has
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been proposed. Recently, it was reported that intermittent panitumumab, instead of continu-
ous panitumumab with chemotherapy, produced a long PFS with reduced skin toxicity [98].
Thus, some similar strategies have been proposed for anti-EGFR mAbs. The development
of these treatment strategies requires the elucidation of resistance mechanisms.

Acquired resistance to anti-EGFR mAbs is associated with the emergence of RAS
mutations [91,92]. RAS mutations are likely to be present at undetectable levels before the
administration of anti-EGFR mAbs; the number of RAS MT cells increases to a detectable
level during the administration of anti-EGFR mAbs [99]. Second-line therapy without anti-
EGFR mAbs, however, causes the reduction or disappearance of RAS MT subclones. One
hypothesis to explain this observation is that targeted therapies apply selective pressure
on heterogeneous tumors, including the undetectable RAS MT populations, and resistant
cells survive; however, these resistant cells may be innately limited [100]. Therefore, RAS
mutations may exist as sub-clonal mutations with low allele frequencies. The half-life of
these mutations is approximately 3–4 months after withdrawal of anti-EGFR mAbs [100].
This could restore sensitivity to anti-EGFR mAbs [53]. The disappearance of RAS mutations
could be attributed to a decline in the percentage of acquired mutated RAS alleles to
below the limit of detection during treatment without anti-EGFR mAbs [95]. Tracking the
dynamics of resistant sub-clonal populations allows the identification of patients who can
be rechallenged with the same drugs. There is a rationale for anti-EGFR mAb rechallenge
following failure of second-line treatment with an anti-EGFR-mAb-free therapeutic window
(Figure 1). We analyzed current knowledge regarding anti-EGFR mAb rechallenge based
on ctDNA.

Cancers 2023, 15, x FOR PEER REVIEW 6 of 6 
 

 

therapy and the development of combinatorial treatment strategies. Changes in resistance 
to anticancer therapy are not fully understood. Comprehensive gene profiling rather than 
single molecular evolution should be used to understand drug resistance. 

4. Anti-EGFR Monoclonal Antibody Rechallenge 
The concept of anti-EGFR mAb rechallenge was first reported by Santini et al [97]. 

They assessed the activity of cetuximab rechallenge in patients with mCRC. The results 
were promising, with a response rate (RR) of 53.8% and median PFS (mPFS) of 6.6 months. 
However, they did not distinguish between anti-EGFR mAbs rechallenge and reintroduc-
tion. Rechallenge is defined as anti-EGFR mAb re-administration after an anti-EGFR-
mAb-free period in patients with prior resistance to anti-EGFR mAbs. Reintroduction, on 
the other hand, is defined as anti-EGFR mAb re-administration after prior anti-EGFR dis-
continuation in patients without resistance. Additionally, an intermittent anti-EGFR mAb 
strategy has been proposed. Recently, it was reported that intermittent panitumumab, in-
stead of continuous panitumumab with chemotherapy, produced a long PFS with re-
duced skin toxicity [98]. Thus, some similar strategies have been proposed for anti-EGFR 
mAbs. The development of these treatment strategies requires the elucidation of re-
sistance mechanisms. 

Acquired resistance to anti-EGFR mAbs is associated with the emergence of RAS 
mutations [91,92]. RAS mutations are likely to be present at undetectable levels before the 
administration of anti-EGFR mAbs; the number of RAS MT cells increases to a detectable 
level during the administration of anti-EGFR mAbs [99]. Second-line therapy without 
anti-EGFR mAbs, however, causes the reduction or disappearance of RAS MT subclones. 
One hypothesis to explain this observation is that targeted therapies apply selective pres-
sure on heterogeneous tumors, including the undetectable RAS MT populations, and re-
sistant cells survive; however, these resistant cells may be innately limited [100]. There-
fore, RAS mutations may exist as sub-clonal mutations with low allele frequencies. The 
half-life of these mutations is approximately 3–4 months after withdrawal of anti-EGFR 
mAbs [100]. This could restore sensitivity to anti-EGFR mAbs [53]. The disappearance of 
RAS mutations could be attributed to a decline in the percentage of acquired mutated RAS 
alleles to below the limit of detection during treatment without anti-EGFR mAbs [95]. 
Tracking the dynamics of resistant sub-clonal populations allows the identification of pa-
tients who can be rechallenged with the same drugs. There is a rationale for anti-EGFR 
mAb rechallenge following failure of second-line treatment with an anti-EGFR-mAb-free 
therapeutic window (Figure 1). We analyzed current knowledge regarding anti-EGFR 
mAb rechallenge based on ctDNA. 

