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Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking
activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data
could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in
the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well
adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson
spiking neuron models to derive generalized Yule-Walker-type equations for fitting “hidden” Multivariate Autoregressive models.
We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in
networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method.

1. Introduction

The analysis of multivariate neurophysiological signals at the
cellular (spike trains) and population scales (EEG/MEG, LFP,
and ECOG) has developed almost independently, largely
due to the mathematical differences between continuous
and point-process signals. The analysis of multiple neural
spike train data [1] has gained tremendous relevance recently
with the advent and widespread application of arrays of
microelectrodes in both basic and applied Neurosciences.
Furthermore, emerging optical methods for network activity
imaging [2] and control [3] are likely to further compound
this growth.

Currently, the analysis of multichannel spike trains is
still largely limited to single-channel analyses, to bivariate
cross-correlation and metric-space analyses [4], and to spike
train filtering (“decoding”). In contrast, much of EEG/MEG
time series analysis has revolved around linear and nonlinear
models and analyses that are essentially multivariate, most
prominently the multivariate autoregressive (MVAR) model.
The MVAR framework is associated with a powerful set of
time- and frequency-domain statistical tools for inferring

directional and causal information flow based on Granger’s
framework [5], including linear and nonlinear Granger
causality, directed transfer function, directed coherence, and
partial directed coherence (see [6–8] for reviews). Scattered
attempts at applying this general framework to neural spike
trains have relied on smoothing the spike trains to obtain a
continuous process that can be fit with an MVAR model [9–
12]. This approach has the clear disadvantage of being highly
kernel dependent and of introducing unwanted distortions.
The inability to estimate multivariate autoregressive models
for spike trains has recently motivated Nedungadi et al.
[13] to develop an alternative nonparametric procedure
for computing Granger causality based on spectral matrix
factorization (without fitting the data with an autoregressive
model).

The purpose of this paper is to bridge this divide
in neurophysiological data analysis by introducing a
correlation-distortion-based framework for applying multi-
variate autoregressive models to multichannel spike trains.
The primary aim of making this connection is to enable
direct identification of causal information flow among
populations of neurons using the powerful Granger causality
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analyses, which have been tried and tested in numerous
studies of continuous neural signals. The framework is based
on our recent analytical results [14, 15] on correlation distor-
tions in (multiple) Linear-Nonlinear-Poisson (LNP) models
when the inputs are white Gaussian noise processes and the
nonlinearities are exponential, square, or absolute values.
The essential idea in this approach is that the nonlinearity
(which produces the firing rates) systematically distorts the
correlation structure of the correlated Gaussian outputs of
the linear stage, and that the spike trains carry essentially the
same expected correlation structure. By deriving formulas
for these distortions, we were able to generate synthetic
spike trains with a fully-controllable correlation structure by
choosing FIR linear kernels that “predistort” the Gaussian
processes to cancel out the subsequent distortion. Such
spike trains can be applied, for example, in pattern photo-
stimulation of synthetic input activity onto a neuron, or for
controlling neuron populations in artificial neuroprosthetic
interfaces [3, 16]. Although we noted in [14] that the linear
stage could generally have a recursive MVAR structure, the
required estimation steps were not presented or tested.

The remainder of the paper is organized as follows.
Section 2 introduces the methods used for generating the
spike trains used in this paper and for evaluating statistical
significance. In Section 3 we present and evaluate the proce-
dure for estimating the MVAR-nonlinear-Poisson model. In
Section 4 we provide an overview of linear Granger causality
analyses and apply them to estimating information flow in
bi- and trivariate spike trains. In Section 5 we conclude by
discussing the new framework’s relation to previous work,
and its prospects and limitations.

2. Methods

2.1. Synthetic Spike Train Generation. Spike trains were
generated in two different ways in order to mimic two basic
scenarios encountered in neural data recordings: distributed
population activity with relatively wide correlation functions
and local network with directly interconnected neurons.

