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Abstract: Recent advances in mobile technology have created a shift towards using battery-driven
devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic
and screening procedures based on the electrocardiogram (ECG) signals collected remotely for
outpatients who need continuous monitoring. High-speed transmission and analysis of large
recorded ECG signals are essential, especially with the increased use of battery-powered devices.
Exploring low-power alternative compression methodologies that have high efficiency and that
enable ECG signal collection, transmission, and analysis in a smart home or remote location is
required. Compression algorithms based on adaptive linear predictors and decimation by a factor
B/K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD),
and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects),
the new algorithm demonstrates the highest compression performance (CR = 6 and PRD = 1.88)
and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases.
The proposed algorithm presents an advantage for the real-time transmission of ECG signals using
a faster and more efficient method, which meets the growing demand for more efficient remote
health monitoring.

Keywords: wearable sensors; telemedicine; digital medicine; smart healthcare; wireless systems;
remote healthcare; mobile health; e-Health

1. Introduction

The World Health Organization (WHO) cites Cardiovascular Diseases (CVDs) as the number one
cause of death worldwide [1]. Given the gravity of these diseases, many researchers have focused their
research on cardiovascular disease and heart health. Additionally, an intense focus has been placed on
studying the ways in which conventional cardiovascular diagnosis technologies can be improved for
use in hospitals, clinics, and other related health care facilities. Increased efforts in this research area
have led to several advances in technology for cardiac function screening and diagnostics. A variety
of cardiac abnormalities are screened and assessed using a simple, risk-free and inexpensive cardiac
test known as the electrocardiogram (ECG) analysis [2]. Each ECG heartbeat signal contains three
prominent waves: the P wave, the QRS complex, and the T wave. The detection of these waves over
a short period of time (<30 min) has been accomplished with great success and accuracy for acute
screening and diagnostics [3–5]. Early detection of CVDs, on the other hand, necessitates long-term
monitoring of ECG signals via ECG electrodes that are connected to wearable devices, mobile phones,
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smart clothes, and point-of-care (POC) devices in a smart home setting [6]. Devices used in remote
monitoring typically rely on wireless communication and could require extensive power resources [7].

A remote system with real-time monitoring for the elderly can provide a timely alarm when
patients need urgent help [6,8]. This technology may relieve some of the pressure on hospitals to
monitor patients on-site. The architecture proposed in Figure 1 includes: biosensors, connected
through a Bluetooth wireless technology to a unit (referred to as a gateway) that mainly interfaces the
user with the healthcare center. The gateway unit can carry out signal processing and data storage
before transmitting the data over the internet. A gateway can be an independent device or a personal
computer. Several studies have developed smart gateways and have proposed different health care
system models based on these gateways [9–11]. Bansal et al. [12] and Jung et al. [13] proposed health
care monitoring systems that rely on mobile gateways, similar to smart phones. Spinsante and Gambi [14]
and Lin et al. [15] proposed TV-based mode of home care using a WiFi set-top box as a gateway.

Figure 1. A smart home with electrocardiogram (ECG) monitoring system.

Rahmani et al. [16] developed a smart home gateway and a corresponding monitoring system
based on embedded technology, which can monitor multi-physiological signals. Although each of
these methods has their own advantages, there are also some drawbacks. The mobile gateway cannot
guarantee long-term and continuous measurements. The set-top-box-based system does not provide
measurement of ECG signals, which is the most important physiological signal for assessing patients
with cardiovascular diseases, and thus cannot offer comprehensive services for patients.

Smart homes [17–19] are becoming an effective solution that allows the growing number of elderly
patients, as well as physically impaired patients such as the deaf and blind, to remain in the comfort of
their homes with healthcare monitoring that supports their lifestyles. With several sensors, cameras,
biomedical devices, and wearable health trackers installed throughout the home, the health conditions
of residents can be continuously monitored. The assistance-required feature is triggered when an
unusual or critical situation is detected, helping patients during emergencies. Local and remote alarms
generated by the system alert the patient of critical situations, and can call healthcare service providers
for help depending on how the system is programmed. A smart home can enable the elderly and
people with disabilities to have full control over their living environments and perform daily activities
on their own, while monitoring patient safety and well-being to reduce hazard risks. Having this level
of independence improves patients’ sense of dignity and reduces costs imposed on the healthcare
system [20,21].

Energy consumed in remote monitoring systems and smart homes during the transmission of
biomedical signals, such as ECG signals, needs to be reduced with a proper compression method
that preserves the main ECG events. Notably, there are high-performance compression lossless-based
methods [22] that are very complex, require high computational resources, and thus not suitable
for remote monitoring [23,24]. We have therefore developed a simple, efficient, and sufficient lossy
compression method that is suitable for remote monitoring and smart homes.
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2. Methods

2.1. Data Used

Training Database: All 48 ECG recordings from the MIT-BIH arrhythmia database were used in
the training phase, totaling 109,984 heartbeats [25]. The MIT-BIH database is widely used to evaluate
the performance of ECG compression methods and QRS detection algorithms as it contains different
types of noise and various QRS morphologies [26]. The annotations of R peaks are provided within
each ECG recording.