 
Figure 1. Concept of anti-EGFR mAb rechallenge. The intratumor heterogeneity of mCRC and the 
dynamism of clonal evolution under the selection pressure of treatment. The emergence of RAS 
mutations in tumors is a well-recognized mechanism of acquiring resistance to anti-EGFR mAbs. 

Figure 1. Concept of anti-EGFR mAb rechallenge. The intratumor heterogeneity of mCRC and the
dynamism of clonal evolution under the selection pressure of treatment. The emergence of RAS
mutations in tumors is a well-recognized mechanism of acquiring resistance to anti-EGFR mAbs.
RAS mutations are sub-clonal mutations with a low allele frequency. After withdrawal of anti-EGFR
mAbs, chemotherapy restores anti-EGFR mAb sensitivity. RAS MT clones are not detected, and
EGFR-sensitive clones are predominant. mAb, monoclonal antibody; EGFR, epidermal growth factor
receptor; ctDNA, circulating tumor DNA; MT, mutant; WT, wild-type.

4.1. Trials of anti-EGFR Monoclonal Antibody Rechallenge

The prognosis of mCRC after progression to first and second therapies is poor. Third-
or later-line therapies include trifluridine/tipiracil (+ bevacizumab) or regorafenib. Both
therapies were clinically beneficial in a phase III clinical trial compared to the best support-
ive care. However, their efficacy is limited; the mPFS is approximately 2 months, and the
ORR is approximately 1–4% [101–104]. In addition, toxicities, such as gastrointestinal toxic-
ity and hematologic toxicity, should be assessed because of adverse events (AEs) frequently
caused by trifluridine/tipiracil (+ bevacizumab). In addition, regorafenib causes hand–foot
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syndrome, fatigue, diarrhea, and hypertension. Therefore, anti-EGFR mAb rechallenge is
expected to become a common new therapeutic strategy with a high response rate.

