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Abstract
Proteins containing DUF59 domains have roles in iron-sulfur (FeS) cluster assembly and are

widespread throughout Eukarya, Bacteria, and Archaea. However, the function(s) of this

domain is unknown. Staphylococcus aureus SufT is composed solely of a DUF59 domain.

We noted that sufT is often co-localized with sufBC, which encode for the Suf FeS cluster

biosynthetic machinery. Phylogenetic analyses indicated that sufT was recruited to the suf
operon, suggesting a role for SufT in FeS cluster assembly. A S. aureus ΔsufTmutant was

defective in the assembly of FeS proteins. The DUF59 protein Rv1466 fromMycobacterium
tuberculosis partially corrected the phenotypes of a ΔsufTmutant, consistent with a wide-

spread role for DUF59 in FeS protein maturation. SufT was dispensable for FeS protein mat-

uration during conditions that imposed a low cellular demand for FeS cluster assembly. In

contrast, the role of SufT was maximal during conditions imposing a high demand for FeS

cluster assembly. SufT was not involved in the repair of FeS clusters damaged by reactive

oxygen species or in the physical protection of FeS clusters from oxidants. Nfu is a FeS clus-

ter carrier and nfu displayed synergy with sufT. Furthermore, introduction of nfu upon a multi-

copy plasmid partially corrected the phenotypes of the ΔsufTmutant. Biofilm formation and

exoprotein production are critical for S. aureus pathogenesis and vancomycin is a drug of

last-resort to treat staphylococcal infections. Defective FeS protein maturation resulted in

increased biofilm formation, decreased production of exoproteins, increased resistance to

vancomycin, and the appearance of phenotypes consistent with vancomycin-intermediate

resistant S. aureus. We propose that SufT, and by extension the DUF59 domain, is an acces-

sory factor that functions in the maturation of FeS proteins. In S. aureus, the involvement of

SufT is maximal during conditions of high demand for FeS proteins.
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Author Summary

Iron-sulfur (FeS) clusters are inorganic cofactors that are used for diverse cellular pro-
cesses including cellular respiration, DNA replication and repair, antibiotic resistance, and
dinitrogen fixation. A failure to properly assemble FeS clusters in proteins results in wide-
spread metabolic disorders, metabolic paralysis, and oftentimes cell death. Therefore, the
biosynthesis of FeS clusters is essential for nearly all organisms. Proteins containing
DUF59 domains are widespread in Eukarya, Bacteria, and Archaea. Proteins containing
DUF59 domains have roles in FeS cluster assembly, but the function(s) of the DUF59
domain is unknown. Moreover, the function(s) of proteins containing DUF59 domains
are largely unknown. Staphylococcus aureus SufT is composed solely of a DUF59 domain,
which provides a unique opportunity to examine the role(s) of this domain in cellular
physiology. In this report we show SufT to be an accessory factor utilized in FeS cluster
assembly during conditions imposing a high-demand for FeS proteins. We also show that
deficiencies in the maturation of FeS proteins result in alterations in the ability of S.
aureus, an epidemic human pathogen, to form biofilms, produce exoproteins, and resist
antibiotic stress.

Introduction
Iron (Fe) is an essential nutrient for nearly all organisms. Fe is acquired from the environment
and is transported into cells using specific uptake systems. Studies have shown that ~80% of
the intracellular Fe is located in inorganic cofactors, called iron-sulfur (FeS) clusters, and heme
in a respiring microorganism [1].

The metabolisms of most organisms are highly reliant on FeS cluster chemistry and a failure
to properly assemble FeS clusters in proteins can result in widespread metabolic disorders, met-
abolic paralysis, and cell death [2,3,4]. FeS proteins function in diverse metabolic processes
including environmental sensing[5], carbon transformations [6], DNA repair and replication
[7,8], RNA metabolism [9], protein synthesis [10], nucleotide, vitamin, and cofactor synthesis
[11,12,13], and cellular respiration [14,15,16]. FeS clusters are typically found in proteins as
[Fe2S2] or [Fe4S4] clusters, but the use of complex FeS clusters has evolved for processes such as
dinitrogen [17], carbon monoxide [18], and hydrogen metabolism [19].

Iron and sulfur (S) ions are often toxic to cells resulting in the evolution of tightly controlled
mechanisms to synthesize FeS clusters from their monoatomic precursors [20,21]. Three FeS
cluster biosynthetic systems (Nif, Suf, and Isc) have been described in Bacteria and Archaea for
the synthesis of [Fe2S2] and [Fe4S4] clusters [22,23,24]. Bioinformatic analyses suggest that the
Suf system is the most prevalent machinery in Bacteria and Archaea and perhaps the most
ancient [25].

The Suf, Nif, and Isc systems utilize a common strategy to synthesize FeS clusters. First, sul-
fur is mobilized from free cysteine (typically), using a cysteine desulfurase enzyme and subse-
quently transferred to either a sulfur carrier molecule (SufU or SufE) or directly to the
synthesis machinery [24,26,27]. Monoatomic iron and sulfur, along with electrons, are com-
bined upon a molecular scaffolding protein (SufBD in S. aureus) to form an FeS cluster [28].
The FeS cluster can be transferred directly from the scaffold to a target apo-protein or it can be
transferred to a carrier molecule that subsequently traffics the cluster to a target apo-protein
and facilitates maturation of the holo-protein [29]. Nfu and SufA serve as FeS cluster carriers
in Staphylococcus aureus [4,30]. Nfu is necessary for virulence in models of infection [4,31]
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Most studies on bacterial FeS cluster assembly have been conducted using Escherichia coli
and Azotobacter vinelandii. E. coli encodes for both the Suf and Isc systems [22] whereas A.
vinelandii encodes for the Isc and Nif systems [32]. In contrast, few studies have been con-
ducted on FeS cluster assembly in gram-positive bacteria such as Bacillus subtilis or S. aureus,
which encode for only the Suf system [4,27]. Recent findings suggest that SufCDSUB are essen-
tial for S. aureus viability, confirming that Suf is the sole FeS cluster biosynthetic machinery
used under laboratory growth conditions [4,33,34].

Dioxygen can accept electrons from cellular factors resulting in the spontaneous generation
of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and superoxide [35,36,37].
FeS clusters are among the primary cellular targets of H2O2 and superoxide [38,39]. ROS read-
ily oxidize solvent exposed [Fe4S4]

2+ cofactors of enzymes such as aconitase (AcnA) [38,39].
Oxidation results in conversion to an inactive [Fe3S4]

1+ cluster that can be repaired back to the
active [Fe4S4]

2+ state using Fe2+ and an electron [40]. Studies have implicated roles for cysteine
desulfurase (IscS) and the putative Fe donors CyaY, YtfE, and YggX in the repair of oxidized
clusters [40,41,42]. Cells also employ mechanisms to physically protect FeS clusters. The
Shethna protein shields the FeS cofactor of dinitrogen reductase from dioxygen exposure [43].
Alternatively, protein domains can be situated in a manner that prevents oxidants from inter-
acting with the FeS cluster. The pyruvate:ferredoxin oxidoreductase (PFOR) from Desulfovibrio
africanus was found to have greater stability in the presence of dioxygen, relative to alternate
PFOR enzymes, due to the presence of a domain that prevents the interaction of oxidants with
its [Fe4S4]

2+ cluster [44].
We have identified an open reading frame (ORF) in S. aureus that is often associated with

the suf operon in a number of bacterial and archaeal genomes. The ORF (SAUSA300_0875)
encodes for a protein composed solely of a DUF59 domain and is annotated as SufT since it is
often found in operons with a cysteine desulfurase (i.e. SufS) [45]. In eukaryotic cells, the CIA2
(also identified as Fam96a/b or AE7) FeS cluster assembly factor(s) contain a DUF59 domain
[46,47]. CIA2a and CIA2b act downstream of the cytosolic iron-sulfur assembly (CIA)
machinery and are required for the maturation of FeS cluster proteins. A DUF59 domain is
also present in the Arabidopsis thaliana chloroplast FeS cluster carrier, HCF101, which is
required for photosystem I maturation [48].

S. aureus is a leading cause of human infectious disease related morbidity and mortality
worldwide. S. aureus forms surface associated communities referred to as biofilms that are crit-
ical for S. aureus pathogenesis and biofilm associated cells serve as the etiologic agents of recur-
rent staphylococcal infections (reviewed here [49]). S. aureus also secretes a variety of toxins
and enzymes into its extracellular milleu that are critical for biofilm formation, host coloniza-
tion, nutrient acquisition and survival in the human host (reviewed here [50]). About 60% of
the secretome consists of peptide toxins (phenol soluble modulins (PSM's), which have multi-
ple key roles in pathogenesis [51,52].

Since the 1990s the proportion of infections caused by community-associated methicillin
resistant S. aureus (CA-MRSA) has been steadily increasing and has now reached near epi-
demic levels [53]. Vancomycin is a glycopeptide antibiotic that has traditionally been regarded
as a last-resort drug for the treatment of MRSA infections [54]. Strains have recently emerged
that display intermediate (vancomycin intermediate-resistant S. aureus; VISA) or high (vanco-
mycin resistant S. aureus; VRSA) levels of resistance towards vancomycin [54,55]. Among the
characteristics of VISA strains are decreased activity of peptidoglycan hydrolases and alter-
ations in their cell wall that results in increased resistance to the lytic enzyme lysostaphin [55].

S. aureus provides an excellent model to assess the role of the DUF59 domain (SufT) in cel-
lular physiology. In this report we present phylogenetic analyses indicating a widespread distri-
bution for SufT and conservation of SufT homologs in bacterial and archaeal taxa that utilize
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the Suf system. These analyses also suggest that sufT was recruited to the neighborhood of
sufBC over evolutionary time and for the most part retained. The bioinformatic analyses led us
to hypothesize that SufT has a role in the maturation of FeS proteins. Results demonstrate an
involvement of SufT in the maturation of FeS proteins during conditions imposing a high
demand for FeS proteins. Moreover, epistasis studies show that the nfu and sufTmutations dis-
play synergy and the introduction of nfu in multicopy partially corrects the phenotypes of a
sufTmutant. Deficiencies in the maturation of FeS proteins also result in increased biofilm for-
mation, decreased exoprotein production, and the appearance of phenotypes consistent with
vancomycin-intermediate resistant S. aureus (VISA). We propose that SufT functions as an
auxiliary factor for the maturation of FeS proteins with maximum usage during conditions of
high FeS cofactor demand.