Testing Database: All 105 ECG recordings from the QT database were used in the testing
phase, totaling 111,301 heartbeats [27] for evaluation of the performance of our proposed
compression algorithm.

2.2. Benchmark Lossless Method I: Adaptive Linear Prediction

In the literature, researchers have used forward-prediction based approaches to detect QRS
complexes in ECG signals [28–30]. Typically, the use of linear forward prediction is for the estimation
of the current ECG sample n based on its past m samples:

x̂[n] =
m

∑
k=1

hkx[n− k], (1)

where x̂[n] is the output of estimating x[n], hm represents the predictor coefficients, and e[n] is the
prediction error that is calculated as follows:

e[n] = x[n]− x̂[n]. (2)

The schematic representation of Method I is shown in Figure 2a. The prediction error e[n]
signal is used to detect QRS complexes instead of using the ECG signal itself. For consistency and
easy comparison between methods, we have used the variable h to refer to the impulse response in
this paper.

(b) ECG KB
LPF
h[r]

x[n] J[r] P[r] y[m]
ECG

(a) Linear 
Predictor

x[n] y[m]
ECG

Prediction
error

Dynamic 
Fixed Length

Packaging
+
e[n]

(c) ECG KLPF
h[r]

x[n] J[r] y[m]
ECG

Smart home Gateway

Smart home Gateway

Smart home Gateway

Figure 2. Schematic diagram of ECG compression methods. (a) benchmark lossless method I
(b) benchmark lossy method II (c) proposed lossy method III.

2.3. Benchmark Lossy Compression Method II: Decimating by a Factor B/K

Method II converts the sampling rate by interpolation factor of B, followed by a decimating factor
of K [31,32]. Figure 2b illustrates the idea of decimation by factor B/K. The interpolation step can be
expressed as follows:

J[r] =

{
x[r/B], r = 0,±B,±2B...,

0, otherwise.
(3)
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Then, the output J[r] signal passes through low-pass filter (LPF) as follows:

P[r] =
∞

∑
l=−∞

h[r− lB]J[l]. (4)

Then, the output signal of the decimator is

y[m] = P[mK] =
∞

∑
l=0

h[mK− lB]x[l], (5)

where m is the data samples of the compressed ECG signals. In this paper, r refers to the ECG sample
point generated after the filtering step while m refers to the compressed ECG sample point.

2.4. Proposed Lossy Compression Method III: Decimating by Factor K

The decimator is an improved version of a downsampler as it avoids aliasing (defined as
reconstructing a signal that is completely distorted and does not include the original signal main
events [31]). The first step of the decimator is to reduce the bandwidth of x[n] to Fx,max = Fx/2K, which
is equivalent to wx,max = π/K in frequency domain, and then downsample by K. The block diagram
of decimation is shown in Figure 2c. The ECG signal x[n] is passed through an LPF, characterized by
the impulse response h[n] and frequency response HK(wx), which satisfies the following:

HK(wx) =

{
0, |wx| ≤ π/K,
1, otherwise. (6)

Therefore, the LPF eliminates the spectrum of X(wx) in the range π/K < wx < K. In other words,
only the frequency components of x[n] within the range |wx| ≤ π/K will be downsampled. The output
of the LPF can be written as follows:

J[n] =
∞

∑
l=0

h[l]x[n− l]. (7)

Thus, the output signal of the decimator is:

y[m] = J[mK] =
∞

∑
l=0

h[l]x[mK− l]. (8)

Given that the LPF operation on x[n] is linear and time invariant, the combination of LPF with
the downsampler produces a time-variant system. Thus, decimation is suitable for analysis of the ECG
signal, as it is a time-varying signal.

We have one variable K to compress the ECG signal to K. An optimization step is needed to
determine the optimal value for K. We have three objective functions: TP(K), FP(K), and FN(K) to be
optimized simultaneously, as follows:

g
K
= 2×TP(K)

2×TP(K)+FP(K)+FN(B,K) ,

subject to
kmin ≤ K ≤ kmax ,

(9)

where g is the F-score (the harmonic mean of sensitivity and positive predictivity). The optimization
process is time-consuming at the training phase, but once it is achieved, the optimal parameter K will
be used as is in the implementation phase.

2.5. QRS Detection

In this paper, a QRS detector is needed to evaluate the compression performance. To our knowledge,
the recently published QRS detection algorithm [3,26] is the most reliable as it was tested on 11 different
ECG databases, making it an efficient algorithm. The QRS detector in [26] was validated multiple
times in the literature, and it is called the two-event-related moving averages (TERMA) algorithm [33].
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The TERMA-based QRS detector is fast, reliable, and efficient, and better-suited for remote monitoring
and battery-operated mobile devices [3,26,33]. Therefore, TERMA-based QRS detectors are used in
combination with Method III to improve the overall ECG signal analysis, reduce memory capacity,
and improve signal transmission as recommended in [22].