Trials of anti-EGFR mAb rechallenge and the analysis results based on liquid biopsies
have been reported (Table 1). The CRICKET trial is a multicenter phase II trial for assessing
the activity of cetuximab rechallenge as a third-line treatment for patients with RAS and
BRAF WT mCRC who benefitted from first-line cetuximab- and irinotecan-based treatment,
with at least a partial response (PR) and a PFS of at least 6 months, and then became
resistant. The time between the end of first-line therapy and the start of third-line therapy
was ≥4 months. Liquid biopsies for ctDNA analysis were performed at the baseline. The
ORR was 21%. Four patients who achieved confirmed PR had no RAS mutations. However,
eight patients with RAS MT ctDNA had stable disease (SD) or progressive disease. Patients
with RAS WT ctDNA had significantly longer PFS than those with RAS MT ctDNA in a
retrospective analysis (mPFS, 4.0 vs. 1.9 months; HR, 0.44; 95% CI, 0.18–0.98; p = 0.03). A
similar trend was observed for OS [105]. An E-challenge trial, a multicenter phase II study,
evaluated whether there is a correlation between the anti-EGFR-mAb-free interval (aEFI)
and efficacy. Patients with an aEFI ≥ 16 weeks between the last dose of cetuximab (during
previous treatment) and the start of the cetuximab rechallenge were included. Other criteria
included RAS WT and complete response (CR), PR, or SD that persisted for 6 months or
more for anti-EGFR mAb. The primary endpoint was the ORR. The ORR was 15.2%, and
PR was observed in all patients. There was no statistically significant difference in ORR,
PFS, or OS stratified using the median aEFI (311 days). However, in the additional liquid
biopsy for ctDNA, the RR for KRAS G12/G13/A59/Q61, BRAF V600E, and EGFR S492R
mutants increased; the RR of patients with all WT was 25% compared to 12.5% in those
with any of the mutations [106]. A post hoc biomarker study (JACCRO CC-08/09AR)
was performed to evaluate the association between survival outcomes and RAS status in
ctDNAs. The JACCRO CC-08 and 09 trials evaluated the efficacy and safety of anti-EGFR
mAb rechallenge as a third-line therapy for patients with KRAS WT mCRC who achieved a
clinical response to first-line therapy with anti-EGFR mAbs. The RAS status was evaluated
using the OncoBEAM RAS CRC Kit. RAS status in ctDNA is associated with clinical
outcomes in patients with mCRC receiving anti-EGFR mAb rechallenge. Patients with RAS
mutation at baseline had significantly shorter PFS and OS than those without RAS mutation
(mPFS, 2.3 vs. 4.7 months; HR, 6.2; p = 0.013 and mOS, 3.8 vs. 16.0 months; HR = 12.4;
p = 0.0028). The disease control rate was 80% in patients with no RAS mutations and 33.3%
in patients with RAS mutations [107]. CAVE is a phase II single-arm trial to assess the
efficacy of cetuximab rechallenge plus avelumab in patients with NRAS and KRAS WT
mCRC who achieved CR or PR to first-line therapy with anti-EGFR mAbs. Avelumab, an
immune checkpoint inhibitor, exhibits antibody-dependent cytotoxicity that is enhanced
by cetuximab. Therefore, the combination of cetuximab and avelumab could result in
synergistic activity and could be a strategy for potentiating antitumor activity. The primary
endpoint was OS. A post hoc analysis was performed to assess the efficacy of cetuximab
plus avelumab according to ctDNA levels; mOS was 11.6 months (95% CI, 8.4–14.8 months);
mPFS was 3.6 months (95% CI, 3.2–4.1 months); the ORR was 7.8%; and one patient had
CR. Among the 67 patients who were assessed for ctDNA, patients with RAS/BRAF WT
had longer mOS and mPFS when compared to patients with mutated ctDNA (mOS, 17.3
vs. 10.4 months; HR, 0.49; 95% CI, 0.27–0.90; p = 0.02 and mPFS, 4.1 vs. 3.0 months; HR,
0.42; 95% CI, 0.23–0.75; p = 0.004) [108]. In these trials, the ORR was 0–20%, and the mPFS
was approximately 3 months. While these results were not satisfactory, a better trend
was observed in patients with no ctDNA mutations than in patients with some mutations.
Therefore, evaluation of ctDNA related to resistance could be useful for identifying patients
eligible for anti-EGFR mAb rechallenge.
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Table 1. Previous reports of anti-EGFR monoclonal antibody rechallenge.

Study Phase Assay Number Primary
Endpoint Treatment ORR

(%)
mPFS

(Months)
mOS

(Months)

CRIKET [105] Single-arm
phase II

Droplet digital
PCR

28
(ctDNA: 25) ORR CET + IRI 21 3.4 9.8

E-Rechallenge
[106]

Single-arm
phase II

Droplet digital
PCR

33
(ctDNA: 24) ORR PANI + IRI 15.2 2.9 8.7

JACCRO
CC-08/09AR

[107]

Single-arm
phase II

BEAMing
(OncoBEAMTM

RAS CRC KIT)
16 3-month PFS CET + IRI (08)

PANI + IRI (09) 0 2.4 8.2

CAVE [108] Single-arm
phase II

Quantitative
PCR

77
(ctDNA: 67) OS Avelumab + CET 7.8 3.6 11.6

CHRONOS [109] Single-arm
phase II

Droplet digital
PCR 27 ORR PANI 30 N/A 12.8

PURSUIT
[110]

Single-arm
phase II

BEAMing
(OncoBEAMTM

RAS CRC KIT)
50 ORR PANI + IRI 14 3.6 N/A

VELO
[111]

Randomized
phase II

Real-time PCR
(IdyllaTM) 62 PFS

PANI + TAS102
vs.

TAS102
9.7

4.0
vs.
2.5

N/A

EGFR: epidermal growth factor receptor; PCR: polymerase chain reaction; ctDNA: circulating tumor DNA; ORR:
overall response rate; mOS: median overall survival; mPFS: median progression-free survival; CET: cetuximab;
PANI: panitumumab; IRI: irinotecan; TAS102: trifluridine/tipiracil.