Population activity was simulated using a Linear-
Nonlinear-Poisson (LNP) generative neural model with a
multichannel linear stage modeled by a Multivariate Autore-
gressive model (see Section 3). Causal connectivity structures
were generated by choosing appropriate coefficients for
the MVAR model (details provided for each example in
Section 4). The desired mean firing rates and firing rate
variability were obtained by adjusting the parameters of the
nonlinearity [14].

Local networks of directly interconnected neurons were
simulated using integrate-and-fire (IF) neuron models pro-
posed by Izhikevich [17] with various interconnection
schemes. Routines based on freely available code from the
ModelDB [18, 19] database (accession number 115968)
were used to generate this network activity. This approach
provided networks of realistic spiking neurons with no
assumptions of Poisson firing or LNP-based activity. For the
three examples used in this work, three different networks
were simulated with the connectivity structures depicted in
Figure 1.

2.2. Surrogate Data Generation. To perform a statistical
test on the results of the proposed method as part of
Granger causality analyses, surrogate datasets were gener-
ated. The surrogate data was generated by nullifying one
causal connection (coefficient) at a time in the estimated
underlying MVAR model of the linear stage. This new MVAR
model (with one artificially “broken” connection) was used
for generating spike trains with no direct causal relation
between the two tested channels. Each of these spike trains
was then analyzed by the proposed method for Granger
causality. The resultant coefficients (6) or (8) provided a
“null” distribution, to which the corresponding coefficients
calculated from the real data were compared.

3. Identifying an MVAR-Nonlinear-Poisson
Model

We consider the problem of identifying a p-dimensional
multivariate (vector) autoregressive model of order m:

x(n) = −
m∑

k=1

A(k) · x(n− k) + w(n) (1)

from observations of Poisson spike trains whose rate depends
nonlinearly on x(n):

λi(n) = f
(
μi + σi · xi(n)

)
. (2)

The matrices A(k) are p × p coefficient matrices, each
corresponding to a specific lag, and w is a zero-mean
Gaussian noise process with covariance matrix

∑
.

The parameters of an MVAR model (A(k)) can be
estimated directly from the autocorrelation function of its
output Rx(k) = E[x(n)·xT(n+k)] by solving the multivariate
Yule-Walker equations [8]:

m∑

k=1

A(k) · Rx(i− k) = −Rx(i), 1 ≤ i ≤ m. (3)

How can this framework be adapted to our case?
Although the correlation matrices Rx(k) are not directly
measurable, they can be indirectly estimated from the
correlation matrices and expectations of the firing rates λ for
certain choices of the nonlinearity f. These “predistortion”
relationships were derived in [14] for exponential, square
and absolute-value transformations by considering the effect
of these nonlinearities on pairs of correlated, normally
distributed random variables. For the case of doubly-
stochastic Poisson processes, the spike-train correlation
structure RΔN (τ) is identical to that of the firing rates, except
at zero lag [14, 20]: RΔN (τ) = Rλ(τ) + δ(τ)E(λ).

The parameter estimation algorithm is summarized in
Algorithm 1 for the exponential and square nonlinearities
(the detailed derivation and formulas of absolute-value pre-
distortions appear in [14]).

The main algorithm assumes that the model order m is
known. Several different criteria for automatic determina-
tion of an “optimal” model order m have been developed.
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Figure 1: Structure of simulated networks (a)–(c) of IF neurons. Morphologies of the three networks simulated to provide data for the
analysis of realistic local networks (see Figure 4 for the results). Granger causality analysis was performed on the subnetworks marked by
dashed boxes. The additional neurons were used to balance excitatory and inhibitory input to the analyzed cells.
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Figure 2: Fitting multiple spike trains with an MVAR-Nonlinear-Poisson model. (a) Schematic representation of the model. (b) Rate
processes λ(t) and corresponding Poisson spike trains. (c) Correlation structures of the original spike trains and the estimated model.

