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Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are
thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage
DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria
are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes,
altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content
with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy
production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These
changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which
may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that
reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary
effects of aging, they may help to attenuate the rate of decline.

1. Introduction

Around the fourth decade of life, both muscle mass and
strength begin to decline [1], and these declines accelerate
with advancing age [2]. The loss of muscle mass occurs at
a rate of just under 1% per year [3] and appears to be an
unavoidable consequence of aging, although it can be slowed
by exercise, especially resistance training [4–6]. A significant
concern is that as one ages, changes in muscle mass and
strength tend to be dissociated. Data from the Baltimore
Longitudinal Study of Aging [7] and the Health ABC study
[3] showed using DXA and CT that muscle strength declined
three times faster than muscle mass, suggesting a decrease
in muscle “quality.” This posits that along with an overall
reduction in tissue mass, changes are occurring within the
skeletal muscle to affect strength. Changes such as accumula-
tion of intra- and extra-myocellular lipids, improper folding
of structural and contractile proteins, and mitochondrial
dysfunction are thought to occur with age and are the topic
of intense scrutiny [8–10].

Dysfunctional mitochondria in particular are thought
to play a key role in muscle function decline, as the
mitochondria are the main producers of both cellular energy
and free radicals. Alterations in mitochondria have been
noted in aging, including decreased total volume, increased
oxidative damage, and reduced oxidative capacity. These
biochemical and bioenergetic changes are accompanied by
perturbations in cellular dynamics, such as a decrease in
mitochondrial biogenesis and an increase in mitochondrially
mediated apoptosis (Figure 1). These changes may underlie
not only a loss of muscle quality with age, but also other
common age-associated pathologies such as ectopic lipid
infiltration, systemic inflammation, and insulin resistance
[10]. In this paper, we examine the evidence for age-related
changes in skeletal muscle mitochondria, with a focus on
studies conducted in humans.

1.1. Overview of Mitochondria. Mitochondria are double-
membrane encoded organelles with their own genome that
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Figure 1: This cartoon describes the changes in skeletal muscle with aging on the right side of the figure. Both the mass and function
of skeletal muscle are decreased in elderly people. Furthermore, at the mitochondrial level, the number of mitochondria is decreased in
parallel with changes in mitochondrial morphology. Mitochondrial DNA, oxidative capacity, biogenesis, and autophagy are all decreased
in conjunction with an increased number of DNA mutations and increased levels of apoptosis. Finally, oxidative stress is increased in the
muscles of elderly people in association with cellular lipid, protein, and DNA damage. The bottom left of the cartoon shows that exercise,
caloric restriction, caloric restriction mimetics, and antioxidants can all delay the aging of skeletal muscle.

consume oxygen and substrates to generate the vast majority
of ATP while producing reactive oxygen species in the
process. They also participate in a wide range of other
cellular processes, including signal transduction, cell cycle
regulation, oxidative stress, thermogenesis, and apoptosis.
In doing so, they are highly dynamic organelles that are
continuously remodeling through biogenesis, fission, fusion,
and autophagy, thus responding to and modulating cellular
dynamics. For instance, they undergo biogenesis to meet
increased energy demands in response to exercise, and they
ensure cellular quality by initiating an apoptotic program to
remove defective cells.

Mitochondria transduce energy from substrates through
the tricarboxylic acid (TCA) cycle and the electron trans-
port system (ETS) to generate ATP. The ETS consists of
multipolypeptide complexes (I–V) embedded in the inner
mitochondrial membrane (IMM) that receive electrons from
reducing equivalents NADH and FADH2, generated by
dehydrogenase activity in the TCA cycle. The electrons are
transferred along the complexes with O2 serving as the
final acceptor at complex IV [11] (Figure 2). The reduction
potential (propensity to accept an electron) increases along
the chain of complexes, and the energy generated is sufficient
to drive the translocation of hydrogen ions across the IMM.
This creates a proton gradient and membrane potential
(collectively termed the proton motive force) that drives
the synthesis of ATP as protons flow back to the matrix
via complex V (ATP synthase). This process is also called
oxidative phosphorylation (OXPHOS). However, the ETS is
not a perfectly efficient system, and significant (and highly
variable) proton “leak” occurs by the movement of hydrogen
ions back into the matrix space that is not mediated through
complex V. In this manner, proton transfer can be uncoupled
from ATP phosphorylation, and this inefficiency contributes
to the demand for reducing equivalents. Mitochondria are

therefore thought to have a much greater capacity to generate
ATP than what is usually required [12].

Because of this metabolic latitude, many assume that
mild impairment in mitochondrial function per se does
not cause cellular disturbances associated with aging and
with chronic diseases such as insulin resistance and type 2
diabetes [12]. Indeed, whether mitochondrial dysfunction
is a cause or a consequence of cellular impairment and
the aging process is a subject of intense debate. Moreover,
the definition of mitochondrial dysfunction itself has been
the subject of controversy. For example, alterations in
mitochondrial mRNA transcripts may not result in changes
in protein levels, so it is not wholly clear whether this
state—whether compensatory or not—can be counted as a
disruption in normal function [13].

In this paper, we focus on the aging of skeletal muscle
(SM) mitochondria, with an eye towards the putative role
of mitochondria in SM aging. We look at several different
aspects of mitochondrial function—which we define to mean
any process that involves the mitochondria—and explore
the evidence for dysfunction, which we define to mean any
deviation from normal function. Section 2 examines the
impact of aging on the biochemical and bioenergetic path-
ways in SM mitochondria. Section 3 explores the changes
in mitochondrial and cellular dynamics, which may further
exacerbate the age-related decline in muscular function. The
review concludes in Section 4 with an overview of strategies
to attenuate the aging of SM mitochondria.

2. Biochemical and Bioenergetic
Aging of Mitochondria

During the aging process, mitochondria are characterized by
changes in oxidative stress, a decay in mitochondrial DNA,
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Figure 2: Mitochondrial processes are both static (a) and dynamic (b). (a) depicts the classical movement of electrons along complexes
I–IV embedded in the inner mitochondrial membrane with the generation of a proton gradient (membrane potential). The proton gradient
causes hydrogen ions to flow back into the mitochondrial matrix via complex V (ATP synthase), producing ATP in the process. (b) depicts
the processes of mitochondrial fusion and fission. Mitochondria can undergo constriction and division (1), mediated by Drp1, which bonds
and localizes to the constriction site via an interaction with the receptor-like protein Fis1 (2). During fusion, a tether of the Mfn1/2 to
collateral mitochondrial Mfn1/2 conjoins the outer membranes. Opa1, an inner membrane GTPase protein, facilitates the fusion of the
inner membrane, cristae formation, and unifying of compartments.

a reduction in some enzyme activities, and alterations in
mitochondrial respiration. These biochemical changes are
accompanied by phenotypic changes in the mitochondria
themselves. In old age, a significant proportion of the
mitochondrial organelles are abnormally enlarged and more
rounded in shape (reviewed in [14, 15]). An increasing
proportion of them are also depolarized or nonfunctional,
perhaps indicative of defects in mitochondrial turnover
[15–17]. Within the mitochondria themselves, shortened
mitochondrial cristae and vacuolization of the matrix are
apparent, which lead to homogenization of the materials
within the mitochondrial compartments [14, 18]. Coupled
with these morphological changes, the density of mitochon-
dria in SM substantially drops [13, 19–21], as shown for
example, by electron microscopy in the vastus lateralis muscle
of people over 60 years of age [20].