Results

Recruitment of sufT to the suf operon suggests that it functions in FeS
cluster assembly
Of the 1669 complete genome sequences available as of October 2011 and compiled as part of
our previously published work on the evolution of Suf [25], 1092 (65.4% of total) encoded for
SufBC. Among these genomes, 761 (69.7% of total) encoded for SufT. Of the 1669 genomes, 68
genomes contained sufT, but not sufBC. Five genomes contained sufT, but not sufB, iscU, or
nifU, which encode for FeS cluster scaffolding molecules. These genomes were all from lactoba-
cilli and the sufT homologues are in apparent operons with the genes encoding for either anaer-
obic ribonucleoside-triphosphate activating enzyme or serine dehydratase, which are FeS
cluster-requiring enzymes [11,56].

Among the 761 genomes that encoded for sufT and sufBC, 374 of the sufT homologs were
localized with sufBC (suf operon associated) and 387 sufT homologs were not associated with
sufBC (non-suf operon associated). Maximum likelihood phylogenetic reconstructions of SufT
(unrooted) and SufBC (rooted), followed by overlays of suf-operon associated and non-suf
operon associated sufT, indicate that sufT has been recruited to and lost from the suf operon
multiple times during its evolutionary history (Fig 1). However, the overall trend appears to be
retainment once sufT was recruited to the suf operon. Mapping of the association of sufT with
the suf operon on the SufBC tree indicates that sufT was not associated with the suf operon
early during the evolution of taxa that used the Suf FeS cluster biosynthetic system and that it
was recruited to the operon recently in its evolutionary history. Each SufT homolog identified
contained a conserved cysteine residue, which was previously shown to be hyper-reactive [57],
but described FeS cluster-binding motifs were not recognized.

Of the total (n = 761) identified SufT homologs, the predominant structure contained only
the DUF59 domain (S1 architecture; ex. S. aureus SufT), but 198 encoded for additional N-
and C-terminal motifs represented by nine primary modular structures (Fig 2A). The most
prevalent modular structure was the S2 architecture (n = 88), with a N-terminal motif that did
not display homology to previously described domains. SufT within the S5 architecture (n = 5)
contained a N-terminal domain with homology to U-type FeS cluster scaffolds while SufT
within the S7 architecture (n = 3) harbored a N-terminal domain with homology to Rieske
iron-oxygenase ferredoxins. Finally, SufT within the S9 architecture (n = 1) contained a N-ter-
minal domain with homology to serine acetyltransferases (CysE). Characterization of the C-
terminal motifs also revealed variation that was represented in four unique modular structures.
These were characterized as SufT with C-terminal domains that have homology to PaaJ or ace-
tyl-CoA acetyltransferase domains (S3 architecture, n = 75), P-loop NTPase domains (S4 archi-
tecture n = 20), DUF1858 domains (S6 architecture, n = 4) and co-enzyme pyrroloquinoline
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Fig 1. Phylogenetic analyses of sufT containing operons. Panel A: Maximum likelihood phylogenetic
reconstruction of 761 SufT homologs compiled from 1092 genome sequences that also encoded for SufBC.
SufT lineages were color coded red if they were associated with sufBC in the genome (within four open
reading frames of sufBC) or blue if they were encoded in another part of the genome. The tree is unrooted
and the tree was constructed as reported in the materials and methods. Panel B: Maximum likelihood
phylogenetic reconstruction of a concatenation of 1094 SufBC homologs. SufBC lineages were color-coded
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quinone synthesis protein D (PqqD) domains (S8 architecture, n = 2). The S2-S9 architectures
were mapped on the phylogenetic reconstruction of core DUF59 (N- and C-terminal motifs
were pruned from alignment block) in order to determine if the modules are randomly distrib-
uted over the tree or if they are phylogenetically clustered. The overall pattern of clustering of
the modular structures on the tree (Fig 2B) indicates that once these modules were fused to an
ancestor of a given DUF59 containing protein, they were largely retained. This suggests that
the N- and C-terminal motifs, and presumably their functionalities, are under strong selective
pressure.

A ΔsufTmutant has decreased activity of the FeS cluster-requiring
enzyme AcnA
We created and characterized a S. aureus ΔsufTmutant to test whether SufT has a role in the
maturation of FeS proteins.

A S. aureus ΔacnA strain is defective in utilizing glutamate as a source of carbon (S1A Fig)
[58,59]. Nfu has a role in the maturation of AcnA in S. aureus [4]. The Δnfu and ΔsufT strains
displayed growth defects in chemically defined media supplemented with glutamate as a car-
bon source (hereafter 20AA glutamate medium) (Fig 3A), but the defect of the ΔsufT strain
was less severe than that of the Δnfu strain. The WT, Δnfu, and ΔsufT strains had similar
growth profiles in defined medium containing glucose as a carbon source (hereafter 20 AA glu-
cose medium) (S1B Fig).

AcnA activity was assessed in the WT, ΔsufT, and Δnfu strains across growth. AcnA activity
was decreased in strains lacking Nfu or SufT (Fig 3B). The decreased AcnA activity in the
ΔsufT strain could arise due to one of four scenarios: 1) decreased transcription of acnA, 2)
decreased abundance of AcnA, 3) decreased occupancy of the [Fe4S4] cluster upon AcnA due
to the decreased transcription of genes encoding FeS cluster biogenesis factors, or 4) decreased
cluster occupancy upon AcnA due to the absence of SufT.

Transcriptional activity of acnA was increased in the ΔsufT strain (S2 Fig). This suggested
that decreased AcnA activity in the ΔsufT strain was not the result of altered acnA transcrip-
tion (S2 Fig). We constructed acnA::TN strains containing a plasmid with a acnA_FLAG allele
under the transcriptional control of a xylose inducible promoter (pacnA). Introduction of
pacnA allows for the control of acnA transcription and the simultaneous determination of
AcnA_FLAG abundance. The acnA::TN ΔsufT strain was genetically complemented by re-
introduction of the sufT allele at a secondary chromosomal location (sufT+). AcnA activity
and AcnA abundance was assessed in the acnA::TN, acnA::TN ΔsufT, and acnA::TN ΔsufT
sufT+ strains containing pacnA. AcnA activity was ~2-fold lower in the acnA::TN ΔsufT strain
compared to the acnA::TN when activity was normalized to AcnA abundance in the same
cell-free lysates (Fig 3C). This phenotype was genetically complemented.

Suf is encoded by the sufCDSUB operon in S. aureus. The transcriptional activity of sufC
was increased (~2-fold) in the Δnfu strain and mildly, but consistently, increased in the ΔsufT
strain (Fig 3D). Similar results were obtained in exponential and stationary growth. From Fig 3
we concluded that the absence of SufT results in decreased occupancy of the [Fe4S4] cofactor
upon AcnA.

red if sufT was within four ORFs of sufBC in the genome and were color-coded blue if sufT was encoded in
another part of the genome. The SufBC tree is rooted and was constructed as previously described [25].
Panel C: Select suf operonic structures from the data displayed in Panel B. The suf operons from: 1.
Thermoplasma acidophilum DSM 1728, 2. Alicyclobacillus acidocaldarius subsp. acidocaldariusDSM 446,
3. Lactobacillus reuteri SD2112, and 4.Mycobacterium tuberculosis H37Rv are shown and are mapped on
the SufBC phylogeny in Panel B.

doi:10.1371/journal.pgen.1006233.g001
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Fig 2. Modular structures of SufT homologs containing DUF59 domains. Panel A: Modular structures of
DUF59 containing proteins as determined with sequence alignments and BLASTp against the conserved
domain database [103]. The nine modular structures, referred to as S2 to S9, are depicted with red module
labels corresponding to sufT that are within four ORFs of sufBC in the genome, or blue module labels
corresponding to sufT encoded elsewhere in the genome. N- and C-terminal motifs are indicated. The S.
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A sufTmutant has a general defect in FeS cluster assembly
Synthesis of the branched chain amino acids (BCAA) leucine and isoleucine requires the FeS
cluster containing dehydratase enzymes isopropylmalate isomerase (LeuCD) and dihydroxya-
cid dehydratase (IlvD), respectively [60,61]. Strains lacking either SufT or Nfu displayed
growth defects in defined medium lacking leucine (Leu) and isoleucine (Ile) (hereafter 18AA
glucose medium) (Fig 4A), but displayed a growth profile similar to WT in 20AA glucose
medium (S1B Fig).

We constructed leuC::TN, leuC::TN ΔsufT, leuC::TN ΔsufT sufT+, ilvD::TN, ilvD::TN ΔsufT,
and the ilvD::TN ΔsufT sufT+ strains carrying plasmids with either leuCD or ilvD under the
transcriptional control of a xylose inducible promoter (pleuCD and pilvD). The activities of
LeuCD and IlvD were decreased in strains lacking SufT and these defects were restored by
genetic complementation (Fig 4B and 4C). We concluded that SufT is utilized in the matura-
tion of multiple FeS cluster requiring enzymes.

The role of SufT in FeS cluster assembly is increased during respiratory
growth, but it is dispensable during fermentative growth
Staphylococcus aureus is a facultative anaerobe and can respire upon dioxygen or nitrate as ter-
minal electron acceptors or grow fermentatively [62]. The acnA::TN and acnA::TN ΔsufT
strains containing pacnA were cultured aerobically, as well as anaerobically in the presence or
absence of nitrate before determining AcnA activity. The ΔsufTmutant had lower AcnA activ-
ity during respiratory growth, but AcnA activity was restored during fermentative growth (Fig
5A). Microaerobic conditions also mitigated the growth defect of both the Δnfu and ΔsufT
strains in 18AA glucose medium (S3 Fig).

Fermentative growth imposes a decreased demand for FeS clusters [63]. By inference, fer-
mentative growth should result in decreased transcription of genes encoding for FeS assembly
factors. Consistent with this prediction, the transcriptional activities of sufT, nfu, and sufC
decreased when aerobically cultured cells were shifted to an anaerobic (fermentative) environ-
ment (Fig 5B).

We examined whether SufT functions to protect the AcnA FeS cluster via physical exclusion
of dioxygen. Cell-free lysates were generated from the acnA::TN and acnA::TN ΔsufT strains
containing pacnA. AcnA activity was assessed at periodic intervals before and after exposure of
lysates to dioxygen. Dioxygen exposure resulted in decreased AcnA activity in both the parent
and ΔsufTmutant (Fig 5C), but the rate of decrease was statistically indistinguishable between
the strains.

A strain lacking SufT is deficient in FeS cluster assembly upon the re-
entry of fermenting staphylococcal cells into an aerobic environment
Fermentatively cultured cells exposed to dioxygen (reaeration) increased sufC transcription
suggesting that the resumption of respiratory processes results in an increased demand for FeS
clusters (Fig 6A and [4]). The transcription of sufT was also increased (~2.5-fold) upon reaera-
tion (Fig 6A).