Trials to prospectively evaluate the efficacy of anti-EGFR mAb rechallenge using
ctDNA have been conducted. The CHRONOS study, an open-label, single-arm, phase
II clinical trial, was the first to prospectively evaluate the efficacy of rechallenge with
EGFR inhibitors based on the mutational status of ctDNA. The main inclusion criteria
were RAS/BRAF WT in tissue, CR or PR to anti-EGFR mAbs, progression after the last
treatment without anti-EGFR mAbs, and RAS and BRAF WT and EGFR ECDs in ctDNA.
The primary endpoint was the ORR. The plasma RAS status was measured using ddPCR.
Among the patients with no detectable alterations in RAS, BRAF, and EGFR ECDs in
ctDNA, eight (30%) achieved PR. In this study, there was no correlation between the aEFI
and the probability of response. However, the CHRONOS study showed that patients with
a shorter aEFI (within 12 months) responded to anti-EGFR mAb rechallenge. Therefore, the
optimal aEFI varied between patients and was not based on a certain period. The results of
CHRONOS indicate that selecting patients based on ctDNA would enable the selection of
more appropriate candidates for anti-EGFR mAb rechallenge because it would allow the
exclusion of resistant cases [109]. PURSUIT is a multicenter, single-arm phase II trial that
evaluated the efficacy of anti-EGFR mAb rechallenge in patients with mCRC and plasma
RAS WT. In the monitoring phase, REMARRY prospectively monitored plasma RAS status
in patients with RAS/BRAF WT mCRC following a refractory response to anti-EGFR mAbs.
Plasma RAS status was measured at disease progression during subsequent therapies, and
patients were enrolled in the PURSUIT trial if they tested negative for plasma RAS. Other
key eligibility criteria included CR or PR to previous anti-EGFR mAb treatment and an
interval ≥4 months since the last administration of anti-EGFR mAbs. Plasma RAS status
was measured using the OncoBEAMTM RAS CRC Kit. The primary endpoint was not met,
and the confirmed ORR was 14%. The subgroup analysis showed a significantly higher
confirmed ORR in patients with a longer aEFI than in those with a shorter aEFI (>365 vs.
<365 days, 44.4% vs. 7.3%, p = 0.0037). The aEFI is assumed to be a factor in predicting
the effectiveness of the anti-EGFR mAb rechallenge in the PURSUIT trial, as opposed to
that in the CHRONOS study. Notably, five patients with plasma RAS WT had a confirmed
response (ORR, 16%), whereas no response was observed in seven patients with plasma RAS
mutations (ORR, 0%) (p = 0.25) [110]. VELO is a randomized phase II trial to evaluate anti-
EGFR mAb rechallenge as a third-line treatment in patients with mCRC. The patients were
randomized 1:1 to receive panitumumab plus trifluridine/tipiracil or trifluridine/tipiracil
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alone. The main inclusion criteria were achieving CR or PR to anti-EGFR mAb as first-line
therapy and an aEFI of at least 4 months. Plasma samples were prospectively collected
from all patients. Patients who received panitumumab plus trifluridine/tipiracil had a PFS
of 4 months, whereas those who received only trifluridine/tipiracil had a PFS of 5 months.
In addition, at 6 months, the PFS rate was 38.5% in patients with RAS/BRAF WT and 13%
in those with RAS/BRAF MT. Thirteen patients (20.9%) had RAS/BRAF WT at baseline
ctDNA analysis [111]. Anti-EGFR mAb rechallenge was investigated in combination with
a cyclin-dependent kinase 4/6 inhibitor in a phase II trial; however, the results were not
favorable. The 4-month disease control rate was 20%, and the mPFS was 1.8 months [112].
Anti-EGFR mAb rechallenge is well tolerated and not substantially different from anti-
EGFR mAb as a first-line therapy. Confirmation of ctDNA mutational status is essential
when considering anti-EGFR mAb rechallenge. The optimal interval between the initial
administration and re-initiation of anti-EGFR mAb therapy remains unclear.

4.2. Ongoing Trials of anti-EGFR Monoclonal Antibody Rechallenge Based on Liquid Biopsy

Several Clinical Trials of anti-EGFR mAb rechallenge are Ongoing (Table 2).