2.1. Increased Oxidative Damage: ROS Production and Scav-
enging. Within the cell, the mitochondria constitute the

major source of reactive oxygen species (ROS). Mitochon-
drial complexes I and III are the main sites of superoxide
generation and contribute the most to ROS production [22].
The reactive oxygen species, including O2

•− and H2O2, can
cause oxidative damage to surrounding structures and the
particularly vulnerable mtDNA, which is in close proximity
to the primary site of ROS production. Oxidation by ROS
results in the synthesis of faulty proteins, oxidized lipids,
and mtDNA mutations, which may lead to cellular and
mitochondrial dysfunction. These processes are implicated
in the mitochondrial theory of aging [23, 24], which holds
that the accumulation of ROS damage over time leads to
age-associated mitochondrial impairment. In general, ROS
production is found to be increased in aged muscle in
both the subsarcolemmal and intermyofibrillar pools of
mitochondria [25] (though some report a decrease in ROS
production with age [26]). This increase in ROS production
is associated with oxidation of ETS complex V, leading
to decreased ATP production [27, 28], increased levels
of 8-oxodeoxyguanosine (8-oxoG) from DNA oxidation
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[25, 29], increased levels of protein carbonyls, and increased
nitration [30]. In particular, proteomic studies have found
increased nitration of complex II and altered carbonylation
of complex I, complex V, and isocitrate dehydrogenase
(reviewed in [31]).

Cumulative oxidative damage may in part be attributed
to a reduction in ETS activity that would extend the
length of time that electrons remain at complexes I and
III, increasing the potential for donation of electrons to
oxygen [32]. In theory, it could also be attributed to
reduced activity of antioxidant defenses, including man-
ganese superoxide dismutase (MnSOD), catalase (CAT), and
glutathione peroxidase (GPx). These enzymes work together
to convert O2

•− to H2O2, which is then further reduced
to H2O. Data on antioxidant enzyme activity and aging is
mixed, with some studies showing increased activity [33–
35] while others show reduced enzyme activity [36–38].
We recently found in a group of elderly adults aged 70–
84 years that the expression of total superoxide dismutase
(SOD) was unchanged compared to that of a group of
young (20–34 years old) BMI-matched individuals; however,
urinary isoprostanes (a marker of whole-body oxidative
damage) was increased by 38% [10]. Furthermore, TCA
cycle activity measured as citrate synthase (CS) activity
was 19% lower, and mitochondrial capacity was 17% lower
in the elderly, although mitochondrial content (OXPHOS
protein) was unchanged. Safdar et al. recently showed that
the protein content of MnSOD (mitochondria-specific) was
significantly reduced in active and inactive older adults
compared to their younger counterparts; however, MnSOD
activity in the older subjects who were recreationally active
was similar to that of young subjects [39]. Together, these
data suggest that oxidative stress is increased with age
without an accompanying increase in antioxidant activity
and may be linked with mitochondrial dysfunction. Exercise
and caloric restriction may alleviate the age-associated
oxidative stress by upregulating antioxidant enzyme activity
even in the face of reduced antioxidant protein content
(Figure 3).

If oxidative stress contributes to mitochondrial dys-
function, can mitochondrial dysfunction be reversed by
changing the cellular oxidative status? A recent study
attempted to answer this question using a transgenic
mouse model to express human catalase targeted to the
mitochondria (MCAT) [40]. Mitochondrial function was
assessed both in vitro and in vivo in wildtype young
(3–6 months old) and older (15–18 months old) lean
healthy mice versus age-matched MCAT transgenic lit-
termates. Whereas the older wildtype mice exhibited all
the “usual” deleterious metabolic impairments including
increased oxidative damage, reduced mitochondrial con-
tent (∼30%) and function, increased intramuscular lipid
(∼70%), and marked muscle insulin resistance (∼35%), the
older MCAT mice resembled the young mice and demon-
strated none of the age-associated impairments. These data
suggest that by increasing ROS scavenging and reducing
the oxidized state of the cell, many age-related deficits can
be prevented.

2.2. Increased Uncoupling? Another mechanism to reduce
oxidative stress may be mediated by attenuation of the proton
motive force, thereby decreasing the potential for electrons
to form oxygen radicals. This could be accomplished by
increasing respiration or by increasing proton leak. Rodent
studies on age-associated changes in proton leak are mixed.
Iossa et al. [41] showed that proton leak was decreased
with age, resulting in increased mitochondrial efficiency.
Conversely, reduced coupling was found in aged mice using
an in vivo approach to measure the P/O ratio [42]. Data in
aged humans are scarce. We recently found that the in vivo
P/O ratio determined by ATP turnover (demand) and oxygen
uptake of the vastus lateralis was 21% lower in elderly
compared to young adults [10], suggesting that less ATP
was produced per oxygen uptake in the elderly adults. This
lends support to earlier work by Amara et al. [43] showing
that mild uncoupling protects against age-related declines
in mitochondrial function and cellular ATP concentration.
Furthermore, we found that a lower P/O ratio was associated
with lower SOD activity, indicating a possible link between
cellular antioxidant activity and mitochondrial coupling. In
particular, increased oxidative stress with nonupregulated
antioxidant defense may induce mitochondrial uncoupling
in order to reduce the oxidative potential. This potential
adaptive mechanism should be further explored.

2.3. Decay of Mitochondrial DNA. Age appears to affect
both mitochondrial DNA (mtDNA) content and integrity.
Mammalian cells typically contain on the order of 1,000–
10,000 copies of mtDNA, which code for less than 10% of all
mitochondrial proteins; the rest is encoded by nuclear DNA
[44, 45]. At 16.6 kbp long, each double-stranded circular
mtDNA molecule encodes 13 genes involved in the ETS
(subunits of complexes I, III, IV, and V), 22 tRNAs, and
2 rRNAs [46]. A majority of studies [47–50], though not
all [51], report that mtDNA copy number decreases with
age in human SM and may be caused at least in part by
oxidative damage, as the age-associated decline in mtDNA
copy number tends to be greater in more oxidative fibers
[52].

The decline in mtDNA is also accompanied by an
increase in mtDNA damage, particularly deletions and
oxidative lesions, but also point mutations, tandem duplica-
tions, and rearrangements (reviewed in [53, 54]; in particular
[36–38, 48, 55–64]). mtDNA is particularly susceptible to
oxidative damage because it is near the major site of ROS
production, lacks protective histones, and has weaker DNA
repair mechanisms [65, 66]. One study found that deletions
affect up to 70% of mtDNA molecules in the SM of
individuals aged 80 years and older [56]. However, there are
disagreements over mtDNA mutation frequencies (reviewed
in [54]) and to what extent ROS production is responsible;
there is increasing evidence that perhaps a majority of
mutations are due to the inherent error rate of mtDNA
polymerase gamma (Pol gamma) [67].