The role of SufT in the maturation of AcnA upon reaeration was assessed. The acnA::TN
and acnA::TN ΔsufT strains containing pacnA were cultured fermentatively before one set of

aureus SufT is a representative member of the S1 structure. Panel B: Maximum likelihood phylogenetic
reconstruction of SufT with an overlay of S2 to S9 modular structures. For simplicity, the most prevalent
configuration (S1) was not mapped.

doi:10.1371/journal.pgen.1006233.g002
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Fig 3. Analyses of Aconitase function in aΔsufT strain. Panel A: S. aureus Δnfu and ΔsufTmutant strains are defective for growth
with glutamate as a carbon source. Growth traces of theWT (JMB1100), ΔsufT (JMB1146), and Δnfu (JMB1165) strains in defined
minimal medium containing the canonical 20 amino acids and glutamate as a carbon source (20AA glutamate medium). Panel B:
Aconitase (AcnA) activity is decreased in strains lacking SufT or Nfu. Culture optical densities, as well as AcnA activities were
assessed for the WT (JMB1100), ΔsufT (JMB1146), and Δnfu (JMB1165) strains over the course of aerobic growth. Panel C: AcnA
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the cultures was exposed to dioxygen while the other set was incubated anaerobically (as previ-
ously described [40]). AcnA activity increased by ~30% in the parental strain upon dioxygen
introduction (Fig 6B). In contrast, AcnA activity decreased by ~20% in the ΔsufTmutant. The
use of protein synthesis inhibitors allowed for the conclusion that the increased AcnA activity
in the parental strain upon reaeration was due to de novo protein synthesis. These findings led
to the conclusion that SufT has a role in FeS cluster assembly in cells attempting to resume
respiratory processes, and thereby facilitates the adaptation of cells to shifts in dioxygen
tensions.

A strain lacking SufT is deficient in FeS cluster assembly when cells
experience ROS toxification, but is dispensable for physical protection
from oxidants and the repair of H2O2 damaged FeS clusters
Reactive univalent species can damage or destroy solvent exposed FeS clusters [4,38,39]. We
found that the ΔsufT, and sodA::TN (encoding for the dominant aerobic superoxide dismutase
[64]) strains displayed decreased growth in the presence of paraquat, a redox cycling molecule
that leads to increased accumulation of intracellular ROS (Fig 7A). However, the phenotype of
the ΔsufTmutant was less severe than that of the sodA::TN strain.

The acnA::TN and acnA::TN ΔsufT strains containing pacnA were cultured, challenged with
paraquat, and AcnA activity was determined. Challenging cells with paraquat resulted in ~15%
and ~45% decrease in AcnA activity in the parent and ΔsufTmutant, respectively (Fig 7B).

The alkylhydroperoxidase system (Ahp) functions as an intracellular H2O2 scavenger and a
S. aureus strain lacking Ahp accumulates intracellular ROS [4,65]. AcnA activity was assessed
in the WT, ΔsufT, ahp::TN, and ahp::TN ΔsufT strains. AcnA activity was decreased ~25–30%
in both the ahp and sufT strains and by ~75% in the ahp sufT double mutant strain (Fig 7C).

Four explanations could underlie the decreased AcnA activity observed in a ΔsufT strain
upon ROS toxification: 1) the ΔsufT strain has decreased activities of ROS scavenging enzymes,
2) SufT is necessary for the repair of FeS clusters inactivated by ROS oxidation, 3) SufT is
involved in physically shielding and/or excluding ROS from the enzyme active site and pre-
venting damage, or 4) there is an increased need for SufT in FeS cluster assembly.

The activities of the ROS scavenging enzymes catalase (Kat) and superoxide dismutase
(Sod) were similar in the WT and ΔsufT strains across growth (Fig 7D, S4 Fig). The acnA::TN
and acnA::TN ΔsufT strains containing pacnA also displayed similar levels of Sod activity, both
before and after paraquat treatment (S5 Fig).

We examined whether SufT is capable of physically shielding FeS clusters from univalent
oxidants [43,44]. Cell-free lysates from the acnA::TN and acnA::TN ΔsufT strains containing
pacnA were exposed to varying concentrations of H2O2 and AcnA activity was determined one
minute post treatment. AcnA activity decreased with increasing H2O2 concentrations, but the
decrease in AcnA activity was similar in the parent and ΔsufTmutant (Fig 7E).

Brief exposure to H2O2 can convert the active [Fe4S4]
2+ cluster in AcnA into the inactive

[Fe3S4]
1+ cluster. This can be repaired to the [Fe4S4]

2+ state by Fe2+ and an electron [40]. Cell-

activity is decreased in a sufTmutant independent of acnA transcription and AcnA abundance. AcnA activity was assessed from the
acnA::TN (JMB4432), acnA::TN ΔsufT (JMB4374), and the genetically complemented acnA::TN ΔsufT sufT+ (JMB4373) strains. All
strains contained the pacnA plasmid, which contains acnA under the transcriptional control of a xylose inducible promoter. Top:
Western blot analyses of the AcnA_FLAG displaying AcnA protein abundance in each strain, determined in duplicate. Panel D:
Transcriptional activity of sufC is not decreased in Δnfu and ΔsufTmutant strains. Transcriptional activity of sufCwas assessed in the
WT (JMB1100), ΔsufT (JMB1146), and Δnfu (JMB1165) strains. The data represent the average of four (Panel A) or three (Panel B, C,
and D) biological replicates and error bars represent standard deviations. Error bars are shown in all figures but may not be visible
where error is low.

doi:10.1371/journal.pgen.1006233.g003
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Fig 4. Necessity of SufT for LeuCD and IlvD function. Panel A: Strains lacking either SufT or Nfu are
defective for growth in a medium lacking the amino acids leucine and isoleucine. Growth traces of the WT
(JMB1100), ΔsufT (JMB1146), and Δnfu (JMB1165) strains in defined minimal medium containing glucose as
a carbon source and the canonical amino acids except leucine and isoleucine (18AA glucose medium). Panel
B and C: IlvD and LeuCD activities are decreased in a strain lacking SufT, which is independent of ilvD or
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free lysates from the acnA::TN and acnA::TN ΔsufT strains containing pacnA were exposed to
H2O2. One-minute post challenge, the stress was terminated and reactivation of AcnA activity
by factors in the lysate was monitored over-time. The rate of AcnA reactivation was similar in
the parent and ΔsufTmutant (Fig 7F). From Fig 7 we concluded that SufT is involved in the de
novo assembly of FeS clusters in cells experiencing ROS stress.

The role of SufT in FeS assembly increases in synchrony to the demand
for FeS cluster containing proteins
The phenotypic abnormalities of the ΔsufTmutant were exacerbated during respiration, during
resumption of respiration in fermenting cells, and upon ROS challenge (i.e. conditions impos-
ing a high demand for FeS assembly). The transcription of core genes required for FeS assem-
bly increased upon challenge with ROS or resumption of respiration [4].

We tested the hypothesis that SufT is required for FeS cluster assembly during conditions
imposing a high demand for FeS clusters. Growth was monitored in either 20AA glutamate
medium, or defined medium containing glutamate as a carbon source and lacking leucine (Leu)
and isoleucine (Ile) (hereafter 18AA glutamate medium). Growth in 18AA glutamate medium
would impose a simultaneous requirement for the AcnA, LeuCD, and IlvD enzymes, and by infer-
ence, exert an increased requirement for FeS clusters. The ΔsufT strain displayed a growth defect
in 20AA glutamate medium (similar to Fig 3A; however the magnitude appears lower here due to
the scale) and this defect was exacerbated upon culture in 18AA glutamate medium (Fig 8A).

The acnA::TN and acnA::TN ΔsufT strains containing pacnA were cultured in the presence
or absence of varying concentrations of xylose followed by assessing AcnA activity. The differ-
ence in AcnA activity between the parent and ΔsufTmutant increased in synchrony with
increasing inducer concentrations (Fig 8B and 8C).

We next monitored sufT transcriptional activity with respect to the demand for FeS clusters
using the acnA::TN strain carrying pacnA, as well as the sufT transcriptional reporter. The tran-
scriptional activity of sufT increased in synchrony with increasing inducer concentrations (Fig
8D).

The DUF59 containing protein fromMycobacterium tuberculosis is able
to rescue a growth defect of the S. aureus ΔsufTmutant
Mycobacterium tuberculosis contains a DUF59 containing protein (Rv1466) that is part of the
suf operon and is essential for viability (Fig 1C and [66]). We examined whether Rv1466 could
compensate for the loss of SufT in S. aureus. Rv1466 has a ~20 amino acid N-terminal exten-
sion when compared to the S. aureus SufT. Codon-optimized rv1466 and a truncated version
of rv1466 (trunc_rv1466) were introduced upon a multi-copy plasmid into the S. aureus ΔsufT
strain and phenotypes were examined. The presence of trunc_rv1466, but not rv1466, rescued
the growth defect of the ΔsufT strain in 18AA glutamate medium (Fig 9A). The presence of
trunc_rv1466, but not rv1466, displayed a dominant effect and inhibited growth of the ΔsufT
strain in 20AA glucose medium (Fig 9B).

leuCD transcription. IlvD activity was assessed from the ilvD::TN (JMB3966; parent), ilvD::TN ΔsufT
(JMB4376), and the genetically complemented ilvD::TN ΔsufT sufT+ (JMB4375) strains carrying pilvD (Panel
B). LeuCD activity was assessed from the leuC::TN (JMB4397; parent), leuC::TN ΔsufT (JMB4383), and the
genetically complemented leuC::TN ΔsufT sufT+ (JMB4382) strains carrying pleuCD (Panel C). In pilvD and
pleuCD either ilvD or leuCDwere under the transcriptional control of a xylose inducible promoter. The data
represent the average of four (Panel A) or three (Panels B and C) biological replicates. Errors bars represent
standard deviations and are shown in all panels but may not be visible where error is low.

doi:10.1371/journal.pgen.1006233.g004
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Fig 5. Delineating the role of SufT in FeS protein maturation during respiratory and fermentative
growth. Panel A: A ΔsufTmutant has decreased AcnA activity during respiratory growth, but not during
fermentative growth. AcnA activity was assessed from the acnA::TN (JMB3537; parent) and acnA::TN ΔsufT
(JMB3539) strains containing pacnA. Strains were pre-cultured aerobically or anaerobically in the presence
or absence of nitrate. Panel B: The transcriptional activities of sufT, sufC, and nfu are decreased upon a shift

The Role of SufT in FeS Cluster Assembly

PLOS Genetics | DOI:10.1371/journal.pgen.1006233 August 12, 2016 13 / 39



sufA is epistatic to both nfu and sufT, while nfu and sufT display synergy
Epistatic relationships between sufT, nfu, and sufA were investigated by phenotypically exam-
ining mutant strains lacking one, two, or all three maturation factors. The ΔsufA strain did not
display a defect in AcnA activity, relative to the WT strain, and the ΔsufA ΔsufT double mutant
phenocopied the ΔsufT strain (Fig 10A). The phenotypic effects of the ΔsufA and Δnfumuta-
tions displayed an additive effect. AcnA activity in the Δnfumutant was ~65% of WT while the
activity in the ΔsufA ΔsufT double mutant was ~50%. AcnA activity was near the limit of detec-
tion in the Δnfu ΔsufT double mutant (~2%). The Δnfu ΔsufT ΔsufA triple mutant had AcnA
activity similar to the Δnfu ΔsufT strain. AcnA activity in the acnA::TN Δnfu ΔsufT strain con-
taining pacnA was also nearly undetectable relative to its isogenic parental strains (Fig 10B).
This suggested that the low AcnA activity in the Δnfu ΔsufT strain was not solely the outcome
of decreased acnA transcription.