Table 2. Ongoing trials of anti-EGFR monoclonal antibody rechallenge based on liquid biopsy.

Study Phase Number Assay Estimated
Enrollment Treatment Primary

Endpoint
Study Completion

Date

PULSE Randomized
phase II NCT03992456

NGS
(Guardant360®

assay)
120

PANI
vs.

TAS102 or regorafenib
OS 7 October 2023

PARERE Randomized
phase II NCT04787341

NGS
(OncomineTM

Colon cfDNA
Assay)

214
PANI→ regorafenib

vs.
regorafenib→ PANI

OS 15 June 2024

CAPRI II
GOIM

Single-arm
phase II NCT05312398 NGS 200

The therapeutic
algorithm by liquid

biopsy assessment of
RAS/BRAF status

ORR 15 June 2026

CAVE II
GOIM

Randomized
phase II NCT05291156

NGS
(FoundationOne®

Liquid)
173

CET + avelumab
vs.

CET
OS 1 July 2025

EGFR: epidermal growth factor receptor; NGS: next-generation sequencing; ORR: overall response rate; OS:
overall survival; CET: cetuximab; PANI: panitumumab; TAS102: trifluridine/tipiracil.

PULSE (NCT03992456) is a randomized, phase II, open-label study designed to com-
pare the OS of panitumumab rechallenge with that of standard-of-care treatment (trifluri-
dine/tipiracil or regorafenib) for patients with mCRC with no resistance mutations, as
determined by liquid biopsy. The inclusion criteria are progression after at least four months
of treatment with an anti-EGFR mAb and >90 days between the recent administration of
anti-EGFR mAb and liquid biopsy. Secondary objectives include comparisons of PFS, ORR,
clinical benefit rate, and quality of life, as measured using a linear analog self-assessment
questionnaire. A total of 120 patients will be randomized 1:1 to receive panitumumab
rechallenge or standard-of-care treatment. This trial will optimize the third-line regimen
after the progression of anti-EGFR mAb in patients with RAS/BRAF WT mCRC.

PARERE (NCT04787341) is a prospective, open-label, multicenter, phase II study
aimed at evaluating the anti-EGFR mAb rechallenge sequence of RAS/BRAF WT, chemo-
refractory mCRC with previous benefit from first-line anti-EGFR-mAb-based treatment
according to ctDNA analysis using liquid biopsy. RAS/BRAF WT ctDNA at the time of
screening, at least a PR or SD≥6 months since the first anti-EGFR-mAb-containing regimen,
and at least 4 months between the end of first-line anti-EGFR mAb and liquid biopsy were
required. A total of 214 patients were randomized in a 1:1 ratio to receive panitumumab
followed by regorafenib after progression or the reverse sequence. The primary endpoint
is OS. The secondary endpoints are 1st-PFS, 2nd-PFS, time to failure strategy, ORR, and
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safety. The results of this study will validate the appropriate placement of anti-EGFR mAb
rechallenge in treatment strategies and provide useful knowledge regarding the aEFI.

CAPRI II GOIM (NCT05312398) is an open-label, phase II study investigating the
efficacy and safety of a biomarker-driven, cetuximab-based treatment regimen over three
treatment lines in patients with RAS/BRAF WT mCRC at the start of first-line treatment.
Patients will be treated with cetuximab in combination with chemotherapy as follows:
FOLFIRI (fluorouracil, leucovorin, and irinotecan) plus cetuximab (first-line), FOLFOX
plus cetuximab (second-line), and irinotecan plus cetuximab (third-line). If RAS and/or
BRAF mutation status is detected in ctDNA during disease progression, patients will be
treated with FOLFOX plus bevacizumab as a second-line therapy or with regorafenib
or trifluridine/tipiracil (investigator’s choice) as a third-line therapy. In cases where
RAS/BRAF WT is observed through liquid biopsy at each time point of progression,
patients are treated with cetuximab rechallenge in combination with irinotecan. In total,
200 patients will be enrolled. The primary endpoint is the ORR. The secondary endpoints
are PFS, OS, AEs, EORTC QLQ C30, and DERMATOLOGY LIFE QUALITY INDEX. This
study will reveal the significance of continuous anti-EGFR mAb administration in patients
with RAS/BRAF WT mCRC based on dynamic and longitudinal liquid biopsy assessments
of RAS/BRAF status.