The functional impact of mtDNA damage is still a matter
of debate both in general (reviewed in [54, 67, 68]) and
in the context of sarcopenia (reviewed in [69]). Is mtDNA
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Figure 3: The electron transport system (ETS) of the inner mitochondrial membrane is the primary site of reactive oxygen species (ROS)
production and therefore the main source of oxidative stress (damage to proteins, lipids, and DNA) in the mitochondria and in the cell.
Free radical superoxide anions (O2

•−) are generated when electrons are donated from complexes I and III of the ETS to O2 instead of the
appropriate ETS subunit. 2–4% of total oxygen consumption may go toward the production of ROS instead of energy as ATP. Scavenging
enzymes represent an important mitochondrial defense mechanism against oxidative stress by neutralizing O2

•− within the mitochondrial
matrix (superoxide dismutase; MnSOD = SOD2) and catalyzing the reduction of mitochondrial SOD2-generated H2O2 to nontoxic H2O in
the mitochondria and the cell (glutathione peroxidase and catalase). Mitochondria in young muscle (a) are numerous and efficient. With
age (b), muscle mitochondria become less numerous and seem to develop impaired function associated with reduced oxidative capacity.
Through lifestyle changes such as exercise, and caloric restriction, and caloric restriction mimetics, we hypothesize that antioxidative enzymes
are upregulated, and that most of the above impairments in aged muscle may be improved (c).

damage a consequence or a cause of the aging process? On
one hand, the onset of a mitochondrial decline in energy
production occurs before mtDNA mutations are often
detectable [70]. On the other hand, several studies in humans
reveal strong correlations between mtDNA mutation rates
and bioenergetic deficiency (typically complex IV) or muscle
fiber atrophy [43, 55, 62, 63, 71–74]. In addition, specific
point mutations cluster at mtDNA replication control sites,
which may reduce gene transcription and be at least partially
responsible for declining levels of protein synthesis with
age [60, 75]. Other evidence comes from mtDNA mutator
mice, which are genetically engineered to have defects in

the proofreading function of Pol gamma. They accumulate
mtDNA mutations at an accelerated rate, have more abnor-
mal mitochondria, and exhibit premature aging, sarcopenia,
and reduced lifespan [76–78].

2.4. Alterations in Mitochondrial mRNA and Protein Levels.
The expression of most mitochondrial genes, including
cytochrome c [79], does not change with age. However,
declines in gene transcripts are observed for several of
the polypeptide components of complexes I, IV, and V,
whereas for complexes II and III, declines are evident for
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only a couple components with most being unchanged
[73, 80–84]. In addition, the transcripts of some nuclear
genes encoding mitochondrial regulatory proteins, a few
TCA proteins (including one transcript variant of citrate
synthase), and some glycolysis enzymes appear to be altered
in aged human SM [48, 52, 80, 83, 84]. Many similar
changes in gene expression (or lack thereof) have been
observed in monkeys and rats [52, 85–87]. However, there
are discrepancies among reports, which are at least in part
explained by muscle-specific differences in gene expression
[52, 88]. Whether these alterations in gene transcripts of
energy-producing pathways affect muscle aging is unclear.
While much evidence points to a functional role, Giresi et
al. found that the key genes associated with sarcopenia are
involved in inflammation, apoptosis, and regulating mRNA
splicing, not in OXPHOS [89].

Of course, age-related alterations in mRNA levels may
not induce similar changes in protein abundances, which are
controlled by the balance between synthesis and degradation
[13, 90]. Both mitochondrial protein synthesis [75] and
proteolysis via ubiquitin-proteasome and lysosomal degra-
dation systems (reviewed in [91, 92]) are known to decline
with age. The majority of mitochondrial proteins, including
polypeptide components of the ETS complexes, have not
been found to change with age [10, 93]. Notable exceptions
include complex II, which tends to increase with age at least
in rodents [86, 94, 95], and complex IV, which tends to
decrease with age in both humans [50, 96, 97] and rodents
[86, 98]. This is supported by observations of increased
complex IV-deficient and complex II-hyperactive fibers with
age [99–101]. For complexes I, III, and V, proteomic analysis
shows that the occurrence of abnormal polypeptides tends to
increase with age in both human [102] and rodent SM [86,
94, 98, 103], but is decreased in human studies using other
approaches [48, 50, 96]. Proteins involved in glycolysis tend
to be unchanged or reduced with age, which is consistent
with the observed shift from glycolytic to more oxidative
metabolism, while the data on TCA proteins (in particular,
citrate synthase and isocitrate dehydrogenase) is mixed [48,
50, 86, 94–96, 98, 102, 103].

2.5. A Decline in Mitochondrial Energy Production? It is
unclear whether these age-related changes in turn affect
mitochondrial energy production. When physical activity is
not a criterion in subject selection, substantial declines in
enzyme activity are often found to occur with age. Most such
studies in human SM report that complex I and complex IV
activities decrease substantially, perhaps because these two
complexes have more of their subunits encoded by the more
vuinerable mtDNA than the other complexes [1, 21, 56, 58,
75, 79, 90, 97, 104, 105]. Similar results have been reported
in rodents and dogs [2, 5, 52, 106–112], though there have
been exceptions both in humans [93, 113, 114] and rodents
[86, 94, 109]. The activity of complex II, which is encoded
entirely by the nuclear genome, appears not to change with
age in either human [1, 56, 64, 113, 114] or animal [2,
86, 108] SM, with a few exceptions [39, 79, 94, 105]. Data
regarding complex III activity is both less available and more

mixed, with some studies reporting no change in human
[113, 114] or animal [2, 108] SM, but others reporting a
decrease in activity [5, 56]. Interestingly, one study found
evidence of an age-related decline in complex III activity in
females but not males [90]. Finally, the activities of enzymes
involved in the TCA cycle and glycolytic pathways tend to
be unchanged or decline with age, and in some cases (e.g.,
citrate synthase), the trend is not clear [10, 21, 26, 39, 48, 56,
75, 93, 96, 97, 104, 105, 111–113, 115–120]. Some of these
discrepancies may be explained by the differential impact of
aging on different muscles. For example, one study in rats
found a decrease in complex IV activity in the lateral but
not medial gastrocnemius [52], and a study in humans found
that citrate synthase activity was negatively correlated with
age in the gastrocnemius but not the vastus lateralis [121].
Other inconsistencies may be explained by differences in
isolation or techniques, or in the normalization of enzymatic
activity. For example, Picard et al. found that measurements
on isolated mitochondria tend to exaggerate the declines in
mitochondrial function in comparison to measurements in
intact mitochondria in permeabilized myofibers [86].

Enzymatic changes may in turn affect mitochondrial
respiration and ATP flux. Short et al. found that the maximal
capacity for ATP synthesis drops by 8% per decade or
5% when normalizing to mitochondrial protein content
[48]. Similar results concerning mitochondrial respiration
were reported by Trounce et al. [122]. But other human
studies have found no evidence of a decline in mitochondrial
respiration [26, 93, 115, 117], and there is no consistent
pattern regarding how the respiratory control ratio—the
ratio of states III and IV respiration activities—changes with
age. Similarly, there are conflicting reports on fatty acid-
linked mitochondrial respiration including reduced carnitine
palmitoyltransferase-dependent and -independent pathways
with age (particularly nonphosphorylating respiration [48,
86, 108]), while others see no age-related changes [26, 115,
117]. In vivo techniques have also been used to measure
oxidative capacity. In vivo measurements of SM oxidative
activity are typically performed using phosphorous magnetic
resonance spectroscopy (31P-MRS) to probe the kinetics
of phosphocreatine and its recovery time following muscle
contraction. Some in vivo studies in older humans [10, 20,
118, 120], but not all [119, 123, 124], and at least one in mice
[125] have found evidence of reductions in maximal ATP
flux. In particular, Conley et al. found that elderly adults have
a 50% reduction in oxidative capacity per muscle volume
and a 30% reduction per mitochondrial volume [20]. An
MRS study on basal ATP flux in humans, however, found no
decline in flux with aging [43].