Growth was examined in media that impose varying demands for FeS proteins (20AA glu-
cose, 20AA glutamate, or 18AA glutamate media). The ΔsufA strain did not display a growth
deficiency in any of the media examined (Fig 10C–10E). The ΔsufA ΔsufT double mutant phe-
nocopied the ΔsufT strain in 20AA glucose and 20AA glutamate medium, but the effects of the
mutations were additive in 18AA glutamate medium. The Δnfu ΔsufA double mutant phe-
nocopied the Δnfu strain in 20AA glucose and 20AA glutamate media, but the effect of the
mutations were additive in 18AA glutamate medium. The phenotypes of the Δnfu and ΔsufT
mutations displayed synergism. The Δnfu ΔsufT double mutant displayed a severe growth
defect in each media examined. The Δnfu ΔsufT ΔsufA triple mutant strain largely phenocopied
the Δnfu ΔsufT strain in each media.

The Δnfu ΔsufT double mutant also displayed severe growth defects in complex medium.
Growth of S. aureus in tryptic soy broth (TSB) results in the consumption of glucose, the
release of fermentative byproducts such as acetate, and acidification of the medium [67,68] fol-
lowed by the uptake of the fermentative byproducts resulting in alkalization of the growth
medium. Therefore, the pH and acetate profile of the spent medium correlates with the cells
ability to uptake and utilize fermentation products [67,68,69]. We monitored optical densities,
pH of the spent medium, and acetate concentrations in the spent medium over time in cultures
of the WT, ΔacnA, Δnfu, ΔsufT, and Δnfu ΔsufT strains. The Δnfu ΔsufT double mutant and
ΔacnA strains displayed pronounced differences during post-exponential growth reaching
lower final optical densities (S6A Fig). The pH of the medium from the Δnfu ΔsufT and ΔacnA
mutants did not re-alkalinize (S6B Fig) nor was acetate utilized (S6C Fig).

nfu in multicopy partially mitigates the phenotypes of the ΔsufTmutant
The interactions amongst sufT, nfu, and sufA were further examined by introducing each gene
upon a multi-copy plasmid (psufT, pnfu and psufA, respectively) and assessing whether they

to fermentative growth. The transcriptional activities of sufT, sufC, and nfu were assessed in the WT
(JMB1100). Cells were cultured aerobically to exponential phase before one set of cultures was incubated
fermentatively (anaerobically) for one hour while the other set was incubated aerobically. Panel C: Dioxygen
exposure decreases AcnA activity at a similar rate in the parent and ΔsufT strains. Cell-free lysates
generated from the acnA::TN (JMB3537; parent) and the acnA::TN ΔsufT (JMB3539) strains containing
pacnAwere exposed to dioxygen and AcnA activity was recorded before and after exposure. The data
presented represent the average of three (Panels A and B) or two (Panel C) biological replicates. Error bars
signify standard deviations and are shown in all panels, but may not be visible where error is low. Where
indicated, Student t-tests (two tailed) were performed on the data and * denotes p< 0.05. NS denotes that the
data are not statistically significant. Strains containing pacnA have acnA under the transcriptional control of a
xylose inducible promoter.

doi:10.1371/journal.pgen.1006233.g005
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Fig 6. Examining the need for SufT upon exposure of fermenting cells to dioxygen. Panel A:
Transcription of genes utilized for FeS assembly are increased when fermenting cells are exposed to
dioxygen (reaeration). TheWT strain (JMB1100) was cultured fermentatively for 4.5 hours before one set of
cultures was exposed to dioxygen while the control cultures experienced continuous anaerobic growth.
mRNA abundances corresponding to the sufT and sufC genes were assessed using quantitative RT-PCR.
Data are presented as a ratio of transcript abundance upon dioxygen exposure to the abundance upon
continued anaerobic incubation. The gene transcription profiles for the sufC gene upon reaeration were
previously published [4]. Panel B: AcnA activity is decreased in the ΔsufT strain upon reaeration. The acnA::
TN (JMB3537; parent) and the acnA::TN ΔsufT (JMB3539) strains containing pacnA, which contains acnA
under the transcriptional control of a xylose inducible promoter, were cultured anaerobically before one set of
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cultures was exposed to dioxygen, while the control cultures experienced continuous anaerobic growth. The
data in both panels represent the average of three biological replicates. Error bars signify standard
deviations.

doi:10.1371/journal.pgen.1006233.g006

Fig 7. Delineating the role of SufT in FeS protein maturation upon ROS intoxication. Panel A: Strains lacking SufT or SodA are deficient for growth
in the presence of paraquat. Growth of theWT (JMB1100), ΔsufT (JMB1146), and sodA::TN (JMB6326) strains cultured upon solid medium in the
presence or absence of 30 mM paraquat. Panel B: A ΔsufT strain has decreased AcnA activity in cells challenged with paraquat. The acnA::TN
(JMB3537; parent) and acnA::TN ΔsufT (JMB3539) strains containing pacnAwere cultured aerobically to post exponential growth phase before one set of
cultures was challenged with 40 mM paraquat for one hour and AcnA activity was determined. Panel C: A strain that is deficient in scavenging
endogenous hydrogen peroxide and lacks SufT has decreased AcnA activity. AcnA enzyme activity was assessed from the WT (JMB1100), ΔsufT
(JMB1146), ahpC::TN (JMB2080), and ahpC::TN ΔsufT (JMB6885) strains cultured aerobically. Panel D: Catalase activity is indistinguishable between
theWT and ΔsufT strains across growth. Catalase activity was assessed fromWT (JMB1100) and ΔsufT (JMB1146) strains. Kat activity was determined
from the same cell-free lysates that were used to determine AcnA activity displayed in Fig 3B. Panel E: SufT is dispensable for the physical protection of
AcnA from oxidant damage. Cell-free lysates were generated from the acnA::TN (JMB3537; parent) and the acnA::TN ΔsufT (JMB3539) strains
containing pacnA. Lysates were treated with varying amounts of H2O2 and AcnA activity was determined one-minute post treatment. Panel F: SufT is
dispensable for the repair of the [Fe3S4]

1+ cluster of AcnA. Cell-free lysates were generated from the acnA::TN (JMB3537; parent) and the acnA::TN
ΔsufT (JMB3539) strains containing pacnA. The lysates were exposed to 0.45 mM H2O2 for 1 minute before stress was terminated using catalase. AcnA
activity was monitored before application of H2O2 and periodically after stress termination. The data represent the average of three (Panels B, C, and D)
or two (Panels E and F) biological replicates. Error bars signify standard deviations. Strains containing pacnA have acnA under the transcriptional control
of a xylose inducible promoter.

doi:10.1371/journal.pgen.1006233.g007
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Fig 8. Examining the role of SufT in FeS protein maturation with respect to the demand for FeS clusters. Panel A: The demand for SufT for
growth is increased in media that impose a high requirement for FeS proteins. Growth of theWT (JMB1100) and ΔsufT (JMB1146) strains in
20AA glutamate medium and 18AA glutamate medium. Panels B and C: The role of SufT in FeS assembly increases in synchrony with the
demand for FeS clusters. The acnA::TN (JMB3537; parent) and the acnA::TN ΔsufT (JMB3539) strains containing pacnA, which contains acnA
under the transcriptional control of a xylose inducible promoter, were cultured in media containing varying concentrations of xylose before AcnA
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impart phenotypic suppression to the ΔsufT or Δnfu strains. The ΔsufA strain did not have
decreased AcnA activity, and therefore, suppression was not examined in this strain.

The presence of psufA appeared to increase AcnA activity mildly in both the WT and ΔsufT
strains, but a statistically significant phenotypic rescue was not observed (S7A Fig). AcnA activ-
ity decreased in the Δnfu strain carrying psufA. AcnA activity was increased in the ΔsufT strain

activity was determined. Data were normalized with respect to the non-induced parent strain (Panel B) or with respect to the parent strain at each
inducer concentration (Panel C). Panel D: Transcriptional activity of sufT increases in synchrony with the cellular demand for FeS clusters upon
AcnA. The transcriptional activity for sufTwas assessed in the acnA::TN (JMB3537) strain carrying pacnA, as well as a construct containing gfp
under the transcriptional control of the sufT promoter. Cells were cultured in media containing varying concentrations of xylose. The data
represent the average of three (Panels B and C) or two (Panels A and D) biological replicates. Error bars signify standard deviations.

doi:10.1371/journal.pgen.1006233.g008

Fig 9. Functionality of theMycobacterium tuberculosis DUF59 protein Rv1466 in S. aureus.Growth of
theWT and ΔsufT strains carrying empty vector (pCM28) and the ΔsufT strain carrying pCM28_rv1466 or
pCM28_trunc_rv1466 in 18AA glutamate medium (Panel A) or 20AA glucose medium (Panel B) are shown.
The data represent the average of two biological replicates. Error bars signify standard deviations.

doi:10.1371/journal.pgen.1006233.g009
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carrying pnfu (increase of ~250%), while the presence of pnfu had little effect on AcnA activity
in the WT (Fig 11A). The presence of psufT slightly decreased AcnA activity in the WT, while
it did not alter AcnA activity in the Δnfu strain (S7B Fig).

Growth profiles of the WT and ΔsufT strains carrying empty vector or pnfu were examined
in 20AA glutamate medium. The presence of pnfu partially mitigated the growth defect of the
ΔsufT strain in 20AA glutamate medium (S8 Fig).