CAVE II GOIM (NCT05291156) is a phase II, open-label, randomized clinical study to
assess the efficacy of the combination of avelumab and cetuximab as a rechallenge strategy
in patients with RAS/BRAF WT mCRC who achieved CR or PR after first-line therapy
with cetuximab. A total of 173 patients were randomly assigned in a 2:1 ratio to receive
either avelumab plus cetuximab or cetuximab alone. Patients with RAS/BRAF WT on
liquid biopsy at screening were enrolled in the study. The primary endpoint is OS. The
combination of cetuximab plus avelumab for patients with NRAS and KRAS WT mCRC
was effective in the CAVE trial, a phase II single-arm trial. Cetuximab in combination with
avelumab could potentiate antitumor activity as an anti-EGFR mAb rechallenge.

Although plasma samples for liquid biopsy were not collected, a randomized phase
III trial, the FIRE-4 study (NCT02934529), is being conducted to evaluate irinotecan plus
cetuximab as a third-line therapy in patients with RAS WT mCRC. Achieving CR or PR
with a PFS of ≥6 months, FOLFIRI plus cetuximab as a first-line treatment, FOLFOX plus
bevacizumab as a second-line treatment, and RAS WT tumor status were the inclusion
criteria. A total of 550 patients were randomized to receive cetuximab rechallenge in
combination with irinotecan-based chemotherapy or anti-EGFR-mAb-free treatment. The
primary endpoint is OS.

5. NeoRAS

Approximately 55% of mCRC patients have RAS mutations at diagnosis [113]. However,
administration of anti-EGFR mAbs is not recommended for patients with RAS WT mCRC.
Surprisingly, reversal from RAS MT to RAS WT has recently been reported [114–116]. This
phenomenon is called NeoRAS WT. The mechanism underlying NeoRAS WT mCRC
remains unclear. In the presence of CRC with a low allele frequency of RAS close to the
cut-off level, the MAF of RAS generally lies below the detection threshold after treatment,
which could result in NeoRAS WT mCRC (Figure 2). The evolutionary pressure imposed by
the tumor microenvironment and treatments leads to pulsatile levels of RAS MT clones and
negative selection against them [117]. The incidence of NeoRAS WT mCRC was estimated
as 18.8–83.3% in a recent report [117–122]. The variation in the results could be attributed
to factors such as the small sample size and lack of consensus on the definition of NeoRAS
WT mCRC. Decisions pertaining to RAS WT based on ctDNA analysis are limited by false
negatives from ctDNA analysis. In cases where only RAS mutations are analyzed, it is not
clear to what extent the detection of RAS mutations depends on reversion to RAS WT or
false negatives. NGS and methylation analyses are useful for confirming or excluding the
presence of ctDNA in plasma samples [118]. The detection of at least one somatic mutation
other than RAS is an indicator of sufficient ctDNA in the sample, and methylation can
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also be used as a cancer-related biomarker for the amount of ctDNA present in a plasma
sample. Among 18 patients with no RAS/BRAF mutations in plasma ctDNA samples,
true RAS conversion occurred in 15 patients, as determined by NGS and methylation
analysis [123]. Anti-EGFR mAbs are effective in patients with RAS WT and could also
be effective in patients with NeoRAS WT. A pilot study evaluated the efficacy and safety
of anti-EGFR mAb plus chemotherapy in patients with NeoRAS WT mCRC. The ORR
was 55.6% in patients with NeoRAS WT mCRC treated with a regimen of cetuximab plus
FOLFIRI compared to 42.9% in patients where RAS MT ctDNA was detected. The PFS
was 13.3 months in patients with NeoRAS WT mCRC compared to 3.5 months in patients
with RAS MT mCRC ctDNA. Therefore, anti-EGFR mAbs may be effective in patients with
NeoRAS WT mCRC [124]. Several clinical trials have evaluated the efficacy of anti-EGFR
mAbs in treating patients with NeoRAS WT mCRC.Cancers 2023, 15, x FOR PEER REVIEW 6 of 6 
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Ongoing Trials for the Treatment of NeoRAS Wild-Type Metastatic Colorectal Cancer

Multiple trials for treatments for NeoRAS WT mCRC are ongoing (Table 3).