However, it has become increasingly clear that most
of the declines in mitochondrial function attributed to
chronological age are instead a result of physical inactivity.
When physical activity levels are matched between young
and old subjects or physical activity is otherwise taken
into account, most studies find no age-related changes in
mitochondrial enzyme activities, mitochondrial respiration,
or ATP flux [13, 39, 50, 101, 126–129]. Interestingly,
those studies that do report age-related declines even after
matching for activity levels tend to involve sedentary young
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and old subjects [104, 114, 130], indicating that declines in
function with aging may occur predominantly in sedentary
individuals. In particular, in ex vivo studies, the activities
of ETS enzymes and citrate synthase and mitochondrial
respiration show strong dependences on physical activity
level that are independent of age [101, 131, 132]. Similar
results are also reported in mice [98, 133]. In vivo MRS
studies on activity-matched subjects also tend to find no
evidence of a change in mitochondrial oxidative capacity—
in this case, maximal ATP flux—between young and old
subjects [134–136]. However, one in vivo MRS study in
activity-matched sedentary individuals did report a reduc-
tion in basal oxidation and phosphorylation [130]. Also,
glycolytic flux is lower in older activity-matched people
[135, 136], and a recent MRS study showed that oxidative
capacity does indeed change in some muscles with age but
also demonstrated that physical activity is intimately linked
with oxidative capacity [128]. Interestingly, there is evidence
that physical activity can reverse the age-related declines in
most but not all mitochondrial markers of energy production
[50, 132], which while encouraging, nonetheless indicates
that there are residual declines in a small subset of markers
that cannot be completely prevented.

3. Age-Related Changes in
Mitochondrial Dynamics

3.1. Decreased Mitochondrial Biogenesis. Once thought of
as relatively static round organelles, mitochondria are now
recognized as highly dynamic, existing in networks that are
constantly being remodeled by biogenesis, fusion and fission,
and degradative processes such as autophagy. Through these
dynamics, they both respond to and drive cellular processes,
including apoptosis, whose dysregulation is thought to be a
key factor in sarcopenia.

Mitochondrial biogenesis is the expansion of existing
mitochondrial content—whether through growth of the
mitochondrial network (increase in mitochondrial mass)
or division of preexisting mitochondria (increase in mito-
chondrial number; also discussed later in this paper). It
is triggered when the energy demand exceeds respiratory
capacity—in particular, in response to exercise, stress,
hypoxia, nutrient availability, hormones (including insulin),
ROS production, and temperature (reviewed in [137, 138]).
Once biogenesis is triggered, the nuclear genome produces
mitochondrial regulatory factors, which are then imported
into the mitochondria to initiate replication and transcrip-
tion of mtDNA, ultimately resulting in expansion of the
mitochondrial network. The initial triggers are thought to
arise from signaling cascades involving the energy sen-
sor AMP kinase (AMPK) and/or alterations in Ca2+ flux
and protein kinases such as calcium/calmodulin-dependent
kinases (CAMKs), protein kinase C (PKC), and p38 MAPK
(particularly in response to muscle contraction) (reviewed
in [138]). These signals in turn induce the expression of the
peroxisome proliferator-activated receptor (PPAR) gamma
coactivator (PGC-1) family of cotranscription factors, par-
ticularly PGC-1α, which is also directly activated by AMPK

[139] and p38 MAPK [140–142], as well as many key
signaling molecules like SIRT1 [143, 144] and transducers of
regulated CREB (cAMP response element-binding protein)-
binding proteins (TORCs) [145].

As the master regulator of biogenesis, PGC-1α coordi-
nates and cooperates with multiple cotranscription factors—
including PPARs, myocyte enhancing factors (MEFs), and
CREB—to induce the transcription of nuclear genes encod-
ing mitochondrial proteins [146, 147]. Most importantly,
PGC-1α activates the nuclear respiratory factors 1 and
2 (Nrf-1, Nrf-2) on the promoters [148, 149], thereby
driving the transcription of an even greater assortment of
nuclear-encoded mitochondrial proteins (reviewed in [137,
138, 150]), including mitochondrial transcription factor A
(Tfam). Tfam controls mtDNA transcription and content
and organizes mtDNA into nucleoid-like structures, which
are thought to maintain mtDNA integrity [151]. The Tfam
precursor protein, along with numerous other mitochon-
drial precursor proteins, are targeted to the mitochondria
by chaperones and then imported via the mitochondrial
protein import machinery (reviewed in [152–155]). Import
is accomplished through a set of aqueous pores formed from
translocases of the outer membrane (TOMs; e.g., Tom20)
and translocases of the inner membrane (TIMs) through
pathways that depend on whether the polypeptide is destined
for the outer mitochondrial membrane (OMM), IMM,
or mitochondrial matrix. Once imported, the precursor
proteins are modified, folded, and assembled into their final
form. In particular, Tfam can then act on mtDNA driving its
replication through Pol gamma and its transcription through
mitochondrial RNA polymerase [156]. Finally, the translated
ETS polypeptides from the nuclear and mitochondrial
genomes are assembled into multisubunit enzymes.

With increasing age, the density of mitochondria in
SM drops substantially [13, 19–21, 25], suggesting an
overall decline in mitochondrial biogenesis. Moreover, there
is an impairment in AMPK-stimulated biogenesis in old
age [157]; however, the reasons why are largely unknown.
Declining PGC-1α levels could explain the reduction in
mitochondrial biogenesis, as overexpression of PGC-1α in
the SM of aged mice improved oxidative capacity, suppressed
mitochondrial degradation, and prevented muscle atrophy
[158]. These improvements were accompanied by attenua-
tion of the age-related increase in inflammatory cytokines
and by prevention of insulin resistance [158]. However,
measurements of PGC-1α in aged SM are not definitive:
one study found a decline in protein abundance in rats
[25], and some studies of gene expression have reported
reduced expression [96, 112, 157], while others found no
change [10, 159]. Similarly, reports on the gene and protein
expressions of both Nrf-1 and Tfam are conflicting [25, 50,
80, 96, 159, 160]; however, preliminary evidence suggests
that Nrf-1 binding to the Tfam promoter appears to increase
in old age [160].

3.2. Changes in Fission and Fusion? Mitochondrial dynamics
are also influenced by the balance between fission and
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fusion (Figure 2(b)). Fission, or division, of mitochon-
dria is required to transmit mitochondria among dividing
cells and to meet increased ATP demands. Fission also
plays a key role in maintaining mitochondrial quality and
mtDNA integrity, as it allows dysfunctional mitochondria
to be severed from the network and to be removed by
autophagy [161, 162]; indeed, mitochondria excised by
fission often have a lower membrane potential, a target
for autophagy [16]. In mammals, fission is known to
be orchestrated by two proteins: Fis1 and the GTPase
dynamin-related protein Drp1. Fis1, which localizes in
the OMM, recruits the cytosolic protein Drp1 [162, 163].
Once recruited to the OMM, Drp1 wraps around and
constricts the membrane, initiating fission (reviewed in
[164]). One study found that activation of the fission
machinery was sufficient to induce muscular atrophy [165],
while another study found that in yeast, increased fission
leads to a shortened lifespan and a greater sensitivity to
ROS-induced apoptosis [166]. Because Fis1 protein levels
are elevated in aging rat SM [94] and Drp1 transcripts
tend to be lower in older humans [21], age-associated
increases in fission may indeed contribute to sarcopenia.
On the other hand, suppression of Fis1 or Drp1 produces
elongated mitochondrial networks and a senescent pheno-
type but increases ROS production and mtDNA damage
[163, 167, 168].