Fig 10. Epistatic relationships amongst auxiliary FeS cluster assembly factors. Panel A: sufA is epistatic to nfuwhile nfu and sufT display synergy
with respect to AcnA activity. AcnA activity was assessed for theWT (JMB1100), ΔsufT (JMB1146), Δnfu (JMB1165), Δnfu ΔsufT (JMB2514), Δnfu ΔsufT
ΔsufA (JMB6835), ΔsufA (JMB2223), ΔsufA ΔsufT (JMB2224) and Δnfu ΔsufA (JMB6834) strains. Panel B: The decreased AcnA activity of the nfu sufT
strain is independent of acnA transcription. The acnA::TN (JMB3537; parent), acnA::TN ΔsufT (JMB3539), acnA::TN Δnfu (JMB3538) and the acnA::TN
Δnfu ΔsufT (JMB 7116) strains containing pacnA, which contains acnA under the transcriptional control of a xylose inducible promoter, were cultured
aerobically and AcnA activity was determined. Panels C, D and E: sufA is epistatic to nfu and sufT, while nfu and sufT display synergy during growth.
Growth of the strains used in panel A in 20AA glucose medium (Panel C), 20AA glutamate medium (Panel D), and 18AA glutamate medium (Panel E) are
shown. The data represent the average of three (Panels A and B) or two (Panels C, D and E) biological replicates. Error bars signify standard deviations.

doi:10.1371/journal.pgen.1006233.g010
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Fig 11. Examining genetic interactions between nfu and sufT. Panel A: AcnA activity is increased in a
ΔsufTmutant strain carrying nfu upon a multicopy plasmid. AcnA activity was assessed from the WT
(JMB1100) and ΔsufT (JMB1146) strains carrying either pEPSA5 (empty vector; pEV) or pEPSA5_nfu (pnfu)
and cultured aerobically in medium containing 0.5% xylose to induce nfu transcription. Panel B: The
phenotypes of the nfu and sufTmutations are synergistic with respect to AcnA activity during fermentative
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The presence of either Nfu or SufT is sufficient to maturate AcnA during
conditions of low FeS cluster demand
The phenotypes of the ΔsufT strain were mitigated during fermentative growth, which imposes
a low demand for FeS clusters. We reasoned that Nfu is utilized to fulfill the demand for FeS
cluster assembly in the ΔsufT strain during fermentative growth. After fermentative culture the
acnA::TN Δnfu ΔsufT strain containing pacnA displayed levels of AcnA activity that were near
the limit of detection (~2%), whereas the acnA::TN ΔsufT and acnA::TN Δnfu strains had
AcnA activity similar to the parent (Fig 11B). Microaerobic growth in 18 AA glucose medium
was also examined. The Δnfu and ΔsufT strains displayed growth profiles that did not signifi-
cantly deviate from that of the WT (Fig 11C). However, the Δnfu ΔsufT double mutant dis-
played a large growth defect.

From Figs 10 and 11, S7 and S8 Figs, we concluded that 1) the phenotypic effects of the nfu
and sufTmutations are synergistic, 2) overproduction of nfu partially alleviates the phenotypes
of the ΔsufT strain, and 3) either Nfu or SufT is sufficient for AcnA maturation during fermen-
tative growth.

Defective maturation of FeS proteins results in increased biofilm
formation and decreased exoprotein production
Biofilm formation and exoprotein production were assessed in strains lacking FeS cluster
assembly factors. Agr is the dominant activator for transcription of exoproteins and toxins, as
well as the phenol soluble modulins (PSMs). Therefore, an Δagr strain was included as a posi-
tive control [51]. A strain lacking AcnA has been proposed to have increased Agr activity [70].
Since a Δnfu ΔsufT strain phenocopied the acnA::TNmutant, the acnA::TN strain was also
examined. Exoproteins were extracted from the spent medium supernatant and analyzed using
SDS-PAGE. S. aureus encodes for eight PSMs that are small peptides comprising ~60% of the
total exoproteome and are visualized on SDS-PAGE as one band [51]. The Δnfu ΔsufT, Δnfu
ΔsufT ΔsufA, and the Δagr strains were deficient in exoprotein production (Fig 12A). For ease
of comparative analyses, only the band corresponding to PSMs is displayed.

Static growth of WT in TSB does not induce biofilm formation, and therefore, biofilm for-
mation was examined in biofilm inducing medium (Fig 12B and 12C, [71]). Biofilm formation
was also assessed in strains lacking Agr and SigB, which negatively and positively influence bio-
film formation, respectively [72,73]. Strains deficient in the maturation of FeS proteins dis-
played varying degrees of biofilm formation. The Δnfu ΔsufT double mutant displayed the
largest increase in biofilm formation (~4.5 fold). The acnA::TN strain formed biofilms at a sim-
ilar extent as the WT (Fig 12B and 12C).

Defective maturation of FeS proteins imparts VISA-like phenotypes
upon an otherwise vancomycin-susceptible MRSA isolate
We examined vancomycin sensitivities of strains lacking FeS cluster assembly factors. The Δnfu
ΔsufT double mutant displayed a large increase in resistance towards vancomycin during growth

growth. The acnA::TN (JMB3537; parent), acnA::TN ΔsufT (JMB3539), acnA::TN Δnfu (JMB3538) and the
acnA::TN Δnfu ΔsufT strains containing pacnAwere cultured fermentatively before AcnA activity was
determined. Panel C: The phenotypes of the nfu and sufTmutations display synergy during microaerobic
growth in 18AA glucose medium. Growth traces of the WT (JMB1100), ΔsufT (JMB1146), Δnfu (JMB1165)
and the Δnfu ΔsufT (JMB2514) strains cultured microaerobically are shown. The data represent the average
of four (Panel C) or three (Panels A and B) biological replicates. Error bars signify standard deviations. Where
indicated, Student t-tests (two tailed) were performed on the data and * denotes p< 0.05.

doi:10.1371/journal.pgen.1006233.g011
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Fig 12. Biofilm formation and exoprotein production in strains defective in FeS cluster assembly.
Exoprotein production (Panel A) and biofilm formation (Panel B and C) was assessed for theWT (JMB1100),
ΔsufT (JMB1146), Δnfu (JMB1165), Δnfu ΔsufT (JMB2514), Δnfu ΔsufT ΔsufA (JMB6835), ΔsufA
(JMB2223), ΔsufA ΔsufT (JMB2224), Δnfu ΔsufA (JMB6834) strains. For data in Panel A, spent medium
supernatant from three biological replicates was standardized and combined, prior to precipitation and
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(Fig 13A). In growth inhibition curves we found that the Δnfu ΔsufT strain was not completely
resistant towards vancomycin, but rather, it displayed an inhibition response more characteristic
of vancomycin-intermediate resistant Staphylococcus aureus (VISA) (S9 Fig and [74]).

Vancomycin resistant strains display alterations in their cell walls resulting in increased
resistance towards lysis by lysostaphin [55,74]. The Δnfu ΔsufT double mutant displayed the
greatest resistance towards lysis by lysostaphin (Fig 13B).

Decreased activity of peptidoglycan hydrolases is a hallmark of VISA strains [55,74]. Pepti-
doglycan hydrolase activity was monitored using zymographic analysis upon heat-killed WT
cells as a substrate. The Δnfu ΔsufT double mutant displayed the largest alterations in the activ-
ities of peptidoglycan hydrolases (Fig 13C).

Discussion
Staphylococcus aureus SufT is composed solely of a DUF59 domain. Alternate proteins con-
taining DUF59 domains participate in FeS cluster assembly, but the function(s) of the DUF59
domain itself has not been described [46,47,48]. The goals of this study were to determine if
SufT has a role in FeS cluster assembly, and if so, begin to dissect its in vivo functional role.

Phylogenetic analyses found that sufT was recruited to the same chromosomal location as
sufBC, and once recruited, it was largely retained. These findings suggested that sufT was
recruited to the operon to refine the functionality of Suf-mediated FeS cluster assembly.
Amongst the genomes analyzed, only five organisms encoded for SufT, but not the FeS cluster
scaffolding proteins SufB, IscU, or NifU. The five organisms identified were lactobacilli and
within these genomes the SufT homolog was located within apparent operons that encode
known FeS cluster requiring proteins. The informatics and phylogenetic findings strongly sug-
gested a role for SufT in FeS cluster assembly.

The S. aureus ΔsufT strain displayed physiological abnormalities consistent with SufT hav-
ing a role in the maturation of FeS proteins. Further, the phenotypes of the S. aureus ΔsufT
strain closely resembled those of a strain lacking the FeS cluster carrier Nfu [4]. Aside from a
role in de novo FeS cluster assembly, alternate possibilities for the observed deficiencies mani-
fest in the ΔsufT strain were considered. The ΔsufT strain did not have altered H2O2 or super-
oxide scavenging activities. SufT was not required for the physical exclusion of H2O2 from the
AcnA active site or the repair of the H2O2 damaged FeS cluster upon AcnA. These findings
suggested that SufT likely functions in the de novo assembly of FeS clusters upon apo-proteins.

Genes encoding for proteins with functional overlap often display synergistic (superaddi-
tive) phenotypic effects when the gene products are absent or non-functional [75]. The pheno-
types associated with nfu and sufT were synergistic. This was most evident during fermentative
growth where there is a lower demand for FeS clusters. The phenotypes of the Δnfu and ΔsufT
strains were nearly indistinguishable from the WT strain, but the Δnfu ΔsufT double mutant
displayed a large growth defect and exhibited AcnA activity near the limit of detection. Intro-
duction of nfu in multicopy to the ΔsufT strain led to partial mitigation of the phenotypes of
this strain. Taken together, these findings led to the conclusion that both SufT and Nfu func-
tion as non-essential, accessory factors in the maturation of FeS proteins. Lending further sup-
port to this conclusion, subsequent to our informatics analyses, the genome of Oligotropha
carboxidovorans was sequenced and found to encode for a protein consisting of a fusion of the
N-terminus of Nfu and SufT (Locus tag: OCA5_c02770).

SDS-PAGE analyses. The data in panel C represent the average value of biofilms formed in eight
independent wells. Error bars signify standard deviations. Representative photographs of biofilms formed on
the surface of a 96-well microtiter plate are displayed in Panel B.

doi:10.1371/journal.pgen.1006233.g012
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Fig 13. Examination of vancomycin resistance and VISA-like phenotypes in strains defective in FeS
cluster assembly.Growth inhibition in the presence of vancomycin (Panel A), lysis of cells in the presence of
lysostaphin (Panel B), and zymographic analyses of spent medium supernatant upon gels containing heat-
killed WT cells as a substrate (Panel C) were assessed for theWT (JMB1100), ΔsufT (JMB1146), Δnfu
(JMB1165), Δnfu ΔsufT (JMB2514), Δnfu ΔsufT ΔsufA (JMB6835), ΔsufA (JMB2223), ΔsufA ΔsufT
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SufT, Nfu, and SufA are auxiliary FeS cluster maturation factors leading to the question of
why S. aureus encodes for three such factors. The simplest explanations are that there is a
degree of specificity for each auxiliary factor with respect to their target apo-proteins or that
they have different functions. Vinella et al. have recently proposed an expanded model, which
visualizes a dynamic cellular network of proteins that varies with growth stage or growth con-
dition allowing for rapid calibration to alterations in the cellular demand for FeS protein matu-
ration [76]. During such a scenario, certain auxiliary proteins and pathways would be preferred
during normal growth and alternate auxiliary proteins and pathways during stress conditions.