In our implementation we determined the model order by
minimizing the Bayesian Information Criterion (BIC):

BIC(m) = 2 log
[

det
(
Σ̃
)]

+
2p2m · logNtotal

Ntotal
, (4)

where Ntotal is the total number of data points and the
prediction error covariance matrix Σ̃ is given by

Σ̃ = R(0) +
m∑

k=1

A(k) · Rx(k). (5)

Figure 2 presents an illustrative example of an MVAR-
Nonlinear-Poisson model (Figure 2(a)) of order 3 estimated
from three correlated spike trains. The correlations between
the three processes, which can be qualitatively appreciated
from the firing rates (Figure 2(b)), are accurately captured
by the estimated model (Figure 2(c)).
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(1) Estimate mean rates E[λi(t)] = E[ΔNi] and pairwise auto- and cross-correlation matrices Rλ(i, j)(k) � E[λi(n)λj(n + k)] =
E[ΔNi(n)ΔNj(n+ k)] from spike trains ΔNi(t) � limΔt→ 0Ni(t +Δt)−Ni(t). Note that, for zero-lag autocorrelations (i = j; k =
0): E[λ2

i ] = E[ΔN2
i ] − E[ΔNi]/Δt. A smoothing spline can optionally be used to remove variance from the noisy spike-train

correlation estimates.
(2) Estimate the nonlinearity parameters and predistort the correlation (see Table 1).
(3) Solve Yule-Walker equations (3). This step can be performed by directly inverting a Toeplitz matrix, or more efficiently and
robustly using the Levinson-Wiggins-Robinson (LWR) algorithm [21].

Algorithm 1: Algorithm outline.

Table 1

λi(t)
Exponential Square

exp(μi + σixi(t)) (μi + σixi(t))2

μi ln

⎛
⎝ E2[λi]√

E[λ2
i ]

⎞
⎠ 4

√
3
2
E2[λi]− E[λ2

i ]
2

σi

√√√√ln

(
E[λ2

i ]
E2[λi]

) √√√√E[λi]−
√

3
2
E2[λi]− E[λ2

i ]
2

Rx(i, j)(k)
ln(Rλ(i, j)(k)/E[λi]E[λj])

σiσj

−μiμj +
√

(Rλ(i, j)(k)− E[λi]E[λj])/2 + μ2
i μ

2
j

σiσj
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Figure 3: Granger causality analysis in a 2D case. (a) Schematic
of the original model and its observed correlation structure. (b)
Granger causality analysis of the spike trains revealed a significant
causal connection from cell 1 to cell 2. The numbers represent the
pairwise linear Granger causality coefficients for each connection
and their P-values (in parenthesis). (c) Correlation structure of the
model used as a “null” for the statistical test, with no connection
between cell 1 and cell 2.

4. Granger Causality Analysis

Granger causality is based on the general concept due to
Norbert Wiener that a causal influence should manifest in
improving the predictability of the driven process when the
driving process is observed. A measurable reduction in the
unexplained variance of the driven process (say x2(n)) as a
result of inclusion of the causal (driving) process (say x1(n))
in linear autoregressive modeling marks the existence of a

causal influence from x1(n) to x2(n) in the time domain
[5]. Pairwise linear Granger causality in the time domain is
defined as

Fx1 → x2 = ln
Σ1

Σ2
, (6)

where Σ1 is the unexplained variance (prediction error
covariance) of x2(n) in its own autoregressive model, whereas
Σ2 is its unexplained variance when a joint MVAR model
for both x2(n) and x1(n) is constructed. It is expected that
Fx1 → x2 > 0 when x1(n) influences x2(n), and Fx1 → x2 =
0 when it does not. In practice, Fx1 → x2 is compared to a
threshold value, which can be determined using a variety
of methods (typically using surrogate data or by shuffling
channels).