The counterpart of fission is fusion, which unifies
mitochondria. Fusion allows mixing of mitochondrial com-
partments, facilitating equilibration of OXPHOS proteins,
energy exchange, and complementation of the mitochondrial
genome [169, 170]. In aging, this mixing is thought to
prevent mutations in mtDNA from resulting in respiratory
dysfunction; however, it also permits the accumulation of
mutated mtDNA that might otherwise be removed via fission
and autophagy [170, 171]. For these reasons, fusion plays a
role in regulating mtDNA integrity and respiratory function
[172–174]. In humans, fusion is known to be controlled by
optic atrophy 1 (Opa1) and the two GTPases mitofusin 1 and
2 (the isoforms Mfn1 and Mfn2). Mfn1 and Mfn2 are located
in the OMM, where they promote tethering and fusion
[162], while Opa1 facilitates fusion from its localization
on the IMM (reviewed in [164]). Opa1 also assists in
regulating degradative processes: it regulates apoptosis by
keeping the inner mitochondrial cristae junctions tight
to prevent cytochrome c release, which triggers apoptosis
[175, 176], and its cleavage may be involved in flagging
dysfunctional mitochondria for autophagic removal [176].
One study reported that Mfn2 gene expression was lower in
the SM of older humans [21]. Interestingly, muscle-specific
Mfn1- and Mfn2-knockout mice experience enhanced mito-
chondrial proliferation and increased mutations in and
depletion of mtDNA; these changes occur in parallel with
accelerated muscle loss [177]. A mutation in the other key
fusion protein, Opa1, is associated with reduced oxidative
phosphorylation and ATP production in human SM [178].
Thus, age-associated changes in the dynamical remodel-
ing processes of fission and fusion likely affect mtDNA
integrity, respiratory function, ROS production, and cellular
senescence.

3.3. Alterations in Mitochondrial Turnover. Mitochondrial
turnover is executed predominantly by the autophagy-
lysosome system, a cellular housekeeping system that
degrades mitochondria as well as other cellular compo-
nents. Removal of mitochondria through the autophagy-
lysosome system is known as “mitophagy.” In mitophagy,
dysfunctional mitochondria are recognized and engulfed
in a double-membrane structure called a phagophore or
preautophagosome. Once the engulfing process is complete,
vesicles called autophagosomes form. The autophagosomes
then fuse with the lysosome, producing autolysosomes,
and the contents are hydrolytically degraded and recycled
(reviewed in [16, 179, 180]). The process is mediated through
a collection of several autophagy gene (Atg) products. In
yeast, the recognition process is enacted through Atg32,
a mitophagy-specific receptor on the OMM [181], and
through other key players, such as Atg8 and its activator
Atg7. Mitophagy in mammals has been less well char-
acterized, but the mammalian homologues to Atg32 and
Atg8 are believed to be Nix and LC3, respectively [180,
182]. In addition, mitophagy in mammalian cells may
be carried out through ubiquitination of OMM proteins,
followed by recognition via an LC3 complex (reviewed in
[180]).

Relative to other mitochondrial dynamics, there is less
known about the role of mitophagy in the aging of SM.
Evidence suggests that mitophagy selectively removes defec-
tive mitochondria that are depolarized or produce excessive
ROS (reviewed in [16, 17, 179, 183]). In corroboration,
suppression of autophagy results in increased ROS pro-
duction, reduced oxygen consumption, and higher mtDNA
mutation rates [184, 185]. With age, autophagy has been
found to decline both in general (reviewed in [186]) and
in the SM of aged rats [187]. While the repercussions are
still unknown, mitophagy has been negatively correlated
with oxidative damage and apoptosis [187], suggesting
that reduced autophagy rates may contribute to muscular
dysfunction. This is confirmed by studies on muscle-specific
Atg7 knockout mice, who accumulate abnormal mitochon-
dria, have lower resting oxygen consumption, and experience
increased oxidative stress and higher rates of apoptosis;
these mice also suffer from muscle atrophy, weakness, and
myofibril degeneration [188, 189]. Furthermore, studies in a
few species indicate that enhanced autophagy may increase
lifespan (reviewed in [190]).

Mitochondrial quality control and degradation are also
modulated by the ubiquitin-proteasome system, which
removes oxidized proteins and short-lived proteins (reviewed
in [191]). Evidence from studies in mammals has suggested
that ubiquitin-proteasome activity declines with age in
SM and may contribute to muscular atrophy (reviewed
in [91, 192]). However, aging may differentially affect the
components of the ubiquitin-proteasome system [193], as
some genes involved—including some proteasome subunits
and ubiquitin-specific proteases—are expressed at higher
levels in SM from older humans, yet others are unchanged
or decreased with age [49, 84, 94, 194–196]. Finally, changes
in proteasomal activity may be fiber type-specific [197]:
in particular, one study in humans reported that ubiquitin
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protein levels increase in fast-twitch muscle fibers, which
may explain why type II fibers atrophy faster with age [198].

3.4. Increased Mitochondria-Mediated Apoptosis. Mitochon-
dria also respond to and modulate cellular dynamics through
apoptotic signaling, which is activated when either OXPHOS
or their redox potential is disrupted, or in response to
proapoptotic signals (reviewed in [199]). Mitochondria
can induce apoptosis through either caspase-dependent
or caspase-independent signaling mechanisms (reviewed
in [199–201]). Caspase-dependent signaling is dependent
on the release of cytochrome c from within the mito-
chondria, which triggers a cascade of actions by cysteine
proteases called caspases that results in apoptosis. In brief,
cytochrome c and other proapoptotic factors are released
from the mitochondria. Once released, cytochrome c joins
with apoptotic protease activating factor-1 (Apaf-1) and
procaspase-9 to form a complex called the apoptosome. The
apoptosome then cleaves and activates procaspase-9, which
acts on caspase-3. Caspase-3 in turn activates a caspase-
activated DNase (CAD) to degrade DNA and initiates
cellular degradation. In the caspase-independent pathway,
which is also known as “mitoptosis,” the mitochondria
release apoptosis-inducing factor (AIF) and endonuclease
G (EndoG), which then induce chromatin condensation
and DNA fragmentation. There are multiple points in these
pathways that are regulated by pro- and anti-apoptotic
proteins. In particular, the release of apoptotic triggers
appears to be modulated through two mechanisms: (1)
the balance of proapoptotic (e.g., Bax) and anti-apoptotic
proteins (e.g., Bcl-2), particularly from the Bcl-2 family,
which control OMM stability and form the mitochondrial
apoptosis-induced channel (MAC), and (2) the mitochon-
drial permeability transition pore (mPTP). One example of
the direct connection between mitochondrial and cellular
dynamics is that mitochondrial fragmentation occurs around
the time that proapoptotic factors are released from the
mitochondria, and this step is contingent upon increased
fission through Drp1 as well as a block in mitochondrial
fusion (reviewed in [202]).

Apoptosis increases significantly with age and likely
contributes to sarcopenia and other age-associated declines
(reviewed in [201, 203, 204]). Though it is difficult to
prove this conclusively, many studies have correlated rates
of apoptosis with markers of sarcopenia or SM function
(reviewed in [201, 203, 204]). In humans, the percent of
apoptotic cells tends to increase with age, though generally
more so in type II fibers [194, 205, 206]. The weight of
evidence from both human and animal studies suggests that
the caspase-independent pathway is upregulated with age,
while the caspase-dependent pathway is not (reviewed in
[201]). In particular, one study found an increase in AIF
gene transcripts in SM from older people, but no change in
Bax, Bcl-2, or caspase-3 expression [207], and another study
in humans reported no change in caspase-3 or -7 activity
[194]. This is also supported by animal studies, which have
found that the mPTP becomes more susceptible towards
being opened [25, 208, 209] and that the levels and activities

of caspase-independent apoptotic proteins AIF and EndoG
increase [25, 112, 210–213] with age. Recent evidence in rats
suggests that apoptotic susceptibilities and markers are age-
and fiber type-specific, which may explain some of the mixed
results, particularly in regard to the caspase-dependent
pathway [25, 214–216]. Interestingly, a study showed that
disuse atrophy increased caspase-3 activity in young rats but
not old and dramatically increased EndoG levels in old rats
but not young, indicating that older SM likely responds to
apoptotic stimuli through different signaling pathways than
younger SM [212].