The findings presented herein are consistent with the model proposed by Vinella et al. [76].
During routine aerobic growth, Nfu was the dominant auxiliary factor required for the matura-
tion of AcnA. However, upon the overproduction of AcnA, the need for SufT for AcnA matu-
ration was increased. The cellular need for SufT was also increased when cells were resuming
respiration, toxified with ROS, or grown in 18AA glutamate medium; three conditions that
impose a high demand for de novo FeS cluster assembly. The transcriptional activity of sufT
also increased as the cellular demand for FeS clusters increased. These findings lend strong sup-
port to a model wherein SufT is a dominant factor involved in the maturation of FeS proteins
in cells experiencing a high demand for FeS clusters. The epistasis experiments further
strengthen the idea that certain accessory proteins are preferentially utilized when confronted
with a high demand for FeS clusters. SufA was dispensable for growth under all conditions
tested. However, SufA dependent phenotypes were manifest in strains lacking either Nfu or
SufT and simultaneously cultured upon a medium imposing a high demand for FeS proteins.
Therefore, we propose that SufA facilitates FeS protein maturation in S. aureus under condi-
tions imposing a very high demand for FeS clusters. It is tempting to speculate that cells encode
for multiple accessory maturation factors to respond to a gradation of demand for FeS cluster
assembly, however, this awaits further experimentation.

It is currently unclear what genetic or biochemical elements dictate the increased usage of
SufT or SufA upon increased FeS cofactor demand. Possible explanations include different
functionalities, increased stability of a particular factor under stress conditions, or an increased
rate of FeS cluster synthesis or FeS protein maturation under select cellular conditions. A simi-
lar scenario has been described to exist between the Suf and Isc FeS cluster biosynthetic
machineries. In Escherichia coli, Suf is preferred under ROS stress and Fe limiting conditions,
whereas Isc is the preferred FeS assembly system during conditions imposed by routine labora-
tory cultivation [77,78].

What is the role of SufT in FeS cluster assembly? The genetic findings presented make it
tempting to speculate that SufT functions in the carriage of FeS clusters, but further biochemi-
cal analyses will be necessary to make this conclusion. It also worth noting that the SufT homo-
logues analyzed in Fig 1 contain only one strictly conserved cysteine residue. With the
exception of monothiol glutaredoxins, described FeS cluster carriers contain two or more cyste-
ines utilized in FeS cluster ligation [79].

Biofilm formation and exoprotein production are critical in the infectious lifecycle of S.
aureus [49,50]. We previously found that a strain lacking Nfu is attenuated for virulence in
models of infection [4]. In this report we found that a strain that was crippled in its ability to
maturate FeS proteins displayed significantly increased biofilm formation and decreased

(JMB2224), Δnfu ΔsufA (JMB6834) strains. The data in panels A and B represent the average value of two
biological replicates. For data in Panel C spent medium supernatant from three biological replicates was
standardized and combined prior to zymographic analyses. The arrows in Panel C point to bands that are
reduced in intensity in strains lacking both Nfu and SufT.

doi:10.1371/journal.pgen.1006233.g013
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exoprotein production. Vancomycin is a last resort drug in the treatment of CA-MRSA infec-
tions and the genetic and molecular mechanisms underlying resistance to vancomycin are an
active area of research [54]. Strains defective in FeS protein maturation also displayed an inter-
mediate resistance to vancomycin and multiple phenotypes associated with VISA strains.

The Δnfu ΔsufT strain phenocopied a ΔacnA strain in growth experiments, but it did not
phenocopy this strain in phenotypes involved in virulence. S. aureus encodes for the FeS cluster
utilizing two-component regulatory system (TCRS) AirSR [5]. AirSR alters the transcription of
genes encoding for peptidoglycan hydrolases, as well as those required for biofilm formation
[5,80]. AirR directly binds to the promoter region of Agr [80]. AirSR is also implicated in van-
comycin resistance and a strain lacking AirSR displays VISA like phenotypes [80]. Therefore,
the accumulation of apo-AirSR in the Δnfu ΔsufT strain may underlie the virulence phenotypes
witnessed. An alternate explanation is that the altered Agr activity in these strains results in
altered virulence phenotypes. Apart from its roles in toxin production and biofilm formation,
Agr has also been implicated in modulating vancomycin resistance in S. aureus [51,81,82].
Regardless of the mechanism(s) underlying the phenotypes presented, these findings highlight
the importance of efficient FeS cluster assembly for multiple phenotypes critical for pathogene-
sis and antibiotic resistance.

In summary, we have identified a role for SufT, and by extension DUF59, in the maturation
of FeS proteins. We propose a model wherein SufT is an auxiliary FeS protein maturation fac-
tor whose usage is selectively increased during growth conditions necessitating increased FeS
cluster assembly in S. aureus. An increased demand for FeS clusters may have been an evolu-
tionary driving force to recruit sufT to the suf operon thereby increasing the efficiency and con-
trol of de novo FeS cluster assembly.

Materials and Methods

Materials
Restriction enzymes, quick DNA ligase kit, deoxynucleoside triphosphates, and Phusion DNA
polymerase were purchased from New England Biolabs (Ipswich, MA). The plasmid mini-prep
kit, gel extraction kit and RNA protect were purchased from Qiagen (Hilden, Germany). Lysos-
taphin was purchased from Ambi products (Lawrence, NY). Oligonucleotides were purchased
from Integrated DNA Technologies (Coralville, IA) and sequences are listed in S1 Table (oligo-
nucleotides used in this study). Trizol (Life Technologies), High-Capacity cDNA Reverse Tran-
scription Kits (Life Technologies), and DNase I (Ambion) was purchased from Thermo Fisher
Scientific (Waltham, MA). Tryptic Soy Broth (TSB) was purchased fromMP Biomedicals
(Santa Ana, CA). An acetic acid quantification kit was purchased from R-BioPharma (Darm-
stadt, Germany). Unless specified all chemicals were purchased from Sigma-Aldrich (St. Louis,
MO) and were of the highest purity available.

Bacterial growth conditions
Unless otherwise stated, the S. aureus strains used in this study (listed in Table 1) were con-
structed in the S. aureus community-associated USA300 strain LAC that was cured of the
native plasmid pUSA03, which confers erythromycin resistance [83]. The USA300 LAC
genome differs from USA300_FPR3757 only by a few single nucleotide polymorphisms
[84,85]. Unless specifically mentioned, S. aureus cells were cultured as follows: 1) aerobic
growth at a flask/tube headspace to culture medium volume ratio (hereafter HV ratio) of 10; 2)
anaerobic growth at a flask/tube headspace to culture medium volume ratio of 0, as described
earlier [4]; 3) in 96-well microtiter plates containing 200 μL total volume (detailed procedure
below). Liquid cultures were grown at 37°C with shaking at 200 rpm unless otherwise
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Table 1. Strains and plasmids used in this studya.

Strains used in this study

S. aureus Strains Genotype/Description Genetic Background Source/ Reference

JMB1100 USA300_LAC (erm sensitive) LAC [83]

RN4220 Restriction minus NCTC8325 [104]

JMB2316 Δnfu::tetM LAC [4]

JMB1165 ΔSAUSA300_0875(nfu) LAC [4]

JMB1146 ΔSAUSA300_0875(sufT) LAC This work

JMB6326 sodA::TN(ermB) (SAUSA300_1513) LAC NARSA [105]

JMB2080 ahpC::TN(ermB) (SAUSA300_0379) LAC V. Torres

JMB6885 ΔsufT ahpC::TN(ermB) LAC This work

JMB1144 ΔSAUSA300_0843(sufA) LAC [4]

JMB2224 ΔsufA::tetM ΔsufT LAC This work

JMB2514 ΔsufT nfu::tetM LAC This work

JMB1580 Δnfu::kanR LAC [4]

JMB2223 ΔsufA::tetM LAC [4]

JMB6834 ΔsufA::tetM Δnfu::kanR LAC This work

JMB6835 ΔsufA::tetM Δnfu::kanR ΔsufT LAC This work

JMB1977 Δagr::tet LAC [72]

JMB1102 ΔsigB LAC [97]

NE892 SAUSA300_2012(leuC)::TN(ermB) LAC NARSA [105]

NE718 SAUSA300_2006(ilvD)::TN(ermB) LAC NARSA [105]

JMB1432 Δfur::tet LAC [106]

JMB1163 ΔacnA::tet LAC [107]

JMB3537 acnA::TN(ermB) LAC [4]

JMB3538 Δnfu acnA::TN(ermB) LAC [4]

JMB3539 ΔsufT acnA::TN(ermB) LAC This work

JMB7116 Δnfu ΔsufT::tetM acnA::TN(ermB) LAC This work

JMB4432 acnA::TN(ermB), attP::pLL39 LAC [4]

JMB4374 ΔsufT,acnA::TN(ermB), attP::pLL39 LAC This work

JMB4373 ΔsufT, acnA::TN(ermB), attP::pLL39_sufT LAC This work

JMB4397 attP::pLL39, leuC::TN(ermB) LAC [4]

JMB4383 ΔsufT,leuC::TN(ermB), attP::pLL39 LAC This work

JMB4382 ΔsufT,leuC::TN(ermB), attP::pLL39_sufT LAC This work

JMB3966 ilvD::TN(ermB), attP::pLL39 LAC [4]

JMB4376 ΔsufT, ilvD::TN(ermB) attP::pLL39 LAC This work

JMB4375 ΔsufT,ilvD::TN(ermB) attP::pLL39_sufT LAC This work

Other Strains

Escherichia coli PX5 Protein Express

Escherichia coli BL21-AI* Life Technologies

Plasmids used in this study

Plasmid name Insert locus/function Source/Reference

pJB38 construction of chromosomal gene deletions [108]

pJB38_sufT Construction of ΔsufT This work

pJB38_sufT::tet Construction of sufT::tet allele This work

pCM28 Cloning vector for genetic complementation A. Horswill

pCM11 Cloning vector for transcriptional reporters [109]

pCM11_sufC Reporter construct transcriptional activity This work

pCM11_sufT Reporter construct transcriptional activity This work

(Continued)
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indicated. Difco BioTek agar was added (15 g L-1) for solid medium. When selecting for plas-
mids, antibiotics were added at the final following concentrations: 150 μg mL-1 ampicillin
(Amp); 30 μg mL-1 chloramphenicol (Cm); 10 μg mL-1 erythromycin (Erm); 3 μg mL-1 tetracy-
cline (Tet); 125 μg mL-1 kanamycin (Kan); 150 ng mL-1 anhydrotetracycline (Atet). For routine
plasmid maintenance, liquid media were supplemented with 10 μg mL-1 or 3.3 μg mL-1 of
chloramphenicol or erythromycin, respectively.