To evaluate the Granger analysis framework, we first
tested its ability to estimate the causality structure in a system
of two coupled synthetic spike trains with unidirectional
influence (Figure 3). The structure of the MVAR model used
to generate the data (Figure 3(a)) was

x(n) =

⎡
⎢⎢⎣

1
2

0

0
1
2

⎤
⎥⎥⎦x(n− 1) +

⎡
⎢⎣

0 0

−1
2

0

⎤
⎥⎦x(n− 2) +w(n). (7)

We simulated a 10-minute-long dataset where the mean
firing rate of the spike trains was 20 Hz (set by adjusting
the exponent’s parameters). The strength of each connection
was calculated using (6), and their statistical significance was
tested by applying the same calculation scheme to surrogate
data where the tested connection was removed (for details on
generating surrogate data see Section 2).
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Pairwise causal analyses are important, but cannot dis-
tinguish, for example, between direct and indirect influences
in more elaborate connectivity schemes, such as trivariate
networks [8]. To address inference in this more complex
scenario, we can perform a series of “leave-one-out” analyses,
using the multivariate extension of the linear Granger
causality index [7, 8]. For example, to assess the direct
influence exerted by xm on xn, we use

Fxm→ xn = ln
Σxn|x1···xm−1,xm+1···xp

Σxn|x1···xp
. (8)

To test this approach (Figure 4) we applied it to synthetic
data originating from 10-minute-long datasets (20 Hz aver-
age rate) synthetically generated from two different MVAR
models that represent two basic triple-unit activity examples.
The first one (Figures 4(a)–4(c)) models sequential connec-
tion and was modeled by

x(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0 0

1
2

1
2

0

0 0
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(n− 1) +

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 −1
2

0

⎤
⎥⎥⎥⎥⎦
x(n− 2)

+

⎡
⎢⎢⎢⎢⎣

−1
2

0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎦
x(n− 3) +w(n).

(9)

The second case (Figures 4(d)–4(f)) is a “common input”
example, where unit #1 drives the activity of units #2 and
#3 with different time delays. This example was modeled by

x(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0 0

1
2

1
2

0

0 0
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(n− 1) +

⎡
⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦x(n− 2)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
2

0 0

0 0 0

−1
2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
x(n− 3) +w(n).

(10)

To test the robustness of the MVAR-N-P model estima-
tion under a nonlinearity mismatch, we simulated Model I
from Figure 4 using a square and an absolute value non-
linearity and estimated the model assuming an exponential
nonlinearity as before. As can be seen in Figure 5, the
estimated MVAR models are extremely similar to the model
estimated without the mismatch: ρ = 0.995 ± 0.004, ρ =
0.993 ± 0.006, respectively, for the nonzero kernels (each
model is illustrated by its respective impulse responses).

Finally, we tested the method on data that comes from
simulations of realistic local network activity. The spike trains
were simulated using interconnected networks of integrate-
and-fire neurons [17]. Examples similar to those presented
in Figures 3 and 4 were analyzed by the proposed approach
based on the MVAR-Nonlinear-Poisson model. Exponential
nonlinearity was used as it is more flexible in capturing
correlation structures than the other two nonlinearities [14].
The method successfully determines the connectivity pattern
in all three examples, even though the spike trains are far
from being Poissonian and therefore cannot be generated by
an LNP model (Figure 6).

We note that, as a result of absolute and relative refractory
periods of non-Poisson spiking, the correlation structure has
strong negative peaks that cannot be directly captured by
the MVAR models used in our framework. To fit a stable
and representative MVAR model to these spike trains, we
applied a basic regularization procedure to their correlation
structure that consisted of truncating the negative peaks
in the auto- and cross-covariance functions and adding a
diagonal matrix to the correlations matrix (in order to get
a positive semidefinite correlation matrix).