4. Strategies to Attenuate
Mitochondrial Aging

4.1. Exercise. Exercise training has long been known to
induce mitochondrial biogenesis, upregulate SM gene
expression and protein synthesis, and increase SM oxidative
capacity [217, 218]. It is apparent from previous research that
physical activity decreases during aging [219]. Therefore, it
remains unclear whether the abnormalities in mitochondrial
function are a primary effect of aging or are due to
the associated decline in physical activity. This issue is
compounded by the cross-sectional nature of some studies
without objective control for activity level [130, 220–222].
For example, we recently found that mitochondrial capacity
was reduced in elderly subjects compared to their young
BMI-matched counterparts [10]. In this study, we included
only sedentary individuals, defined as less than 2 hours
of intentional physical activity per week. Despite careful
screening for activity levels using questionnaires, we found
that daily physical activity was significantly lower than
reported in the elderly group. This suggests that independent
of exercise training, simply living an active lifestyle may have
a significant impact on mitochondrial function; however,
we cannot determine the cause and effect due to the cross-
sectional nature of the analysis.

There is strong evidence that exercise training can
improve SM mitochondrial function in elderly adults [84,
96, 97, 223–225] and may also protect against age-associated
apoptosis [226]. Short et al. found that 4 months of
aerobic exercise in older adults increased protein synthe-
sis, mitochondrial enzyme activity (citrate synthase and
cytochrome c oxidase), and expression of genes involved in
mitochondrial content and biogenesis to levels similar to
those in younger adults [97, 227]. In a separate study, 12
weeks of aerobic exercise training increased mitochondrial
content and activity, particularly in the subsarcolemmal
fraction [224]. Exercise has also been shown to increase
the activity of antioxidant enzymes and heat shock proteins
[228], potentially reducing ROS production and decreasing
the potential for mitochondrial oxidative damage thought
to occur during aging. Indeed, Parise et al. showed that
resistance exercise in older adults increased antioxidant
content (but not activity), decreased oxidative damage (8-
OHdG), and increased complex IV activity [229, 230].

Despite these significant differences in mitochondrial
parameters, most data show that some impairment remains.
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For example, the usual age-associated decline in mitochon-
drial oxidative capacity was absent in older adults who were
chronically endurance trained. However, chronic exercise
did not completely restore the expression of mitochondrial
proteins, mtDNA content, and mitochondrial transcription
factors to the levels of younger subjects, suggesting a
persisting, independent effect of age [50]. Supporting this,
Melov et al. used an “omics” approach to show that after
6 months of exercise training, the transcriptional signature
of aging was substantially but incompletely reversed back to
the transcriptome of younger adults [84]. In all, the results
to date indicate that exercise can help to attenuate age-
associated changes in SM mitochondria. However, it does
not completely prevent these changes. The data available
are rather limited and apply mostly to short-term exercise
interventions (i.e., 12–24 weeks) rather than chronic exercise.
In addition, the impact of active lifestyle changes—for exam-
ple, decreasing sedentary time and increasing “nonexercise”
activity—on mitochondrial function in elderly adults may
be significant [231] and needs further investigation, as this
may be a more logical approach rather than prescribing an
exercise regimen.

4.2. Caloric Restriction. Caloric restriction, which typically
involves consuming 20–40% fewer calories than normal, also
preserves mitochondrial health and attenuates SM decline
with age. Caloric restriction (CR) is recognized as the most
robust intervention that retards both primary aging (natural
age-related deterioration) and secondary aging (accelerated
aging due to disease and negative lifestyle behaviors), thereby
increasing both median and maximal lifespan in many
species. While CR studies in primates and humans are
largely ongoing, studies in rodents consistently show that CR
extends maximum life span by up to 50% and reduces the
incidence of many age-associated diseases, including cancer
and metabolic diseases (reviewed in [232]). Preliminary
evidence in rhesus monkeys indicates similar effects can be
expected in primates [231].

The benefits ascribed to CR are believed to be due in large
part to reductions in oxidative stress (reviewed in [233]). In
primates, a decade-long CR intervention resulted in marked
decreases in oxidative damage to lipids and proteins [234]; in
aged rats, CR also reduces ROS production [159, 235, 236].
As a result, aged CR animals exhibit fewer mtDNA and
nuclear DNA mutations and less oxidative damage to SM
mitochondria than their ad libitum-fed counterparts [99,
236–240]. Some of these findings have been replicated in the
still ongoing CR trial in humans, dubbed CALERIE, which
reported that CR subjects had less mtDNA damage and
more mtDNA content than controls [241]. Microarray and
RT-PCR experiments confirm that CR increases transcripts
of genes involved in ROS scavenging, including SOD and
GPx, and decreases transcripts from stress response genes
[196, 242].

Calorie restriction appears to modulate mitochondrial
efficiency, content, and function. CR lowers energy expendi-
ture in animals and humans by producing mitochondria that
consume less oxygen yet are able to maintain normal levels

of ATP production (reviewed in [232]; in particular, [159,
237, 241–243]). It is generally believed that this energetic
adaptation is mediated via decreased proton leak, which
has been confirmed in rodent studies, and that decreased
proton leak is in turn enabled by the shift to a less oxidative
milieu [159, 237, 244]. In terms of mitochondrial content
and function, CR does not affect the gene expression, protein
level, or activity of citrate synthase, nor the activities of other
TCA proteins [111, 112, 241, 242, 245]. However, CR may
affect some ETS enzymes. CR reduced the age-associated
accumulation of complex IV-negative and complex II-
hyperactive fibers in rats [99] and in rhesus monkeys [100].
Only complex IV activity, however, is consistently responsive
to CR, showing increased activity in comparison to that in
aged rodents and usually similar activity to their younger
counterparts [110–112, 246]. Nonetheless, CR may prevent
the decline in the activities of complexes I–III in some
muscles [111]. However, a study in rhesus monkeys found
that about 9 years of CR only attenuated the decline in
gene expression of the complex II iron-protein subunit [85],
and a 14-week CR intervention where the rats were fed
at 70% of ad libitum levels found no increases in any
mitochondrial gene transcripts or proteins [245]. CR rodents
did have fewer ETS abnormalities, but the abnormalities
were otherwise similar to controls, suggesting that CR only
affects the onset of fiber atrophy [240, 247]. However, in
primate studies, CR did not alter the number of fibers with
ETS abnormalities, but nonetheless preserved muscle fiber
[100, 248].