Strain and plasmid construction
Escherichia coli DH5α was used as a cloning host for plasmid constructions. All clones were
passaged through RN4220 and transductions were conducted using phage 80α [86]. All S.
aureusmutant strains and plasmids were verified using PCR or by sequencing PCR products
or plasmids. All DNA sequencing was performed by Genewiz (South Plainfield, NJ).

Unless otherwise stated, JMB1100 chromosomal DNA was used as a template for PCR reac-
tions. To create the ΔsufT deletion strain (JMB1146), approximately 500 base pairs upstream
and downstream of sufT gene (SAUSA300_0875) were amplified using PCR with primer pairs
0875up5EcoRI and 0875up3NheI; 0875dwn5MluI and 0875 dwn3BamHI (S1 Table). Ampli-
cons were gel purified and fused using PCR and the 0875up5EcoRI and 0875 dwn3BamHI
primers. The resulting amplicon was gel purified, and digested with BamHI and SalI, followed
by a ligation into similarly digested pJB38 resulting in pJB38_ΔsufT. The plasmid pJB38_ΔsufT
was isolated and subsequently transformed into RN4220 before transducing into JMB1100. A
single colony was inoculated into 5 mL of TSB-Cm and cultured overnight at 42°C followed by
plating 25 μL on TSA-Cm to select for colonies containing a single recombination event. Single
colonies were inoculated into 5 mL of TSB medium and were grown overnight, followed by a
dilution of 1:25,000 before plating 100 μL onto TSA containing Atet to select against plasmid
containing cells. Colonies were screened for Cm sensitivity and for the ΔsufTmutation using
PCR.

The sufT::tetM strain was created by digesting the pJB38_ sufTΔ with MluI and NheI and
inserting the tetM gene between the upstream and downstream regions of sufT. The DNA
encoding for Tet resistance (tetM) was amplified using PCR with Strain JMB1432 as a template
and the G+tetnheI and G+tetmluI primers before digesting and ligating into similarly digested
pJB38_ΔsufT. The resulting plasmid (pJB38_ΔsufT::tetM) was passaged though E. coli, before it
was transformed into RN4220. The ΔsufT::tetMmutant was constructed as described above.

Plasmids for genetic complementation, transcriptional analyses, and insertion of epitope
tags to allow protein detection by western blots were constructed by subcloning digested PCR

Table 1. (Continued)

pCM11_nfu Reporter construct transcriptional activity This work

pCM11_acnA Reporter construct transcriptional activity This work

pCM28_sufT Genetic complementation This work

pCM28_rv1466 Genetic complementation

pCM28_trunk_rv1466 Genetic complementation

pLL39 Chromosomal genetic complementation [110]

pLL39_sufT Chromosomal genetic complementation This work

pEPSA5 Multicopy genetic complementation [111]

pLL2787 ϕ11 int [110]

pDG783 kanR [112]

a Abbreviations: TN; transposon insertion.

doi:10.1371/journal.pgen.1006233.t001
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products into similarly digested vectors or by using yeast homologous recombination cloning
(YRC) as previously described [87,88]. The pLL39_sufT and pCM28_sufT plasmids were cre-
ated using the 0875_5BamHI and the 0875_3SalI primer pair. The pCM11_sufT was created
using the 875gfpKpnI and 875gfpHindIII primer pair. The pCM11_acnA was made using the
AcnApHindIII and AcnApKpnI primer pair. TheMycobacterium tuberculosis rv1466 was
codon optimized and synthesized by Integrated DNA technologies (IDT; Coralville, IA) and
cloned into pCM28 using the native S. aureus sufT promoter using YRC. The full-length con-
struct was constructed using amplicons generated using the following primer pairs:
pCM28YCC and Ycc875p3; ycc875p5 and 875pMT3; 875pMT5 and 875pCM28 3. The trun-
cated version was created using the same primers except MT875trunk5 and MT875trunk3
replaced ycc875p5 and Ycc875p3, respectively.

Growth analyses
Growth was assessed in 200 μL cultures grown at 37°C in 96-well plates using a BioTek 808E
Visible absorption spectrophotometer. Culture optical density was monitored at 630 nm. The
staphylococcal-defined medium has been described previously [4]. Strains cultured overnight
in TSB were inoculated into minimal medium or TSB to a final optical density (OD) of 0.025
(A600) units. For assessing nutritional requirements, cultures were harvested and treated as
above, except that the cell pellet was washed twice to prevent carryover of rich medium compo-
nents. For aerobic growth the shake speed was set to medium. For microaerobic growth the
plate was incubated statically.

The four growth medium formulations utilized for nutritional analyses were: 1) 20AA glu-
cose medium, containing the 20 canonical amino acids and 14 mM glucose as a source of car-
bon; 2) 18AA glucose medium, containing 18 canonical amino acids and lacking leucine and
isoleucine and 14 mM glucose as a source of carbon; 3) 20AA glutamate medium, containing
the 20 canonical amino acids and 44 mM glutamate as a source of carbon, and 4) 18AA gluta-
mate medium, containing 18 canonical amino acids and lacking leucine and isoleucine and 44
mM glutamate as a source of carbon.

To examine vancomycin sensitivity, cultures were inoculated into TSB in the presence or
absence of varying concentrations of vancomyin (0.025–1.5 μg/mL). Growth inhibition was
assessed after 4 hours of growth. Paraquat sensitivity assays were conducted upon solid tryptic
soy broth agar (TSA) plates containing 0 or 30 mM of paraquat. Overnight cultures (~18 hours
of growth) were serial diluted in 1X phosphate buffered saline and 10 μL of each dilution was
placed on plates of the solid medium. The plates were incubated at 37°C for 15 hours before
the growth was assessed.

Transcriptional reporter fusion assay
Strains cultured overnight in TSB-Erm medium were diluted into fresh TSB-Erm medium to a
final OD of 0.1 (A600) and cultured, with shaking, at a HV ratio of 10. At periodic intervals cul-
ture density and fluorescence were assessed as described previously [4]. Fluorescence data were
normalized with respect to a strain not carrying a GFP-based transcriptional reporter to nor-
malize for background fluorescence values. The resulting data were normalized to the culture
OD. Finally for ease of comparative analyses the data were normalized relative to the wild-type
(WT) strain, or as specified in the figure legend.

Anaerobic culture conditions were achieved as described earlier [4,89]. Cells were cultured
to exponential growth, aerobically, as described above. The cultures were then split and one set
of cells was cultured at a HV ratio of zero in capped microcentrifuge tubes and anaerobiosis
was verified by the addition of 0.001% resazurin to control tubes [4,89].
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RNA extractions and real time quantitative PCR (RT-PCR)
mRNA abundances of genes were examined from a previously described cDNA library [4].

Cell-free extract enzyme assays
Aconitase (AcnA) assays. Strains cultured overnight in TSB were diluted into fresh TSB

to a final OD of 0.1 (A600). For strains carrying pacnA the medium was amended with 1%
xylose to induce gene transcription, unless specifically mentioned otherwise and cultured for 8
hours (~OD of 8) and at a HV ratio of either 10 or 0. The HV ratios were altered as per experi-
mental requirements and details are mentioned in each figure legend. For strains where chro-
mosomal levels of AcnA were assessed, strains were cultured for 18 hours at a HV ratio of 15.

For AcnA assays using anaerobically cultured S. aureus, strains were cultured in 2 mL
microcentrifuge tubes containing 2 mL of culture medium (formulation as described above)
and at a HV ratio of zero, as described earlier [4]. Anaerobic conditions were verified by the
addition of 0.001% resazurin to control tubes and the medium color was monitored over time.
Anaerobiosis was achieved by 3 hours post inoculation.

For assessing the effects of paraquat, cells were cultured to post exponential growth phase
and one set of cultures was challenged with 40 mM paraquat for 1 hour, prior to harvest.

For assessing the effects of the reaeration (re-exposure of cells cultured anaerobically (fer-
mentative growth) to dioxygen) in whole cells, strains were cultured anaerobically as described
above for 4.5 hours. To induce reaeration, tubes were uncapped and rapidly transferred into
shake tubes at a HV ratio of 15. Cultures were subsequently grown for 35 minutes with vigor-
ous shaking prior to harvest.

Anaerobic growth of S. aureus cells upon sodium nitrate as a terminal electron acceptor results
in the respiratory reduction of nitrate to nitrite. NO is an acidified nitrite derivative and can arise
during respiration upon nitrate in cells cultured in TSBmedium [90]. NO can inactivate FeS clus-
ters [91,92]. Thus, in experiments where the effect of sodium nitrate is assessed, the growth
medium (TSB) was buffered with 50 mMHepes, pH 7.2 to prevent NO species formation.

To assess AcnA activity, cell pellets were harvested by centrifugation, placed inside a COY
anaerobic chamber, and re-suspended in 100 μL anaerobic lysis buffer (50 mM Tris, 150 mM
NaCl, pH 7.4). Cells were lysed by the addition of 4 μg lysostaphin and 8 μg DNAse and incu-
bated at 37°C until confluent lysis was observed. The cellular lysates were clarified using a 10
minute high-speed spin. Lysates were removed from the anaerobic chamber and between 15
and 25 μL of lysate was added to 985–975 μL (total volume of 1 mL) of lysis buffer containing
20 mMDL-isocitrate. Aconitase activity was determined by monitoring the conversion of iso-
citrate to cis-aconitate spectrophotometrically using a Beckman Coulter DU530 UV-Vis
absorption spectrophotometer (cis-aconitate ε240 nm = 3.6 mM-1cm-1 [93]). Enzymatic activ-
ity was standardized with respect to the total protein concentration and subsequently to that of
the parental strain or as indicated in the figure legend.

The reactivation (repair) of hydrogen peroxide (H2O2) damaged FeS clusters upon AcnA
was performed as described earlier, with minor modifications [41]. Cell-free lysates were gener-
ated from strains cultured anaerobically. At time zero the lysates were treated with 0.45 mM
H2O2. After one minute, H2O2 stress was terminated by the addition of 45 μg/mL of catalase.
FeS cluster repair was monitored by following recovery of AcnA activity over time.