5. Discussion

In this paper, we introduced a new method for modeling
multineuron spike train data, and its application to the
identification of information flow structure among inter-
acting neuronal populations. The identification of neural
systems from multineuron spike train data can be used for
experimental inference of underlying network connections
[22–27], or more generally of “effective” connectivity. It
is also indirectly related to nonparametric methods for
identifying high-order synchronous interactions [28–31],
and metrics of (dis)similarity between spike trains [4, 32–
36]. In our approach, the data is fit to a model based on
an underlying MVAR process with Gaussian statistics which
is nonlinearly transformed to firing rates that modulate
Poisson spike trains. Our approach thus departs from the
classical model-based identification of multivariate spike
train data which assumes a specific, biophysically-motivated,
linear or nonlinear interaction scheme between neurons
[22–27]. In our approach, there is no explicit modeling of
the interaction exerted through the spike trains, but rather
the modulating processes interact through the multivariate
recursive structure of the MVAR. In practice, the strict
assumptions of neural-interaction models are challenged by
the dramatic under-sampling of a large population in real
neural recordings, as well as by oscillations and modulations
exerted by unmodeled elements. Recently, this “classical”
approach has been generalized into generalized linear models
(GLMs) that include modulation by a dynamic stimulus or
behavior [37–39], which in our framework can be done by
adding an additional external input or set of inputs (and
thus moving from an AR to an ARX model). In addition,
the new framework can easily be extended to analyze mixed
datasets containing both spiking and continuous neurophys-
iological (and behavioral) data, as well as to time-varying
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Figure 4: Granger causality analysis of different 3D models. (a, d) Schematic of the models and their correlation structures. (b, e) Pairwise
Granger causality analysis (using (6)) is incapable of distinguishing between direct and indirect connections, and three causal connections
are deemed significant. (c, f) Three dimensional Granger causality analysis reveals the connectivity structure that fits the original models.
Granger causality coefficients were calculated using (8). The statistical test was performed using surrogate data.
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was done using the exponential nonlinearity in all the cases. The impulse response of the linear MVAR model was affected only slightly by
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Figure 6: Granger causality analysis of realistic Izhikevich-type networks of neurons. Granger causality analysis was applied to reconstruct
the connectivity structure in three basic architectures—see Figure 1 for the full structure of the simulated populations. (a) Two cells with
unidirectional causal connection. (b) Three cells with sequential connection. (c) Three cells with “common input” interaction. Note that in
examples (b) and (c) the reduced 2-dimensional models do not reconstruct correctly the 3D causal relations, as expected.

(nonstationary) scenarios using the MVAR framework and
its standard adaptive extensions.

Rather than explicitly modeling neuron-to-neuron inter-
actions, our approach benefits from the MVAR-based
Granger causality framework for inferring directed infor-
mation flow using the concept of increased predictability
of one time series when another is observed. While we
have only illustrated the use of linear Granger causality, this
framework now includes a number of different statistical
measures that can be used for inference, including directed
transfer function, directed coherence, and partial directed
coherence. A thorough overview of these methods [6–8] is
clearly outside the scope of the current paper; however, we
note that their ability to infer cortical network connectivity
patterns has been systematically tested and compared in a
number of studies (e.g., see [40]). It is important to note
that a major difference between our approach and “classical”
MVAR models is that the MVAR model here is hidden and
only indirectly observed through the noisy spike trains. As a
result, it was crucial that both the MVAR parameter estimates

and the prediction errors can both be estimated from auto-
and cross-correlations equations (3) and (5).

Finally, we note that the proposed framework has some
limitations that could potentially benefit from additional
work. The LNP nonlinearity is required in order to transform
the Gaussian processes into nonnegative stochastic intensi-
ties (rates) that modulate the Poisson processes. Having to
select a specific nonlinearity is clearly a shortcoming of this
approach versus the complete generality (and uniqueness) of
the MVAR framework in the context of continuous processes.
Secondly, we note that when the MVAR-N-P is used as
a generative model for spike trains, the doubly-stochastic
Poisson processes that are produced have a larger-than-
Poisson dispersion (variance), which may not always be
desirable. This limitation can be addressed by considering
alternative models for the transformation from a Gaussian
process to spike trains. For example, the single-stochastic
processes analyzed by Macke et al. [41] produce spikes
deterministically whenever a Gaussian process is higher than
a threshold value, while Tchumatchenko et al. [42] analyzed
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spike trains produced during threshold crossings of Gaussian
processes (both solutions can only be numerically inverted).
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