CR also affects mitochondrial dynamics. In rodent
SM, CR also increases mitochondrial biogenesis relative to
controls by slowing the decline in PGC-1α gene expression
with age, which may be at least partially responsible for
maintaining oxidative capacity in aged CR animals [110,
112]. The CALERIE study in humans also reported increased
transcripts from several genes involved in mitochondrial
biogenesis, including PGC-1α, Tfam, and SIRT1 [241]. It
is not clear, however, whether CR affects the mitochondrial
metabolic regulator AMPK, as there have been mixed results
[249, 250]. In addition, CR attenuated the decline in
mitophagy in the SM of old rodents [187] and the decline
in ubiquitin-proteasome activity in monkeys [251]. It also
reduced apoptosis susceptibility by promoting a remodeling
of caspases and caspase-related proteins to favor decreased
likelihood of cytochrome c release from the mitochondria
[187, 252–254]. These findings are particularly important
as mitochondrial dysfunction and apoptosis have been
proposed as key mediators of sarcopenia.

Combined, these results suggest that CR reduces oxida-
tive stress and remodels mitochondrial dynamics to promote
the production of more fuel-efficient mitochondria that
produce less ROS and to favor the removal of dysfunctional
mitochondria [187, 243, 255]. Regardless of the underlying
mechanism, CR has repeatedly been shown in rodents to
either partially or fully oppose the hallmarks of sarcopenia,
including the age-related declines in muscle force, fiber cross-
sectional area, fiber number, and fiber type (reviewed in
[99, 247, 254, 256–258]). Similar findings have been reported
in CR studies in rhesus monkeys [100, 248].
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4.3. Mimetics. Currently, there is strong interest in using a
CR- or exercise-mimetic to attenuate age-related mitochon-
drial dysfunction. The best known of these is resveratrol
(3,5,4,9-trihydroxystilbene), a phytoalexin that is abundant
in red wine. In the context of secondary aging, resver-
atrol’s effects on mitochondria and SM have been well
studied. In rodent models involving metabolic pathology,
resveratrol improves mtDNA copy number and function,
increases mitochondrial biogenesis, improves exercise capac-
ity and motor function, and mitigates metabolic dysfunction
[259–261]. On a molecular level, resveratrol induces an
increase in the expression of PGC-1α, Tfam, and UCP3,
and increases SIRT1, AMPK, and PGC-1α activation [259,
260]. In humans, a recent 30-day study of resveratrol
supplementation in 11 obese but metabolically healthy men
reported improved mitochondrial respiration in the presence
of fatty acid-derived substrate, increased AMPK and citrate
synthase activity, and higher SIRT1 and PGC-1α protein
levels; however, no changes in mitochondrial content were
observed [262]. Interestingly, while resveratrol was originally
identified as a potent activator of SIRT1, there is controversy
surrounding its mode of action, and it may exert much of its
effects through AMPK [260, 263, 264].

Rodent studies consistently show improved mitochon-
drial health with resveratrol (reviewed in [265]). For
example, in senescence-accelerated prone mice, those given
resveratrol had higher physical endurance, maximal force
contraction, and oxygen consumption, and higher levels
of transcripts from PGC-1α and ETS genes [266]. Aged
rats given resveratrol exhibited similar responses; they also
displayed reduced levels of oxidative stress but no changes
in most apoptotic markers, indicating the improvements
were mediated through changes in redox status and not
apoptotic pathways [267]. Like CR, resveratrol’s effects on
mitochondrial biogenesis are believed to be mediated in
large part via reductions in mitochondrial ROS production
and via upregulation of fatty acid catabolism coupled with
a downregulation in fatty acid synthesis [137]. However,
one recent study of long-term resveratrol supplementation
in mice did not find any improvement in the age-related
declines in PGC-1α, mitochondrial content, muscle mass,
and maximal isometric force production; though resveratrol
did preserve type II fiber contractile function and reduce
oxidative stress [268].

5. Conclusions

In summary, animal and human data consistently show that
skeletal muscle mitochondria are altered in aging, includ-
ing increased mutations in mitochondrial DNA, decreased
expression of some mitochondrial proteins, reduced enzyme
activity and altered respiration with reduced maximal capac-
ity in sedentary adults, and reduced total mitochondrial
content with increased morphological changes. Since the
primary role of mitochondria is to produce ATP to maintain
the energy status of the cell, shifts in respiratory activity and
capacity can lower the membrane potential, reduce cellular
ATP concentration, and signal cellular apoptotic events.

Increased apoptosis without correspondingly increased pro-
tein synthesis will eventually lead to net muscle fiber loss.
All of these factors probably contribute to age-associated
sarcopenia, and mounting evidence suggests that most
of these age-related changes can be either prevented or
attenuated through increased physical activity.

There is some thought that the accumulation of oxidative
damage caused by long-term ROS production is responsible
for these changes with age. Indeed, blocking ROS formation
by the targeted expression of antioxidant enzymes amelio-
rates age-associated dysfunction and returns mitochondrial
parameters to those of young animals (Figure 3). Whether
this is also true for humans is unknown; however, strategies
that improve mitochondrial function, such as exercise and
caloric restriction, also reduce ROS production and increase
antioxidant defenses. Exercise is also known to be a powerful
stimulant of mitochondrial biogenesis and oxidative capac-
ity, although exercise training in elderly adults probably does
not completely reverse the primary effects of aging. However,
exercise training—even adopting active lifestyle habits—
may clearly reduce the rate of mitochondrial decline and
attenuate the aging phenotype. Whether CR- and exercise-
mimetics, including resveratrol, work as effectively remains
to be determined and is an area of active research.

In conclusion, there is clearly a need for more research in
this field and particularly to:

(i) figure out which age-related changes are universal
and which depend on physical activity or lifestyle
habits or gender;

(ii) unravel how cells compensate for oxidative damage
and mitochondrial dysfunction;

(iii) elucidate how fusion, fission, and autophagy work
together to ensure quality control and to remove
defective mitochondria; and

(iv) determine which mitochondrial declines can be
slowed down (or even reversed) by healthier lifestyles.

We expect this to continue be a fruitful and exciting area of
study in years to come.
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Mosoni, and D. Attaix, “Skeletal muscle proteolysis in aging,”
Current Opinion in Clinical Nutrition and Metabolic Care, vol.
12, no. 1, pp. 37–41, 2009.

[92] B. A. Irving, M. M. Robinson, and K. S. Nair, “Age effect on
myocellular remodeling: response to exercise and nutrition
in humans,” Ageing Research Reviews, vol. 11, no. 3, pp. 374–
389, 2012.

[93] P. Gianni, K. J. Jan, M. J. Douglas, P. M. Stuart, and M.
A. Tarnopolsky, “Oxidative stress and the mitochondrial
theory of aging in human skeletal muscle,” Experimental
Gerontology, vol. 39, no. 9, pp. 1391–400, 2004.

[94] K. O’Connell and K. Ohlendieck, “Proteomic DIGE analysis
of the mitochondria-enriched fraction from aged rat skeletal
muscle,” Proteomics, vol. 9, no. 24, pp. 5509–5524, 2009.

[95] I. Piec, A. Listrat, J. Alliot, C. Chambon, R. G. Taylor, and D.
Bechet, “Differential proteome analysis of aging in rat skeletal
muscle,” The FASEB Journal, vol. 19, no. 9, pp. 1143–1145,
2005.

[96] S. Ghosh, R. Lertwattanarak, N. Lefort, M. Molina-Carrion,
J. Joya-Galeana, and B. P. Bowen, “Reduction in reactive
oxygen species production by mitochondria from elderly



Journal of Aging Research 15

subjects with normal and impaired glucose tolerance,” Dia-
betes, vol. 60, no. 8, pp. 2051–2060, 2011.

[97] K. R. Short, J. L. Vittone, M. L. Bigelow et al., “Impact of
aerobic exercise training on age-related changes in insulin
sensitivity and muscle oxidative capacity,” Diabetes, vol. 52,
no. 8, pp. 1888–1896, 2003.