Table 3. Ongoing trials for the treatment of NeoRAS wild-type metastatic colorectal cancer.

Study Phase Number Assay Estimated
Enrollment Treatment Primary

Endpoint
Study Completion

Date

CETIDYL Single-arm
phase II

NCT
04189055

Real-time PCR
(IdyllaTM) 72 CET (Cohort1) or CET +

IRI (Cohort2) ORR 7/1/2023

KAIROS Single-arm
phase II

EudraCT
2019-001328-36

Real-time PCR
(Idylla TM) 112 CET + chemotherapy ORR N/A

MoLiMoR Randomized
phase II

NCT
04554836

Droplet digital
PCR 144 FOLFIRI + intermittent

CET vs. FOLFIRI PFS 10/1/2024

C-PROWESS
[118]

Single-arm
phase II

jRCTs
031210565

BEAMing (the
OncoBEAM TM

RAS CRC KIT)
30 PANI + IRI ORR 1/1/2025

PCR: polymerase chain reaction; ORR: overall response rate; PFS: progression-free survival; CET: cetuximab;
PANI: panitumumab; IRI: irinotecan; FOLFIRI: fluorouracil + leucovorin + irinotecan.
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The CETIDYL study (NCT04189055) is a single-arm, phase II study to evaluate the
efficacy of cetuximab (Cohort 1) and cetuximab and irinotecan (Cohort 2) as salvage
therapies in patients with NeoRAS WT mCRC who previously received standard therapies
for liver metastasis. Seventy-two patients were enrolled in the study. Patients were initially
included in Cohort 1. Inclusion in Cohort 2 will start when the results of Cohort 1 are
available. The primary endpoint is the ORR.

The KAIROS study (EudraCT number 2019-001328-36) is a single-arm, phase II study
that aims to evaluate the safety and efficacy of cetuximab plus chemotherapy as a second-line
treatment in 112 patients with NeoRAS WT mCRC. The primary endpoint is the ORR.

The MoLiMoR study (NCT04554836) is a prospective, randomized, phase II study
conducted to evaluate the efficacy and safety of FOLFIRI-based first-line therapy with or
without intermittent cetuximab for NeoRAS WT mCRC. In the FOLFIRI + cetuximab group,
treatment was shifted to FOLFIRI at the emergence of RAS mutation as well as to FOLFIRI
+ cetuximab in cases of repeated conversion to RAS WT. Key eligibility criteria were true
RAS MT and left-sided mCRC. A total of 144 patients were randomized to receive FOLFIRI
+ intermittent cetuximab or FOLFIRI. The primary endpoint is the PFS.

The C-PROWESS study (jRCTs031210565) is a multicenter, single-arm, phase II study
investigating the safety and efficacy of panitumumab and irinotecan in 30 patients with
NeoRAS WT mCRC. The key eligibility criteria are mCRC tissue with RAS MT, refractory
or intolerant to fluoropyrimidine, oxaliplatin, or irinotecan, and RAS WT in ctDNA. The
primary endpoint is ORR [125].

CONVERTIX (2017-003242-25) was a single-arm, phase II study to evaluate the efficacy
of second-line treatment with panitumumab + FOLFIRI in RAS WT mCRC patients who
underwent RAS MT at the initiation of first-line treatment with FOLFOX plus bevacizumab.
However, this study was terminated early because of a lack of eligible patients; 23 patients
were screened, but none met the selection criteria according to the abbreviated clinical
study report.

6. Conclusions

The information that can be extracted from ctDNA could be used to confirm real-time
tumor genetic information and to optimize the strategy of chemotherapy regimens, such as
anti-EGFR mAb rechallenge and anti-EGFR mAb for NeoRAS WT mCRC. The advantages
and limitations of ctDNA information should be considered when interpreting these results.
The development of technologies to assay ctDNA will provide a basis for personalized
medicine and will likely change treatment strategies not only in CRC but also in various
types of cancers.

Supplementary Materials: The following supporting information can be downloaded at: https://
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(mutant) allele frequency
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