To assess the effect of dioxygen upon AcnA in vitro, cell-free lysates were generated anoxi-
cally and time zero AcnA activity was recorded. Subsequently the lysates were exposed to
dioxygen by incubation in 1.5 mL microcentrifuge vessels with the caps left open and shaking
upon a thermomixer at 600 rpm and 37°C. AcnA activity were recorded periodically post
dioxygen exposure.
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Isopropylmalate isomerase (LeuCD) assays. Cells were cultured, harvested, and cell pel-
lets obtained as described previously [4]. LeuCD activity was assayed following addition of
20 μL of lysate to 680 μL of buffer (50mM Tris, pH 8.0) containing 10 mMMgCl2 and 10 mM
DL-Threo-3-isopropylmalic acid. LeuCD was assayed as a functional ability to convert 3-iso-
propylmalate to dimethylcitraconate acid spectrophotometrically (dimethylcitrateconate
ε235nm = 4.35mM-1 cm-1), as described previously [94]. Enzymatic activity was standardized
with respect to the total protein concentration and subsequently to that of the parental strain
or as indicated in the figure legend.

Dihydroxy-acid dehydratase (IlvD) assays. Cells were cultured, harvested and cell pellets
obtained as described previously [4]. IlvD activity was determined by the addition of 20 μL of
cell-free extract to a buffer containing 50 mM Tris (pH 8.0) supplemented with 10 mMMgCl2
and 10 mM D,L-2,3-dihydroxy-isovalerate. Keto acid formation from D,L-2,3-dihydroxy-iso-
valerate was monitored spectrophotometrically (keto acids ε240nm = 0.19 mM-1 cm-1) to
determine the activity of IlvD. Enzymatic activity was standardized with respect to the total
protein concentration and subsequently to the activity of the parental strain or as indicated in
the figure legend.

Catalase assays. Cells were cultured, harvested, and cell pellets obtained as described
above for aconitase assays or as described in the figure legend. The cell lysate was further
diluted 50-fold in lysis buffer and catalase activity was assayed by the addition of 5 μL of the
diluted extract to 975 μL of assay buffer A (50 mM Tris, pH 7.5, 150 mMNaCl, and 18 mM
H2O2). The decomposition of H2O2 was monitored spectrophotometrically, as described else-
where [95].

Superoxide dismutase assays. Cells were cultured, harvested, and cell pellets obtained as
described above for aconitase assays or as specified in the figure legend. SOD activity in the cell
lysates was determined using the xanthine oxidase-cytochrome c method [96].

Lysis with lysostaphin
Strains were cultured overnight in TSB and cells were harvested by centrifugation. Cell pellets
were washed twice with 1X phosphate buffered saline and resuspended in lysis buffer (recipe
above) in the presence of 5 μg/mL of lysostaphin. The lysostaphin mediated decrease in optical
densities (A600) was recorded periodically.

Protein concentration determination and western blot analyses
Protein concentration was determined using a copper/bicinchonic acid based colorimetric
assay modified for a 96-well plate (47). Bovine serum albumin (2 mg/mL) was used as a stan-
dard. Western blot analyses were conducted as described previously [4,88].

Determination of optical density, pH profiles and acetic acid
concentration in spent medium
Strains cultured overnight in TSB (~18 hours) were diluted into fresh TSB to a final OD of 0.1
(A600). Periodically, aliquots of the cultures were removed, optical density was determined, and
the cells and culture media were partitioned by centrifugation at 14,000 rpm for 1 minute. Two
mL of either the culture supernatant or sterile TSB, which served to provide a pH reading for
the point of inoculation, were combined with 8 mL of distilled and deionized water and the pH
was determined using a Fisher Scientific Accumet AB15 pH mVMeter. The concentration of
acetic acid in spent media was determined using the R-Biopharm Enzymatic BioAnalysis kit
following the manufacturer's suggested protocol.
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Static model of biofilm formation
Biofilm formation was examined as described elsewhere, with minor changes [71,97]. Briefly,
overnight cultures were diluted into biofilm media (TSB supplemented with 3% NaCl and
0.5% glucose), added to the wells of a 96-well microtiter plate and incubated statically at 37°C
for 22 hours. Prior to harvesting the biofilms, the optical density (A590) of the cultures was
determined. The plate was subsequently washed with water, biofilms were heat fixed at 60°C,
and the plates and contents were allowed to cool to room temperature. The biofilms were
stained with 0.1% crystal violet, washed with water, destained with 33% acetic acid and the
absorbance of the resulting solution was recorded at 570 nm and standardized to an acetic acid
blank and subsequently to the optical density of the cells upon harvest. Finally the data were
normalized with respect to the WT strain to obtain relative biofilm formation.

Exoprotein analyses and zymography
Spent medium supernatants were obtained from overnight cultures, filter sterilized with a
0.22 μm (pore-size) syringe filters, and standardized to culture optical densities (A600). Zymo-
graphic analyses of bacteriolytic proteins were conducted using standard methods described
elsewhere [98] and samples were separated upon a 12% SDS gel incorporated with 0.3% (vol/
vol) heat killed USA300_LAC cells [98]. To determine exoprotein profiles, the spent media
supernatant was concentrated using standard trichloroacetic acid precipitation. The resultant
protein pellets were resuspended in laemelli buffer and equal volumes were separated upon a
12% SDS gel.

Bioinformatic analyses
The taxonomic distribution of Suf was determined via BLASTp analyses of publically available
genome sequences in October of 2011 as part of a previous study [25]. This distribution of Suf
was characterized using the KEGG gene viewer [99], with manual verification using BLASTp
or using sequence alignments. 1094 genomes out of a total of 1667 genome sequences (65.6%
of total) encoded for SufBC. Genomes that encoded for SufBC were then screened for the pres-
ence of SufT using BLASTp. sufT was considered to be associated with the suf operon if they
were within four open reading frames from sufBC and appeared to be transcribed from a com-
mon promoter.

SufT sequences were compiled and aligned with ClustalW specifying default parameters
[100]. The aligned sequences were manually truncated to the minimal SufT sequence or posi-
tions 1 to 99 of SufT from Thermoplasma acidophilum (Kegg ID: Ta0200). Phyml was used to
reconstruct the evolutionary history of the SufT alignment block specifying the Blosum62 sub-
stitution model and gamma distributed rate variation [101]. The topology of the tree was evalu-
ated using Chi2-based likelihood ratio tests. The phylogenetic reconstruction was projected
with the Interactive Tree Of Life (Itol) web program [102].

The N- and C-terminal sequences that were pruned from the alignment block were sub-
jected to BLASTp against the Conserved Domain Database (CDD) using an evalue of 0.01
[103]. Identified motifs in both N- and C- terminal motifs were compartmentalized into modu-
lar structures based on the presence of unique sequence motifs. These N- and C-terminal
motifs were mapped onto the SufT phylogenetic tree using the Itol program. Furthermore,
SufT was mapped onto a concatenated SufBC phylogenetic tree using the Itol program. The
concatenated SufBC tree was constructed as previously described [25].
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Supporting Information
S1 Fig. Growth profiles of strains. Panel A: A strain lacking AcnA is nearly incapable of growth
in 20AA glutamate medium. Growth traces of theWT (JMB1100) and ΔacnA (JMB 1163) strains
during aerobic culture are shown. Panel B: Strains lacking SufT or Nfu display growth profiles
largely similar to the WT strain in 20AA glucose medium. Growth traces of the WT (JMB1100),
ΔsufT (JMB1146) and the Δnfu (JMB1165) strains during aerobic culture are shown. Data repre-
sent average values of two biological replicates and error bars represent standard deviations.
(TIF)

S2 Fig. Transcriptional activity of acnA in a strain lacking SufT. The transcriptional activity
of the acnA gene was assessed in the WT (JMB1100) and the ΔsufT (JMB1146) strains carrying
a construct containing gfp under the transcriptional control of the acnA promoter. GFP fluo-
rescence was monitored over time.
(TIF)

S3 Fig. Growth profiles upon 18AA glucose medium during micoaerobic culture. Growth
traces of the WT (JMB1100), ΔsufT (JMB1146) and the Δnfu (JMB1165) strains during micro-
aerobic culture are shown. Data represent average value of four biological replicates and error
bars represent standard deviations.
(TIF)

S4 Fig. Analyses of superoxide dismutase activity across growth. Sod activity was assessed in
cell-free lysates generated fromWT (JMB1100) and ΔsufT (JMB 1146) strains. The lysates used
were the same lysates as used to determine AcnA activity displayed Fig 3B. Data represent the
average of three biological replicates and errors bars represent standard deviations.
(TIF)

S5 Fig. Superoxide dismutase activity in strains following challenge with paraquat. The
acnA::TN (JMB3537; parent) and the acnA::TN ΔsufT (JMB3539) strains containing pacnA
were cultured aerobically to post exponential growth phase before one set of cultures was chal-
lenged with paraquat for one hour. Sod activity was determined in cell-free lysates. Data repre-
sent the average of three biological replicates and errors bars represent standard deviations.
(TIF)

S6 Fig. Phenotypic analyses of the Δnfu ΔsufT double mutant in complex medium. Panel A,
B and C: A Δnfu ΔsufT double mutant phenocopies a strain lacking AcnA during aerobic cul-
ture in TSB. The WT (JMB1100), ΔacnA (JMB 1163), ΔsufT (JMB 1146), Δnfu (JMB1165) and
the Δnfu ΔsufT (JMB2514) strains were cultured aerobically in TSB and the culture optical den-
sity (Panel A), pH of the spent media supernatant (Panel B) and acetic acid concentration in
the spent media supernatant (Panel C) was assessed periodically. Representative data from one
days experiment are displayed.
(TIF)

S7 Fig. AcnA activity in strains carrying sufA or sufT in multicopy. Panel A: AcnA activity is
not significantly altered in the ΔsufT and Δnfu strains carrying sufA upon a multi-copy plas-
mid. AcnA activity was assessed from the WT (JMB1100), ΔsufT (JMB1146), and Δnfu
(JMB1165) strains carrying either pEPSA5 (empty vector; pEV) or pEPSA5_sufA (psufA).
Panel B: AcnA activity is not significantly altered in the Δnfu strain carrying sufT upon a
multi-copy plasmid. AcnA activity was assessed from the WT (JMB1100) and Δnfu (JMB1165)
strains carrying either pCM28 (empty vector; pEV) or pCM28_sufT (psufT).
(TIF)
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S8 Fig. Assessing the growth of a ΔsufTmutant carrying nfu in multicopy in 20AA gluta-
mate medium. Growth traces are displayed for the WT (JMB1100) and ΔsufT (JMB1146)
strains carrying either pEPSA5 (empty vector) or pEPSA5_nfu. Strains were cultured aerobi-
cally in 20AA glutamate media in the absence (Panel A) or presence (Panel B) of xylose to
induce nfu transcription. Data represent the average of two biological replicates and standard
deviations are shown.
(TIF)

S9 Fig. Growth in the presence of vancomycin. Growth inhibition in the presence of varying
concentrations of vancomycin was assessed in WT (JMB1100) and the Δnfu ΔsufT (JMB2514)
strains.
(TIF)

S1 Table. Oligonucleotides used in this study.
(DOCX)
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