[98] R. M. P. Alves, R. Vitorino, P. Figueiredo, J. A. Duarte, R.
Ferreira, and F. Amado, “Lifelong physical activity modula-
tion of the skeletal muscle mitochondrial proteome in mice,”
Journals of Gerontology A, vol. 65, no. 8, pp. 832–842, 2010.

[99] L. E. Aspnes, C. M. Lee, R. Weindruch, S. S. Chung, E. B.
Roecker, and J. M. Aiken, “Caloric restriction reduces fiber
loss and mitochondrial abnormalities in aged rat muscle,”
The FASEB Journal, vol. 11, no. 7, pp. 573–581, 1997.

[100] S. H. McKiernan, R. J. Colman, E. Aiken et al., “Cel-
lular adaptation contributes to calorie restriction-induced
preservation of skeletal muscle in aged rhesus monkeys,”
Experimental Gerontology, vol. 47, no. 3, pp. 229–236, 2012.

[101] E. J. Brierley, M. A. Johnson, O. F. James, and D. M. Turnbull,
“Effects of physical activity and age on mitochondrial
function,” Monthly Journal of the Association of Physicians,
vol. 89, no. 4, pp. 251–258, 1996.

[102] C. Gelfi, A. Vigano, M. Ripamonti et al., “The human muscle
proteome in aging,” Journal of Proteome Research, vol. 5, no.
6, pp. 1344–1353, 2006.

[103] P. Donoghue, L. Staunton, E. Mullen, G. Manning, and K.
Ohlendieck, “DIGE analysis of rat skeletal muscle proteins
using nonionic detergent phase extraction of young adult
versus aged gastrocnemius tissue,” Journal of Proteomics, vol.
73, no. 8, pp. 1441–1453, 2010.

[104] M. Tonkonogi, M. Fernström, B. Walsh et al., “Reduced
oxidative power but unchanged antioxidative capacity in
skeletal muscle from aged humans,” Pflugers Archiv European
Journal of Physiology, vol. 446, no. 2, pp. 261–269, 2003.

[105] A. R. Coggan, R. J. Spina, D. S. King et al., “Histochemical
and enzymatic comparison of the gastrocnemius muscle of
young and elderly men and women,” Journals of Gerontology,
vol. 47, no. 3, pp. B71–B76, 1992.

[106] G. Lenaz, C. Bovina, C. Castelluccio et al., “Mitochondrial
complex I defects in aging,” Molecular and Cellular Biochem-
istry, vol. 174, no. 1-2, pp. 329–333, 1997.

[107] S. Kumaran, M. Subathra, M. Balu, and C. Panneerselvam,
“Age-associated decreased activities of mitochondrial elec-
tron transport chain complexes in heart and skeletal muscle:
role of L-carnitine,” Chemico-Biological Interactions, vol. 148,
no. 1-2, pp. 11–18, 2004.

[108] J. Kerner, P. J. Turkaly, P. E. Minkler, and C. L. Hoppel, “Aging
skeletal muscle mitochondria in the rat: decreased uncou-
pling protein-3 content,” American Journal of Physiology, vol.
281, no. 5, pp. E1054–E1062, 2001.

[109] A. Mansouri, F. L. Muller, Y. Liu et al., “Alterations in mito-
chondrial function, hydrogen peroxide release and oxidative
damage in mouse hind-limb skeletal muscle during aging,”
Mechanisms of Ageing and Development, vol. 127, no. 3, pp.
298–306, 2006.

[110] R. T. Hepple, D. J. Baker, M. McConkey, T. Murynka, and R.
Norris, “Caloric restriction protects mitochondrial function
with aging in skeletal and cardiac muscles,” Rejuvenation
Research, vol. 9, no. 2, pp. 219–222, 2006.

[111] R. T. Hepple, D. J. Baker, J. J. Kaczor, and D. J. Krause, “Long-
term caloric restriction abrogates the age-related decline in
skeletal muscle aerobic function,” The FASEB Journal, vol. 19,
no. 10, pp. 1320–1322, 2005.

[112] D. J. Baker, A. C. Betik, D. J. Krause, and R. T. Hepple, “No
decline in skeletal muscle oxidative capacity with aging in
long-term calorically restricted rats: effects are independent
of mitochondrial DNA integrity,” Journals of Gerontology A,
vol. 61, no. 7, pp. 675–684, 2006.

[113] F. Capel, V. Rimbert, D. Lioger et al., “Due to reverse electron
transfer, mitochondrial H2O2 release increases with age in
human vastus lateralis muscle although oxidative capacity is
preserved,” Mechanisms of Ageing and Development, vol. 126,
no. 4, pp. 505–511, 2005.

[114] O. Pastoris, F. Boschi, M. Verri et al., “The effects of
aging on enzyme activities and metabolite concentrations in
skeletal muscle from sedentary male and female subjects,”
Experimental Gerontology, vol. 35, no. 1, pp. 95–104, 2000.

[115] U. F. Rasmussen, P. Krustrup, M. Kjær, and H. N. Rasmussen,
“Experimental evidence against the mitochondrial theory of
aging A study of isolated human skeletal muscle mitochon-
dria,” Experimental Gerontology, vol. 38, no. 8, pp. 877–886,
2003.

[116] L. Larsson, B. Sjodin, and J. Karlsson, “Histochemical
and biochemical changes in human skeletal muscle with
age in sedentary males, age 22–65 yrs,” Acta Physiologica
Scandinavica, vol. 103, no. 1, pp. 31–39, 1978.

[117] U. F. Rasmussen, P. Krustrup, M. Kjaer, and H. N. Ras-
mussen, “Human skeletal muscle mitochondrial metabolism
in youth and senescence: no signs of functional changes
in ATP formation and mitochondrial oxidative capacity,”
Pflugers Archiv European Journal of Physiology, vol. 446, no.
2, pp. 270–278, 2003.

[118] K. K. McCully, R. A. Fielding, W. J. Evans, J. S. Leigh, and
J. D. Posner, “Relationships between in vivo and in vitro
measurements of metabolism in young and old human calf
muscles,” Journal of Applied Physiology, vol. 75, no. 2, pp.
813–819, 1993.

[119] P. D. Chilibeck, C. R. McCreary, G. D. Marsh et al., “Eval-
uation of muscle oxidative potential by 31P-MRS during
incremental exercise in old and young humans,” European
Journal of Applied Physiology and Occupational Physiology,
vol. 78, no. 5, pp. 460–465, 1998.

[120] K. K. McCully, M. A. Forciea, L. M. Hack et al., “Muscle
metabolism in older subjects using 31P magnetic resonance
spectroscopy,” Canadian Journal of Physiology and Pharma-
cology, vol. 69, no. 5, pp. 576–580, 1991.

[121] J. A. Houmard, M. L. Weidner, K. E. Gavigan, G. L. Tyndall,
M. S. Hickey, and A. Alshami, “Fiber type and citrate
synthase activity in the human gastrocnemius and vastus
lateralis with aging,” Journal of Applied Physiology, vol. 85, no.
4, pp. 1337–1341, 1998.

[122] I. Trounce, E. Byrne, and S. Marzuki, “Decline in skeletal
muscle mitochondrial respiratory chain function: possible
factor in ageing,” The Lancet, vol. 1, no. 8639, pp. 637–639,
1989.

[123] K. Schunk, M. Pitton, C. Düber, W. Kersjes, S. Schadmand-
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