The function of a TERMA-based QRS detector [33] has five inputs: starting frequency (F1),
end frequency (F2), first window size (W1), second window size (W2), and rejection threshold (β).
The processing flow of TERMA begins by passing an ECG signal through a third-order Butterworth
F1–F2 bandpass filter. The output signal is then squared, followed by two moving averages (with two
window sizes W1 and W2), and then applying β threshold is applied for blocks of interest generation.
The optimization phase of TERMA is discussed in [26], and the optimal value for these five parameters
is found to be F1 = 8 Hz, F2 = 20 Hz, W1 = 97 ms, W2 = 611 ms, and β = 8. Therefore, we use a
TERMA-based QRS detector with these optimized values.

The TERMA-based QRS detector is applied after compressing ECG signals using Method III.
The lossless benchmark in Method I has it is own QRS detector that begins by removing high-frequency
noise from the prediction error signal. Then, it passes the output signal to a Savtizky–Golay filter to
smooth the signal with a window of size W and a polynomial of order O, treating the QRS detection as
a least-squares problem. Method II uses a TERMA-based QRS detector as in Method III.

2.6. Compression Ratio

The bit compression ratio (BCR) was calculated as follows:

BCR =
size(BWu)

size(BWc)
, (10)

where BWc and BWu refer to the bit widths of compressed and uncompressed samples, respectively.

3. Results and Discussion

The MIT-BIH arrhythmia database is used for evaluating all compression algorithms. This benchmark
database contains 48 ECG recordings, each of which is 30 min in length. The ECG signals have 11-bit
resolution over 10 mV and are sampled at 360 Hz.

For the evaluation of all compression methods, two statistical measures are used, sensitivity (SE)
and positive predictivity (+P), which are calculated as follows:

SE(%) = TP/(TP + FN), (11)

+P(%) = TP/(TP + FP). (12)

The benchmark lossless Method I uses two parameters during the process of compression and
detection of QRS complexes: W and q. The optimal values for W and q are determined in [30]; after
applying Pareto optimization, W ranged from 3 to 6 and q ranged from 9 to 17. It was found that
optimal values are W = 3 and q = 15.

The benchmark lossy Method II also uses two parameters B and K. The optimization process is
determined in [22], where the value of B varies from bmin = 360 Hz to bmax = 500 Hz, and the value of
K varies from kmin = 50 Hz to kmax = 360 Hz. The optimal value of B = 390 Hz and the optimal value
of K = 80 Hz.

The proposed lossy Method III uses only one parameter, K. The optimization process was carried
out using the training database (MIT-BIH Arrhythmia database) and the value of K varied from
kmin = 45 Hz to kmax = 360 Hz. The optimal value of K was found to be 60 Hz, as shown in Table 1.
Then, the value of K = 60 was used on the testing database (QT database). Note that researchers can
use the optimal value for compressing any ECG signals, and there is no need to redo the optimization
phase again unless a certain abnormality or noise is investigated.
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Table 1. Determining the optimal K value for Method III based on the QRS detection accuracy.
Results were sorted in descending order according to the K value. TP stands for true positives (QRS
complexes detected as QRS complexes), FN stands for false negatives (QRS complexes that have
not been detected), FP stands for false positives (non-QRS complexes detected as QRS complexes),
SE stands for sensitivity, +P stands for positive predictivity, and g is the F-score.

K No. Beats TP FP FN SE PP g

360 109,985 109,742 126 250 99.78 99.87 99.83
180 109,985 109,756 144 236 99.79 99.85 99.83
120 109,985 109,786 167 223 99.80 99.83 99.82
90 109,985 109,788 204 212 99.81 99.79 99.81
72 109,985 109,786 259 219 99.80 99.73 99.78
60 109,985 109,818 196 208 99.81 99.80 99.82
51 109,985 109,867 252 197 99.83 99.75 99.80
45 109,985 109,800 217 222 99.80 99.78 99.80

The QRS detection results of all ECG recordings using Method III with K = 60 are shown in Table 2.
Figure 3 shows the performance of Method III under different conditions from Record 117, Record 200,
and Record 203. The upper plots (a) for each recording show the original ECG signal. The middle plots
(b) show the compressed ECG signal for each recording using Method III. The bottom plots (c) show
the result for each recording of the two-event-related moving-average(TERMA)-based QRS detector
based on the compressed signals shown in the second row signals (b). Figure 3 (Record 117) shows the
performance of the QRS detector on a compressed ECG signal using Method III over T waves with
large amplitudes. Method III succeeded in detecting irregular beats, as shown in Figure 3 (Record 201)
and detecting beats in the presence of noise and baseline wandering, as shown in Figure 3 (Record 203).

+ + + + + + + + +

* * * * * * * ** * * * * * * * *** * * * * * * *

+ + + + + + + + ++ + +

Record No. 117 Record No. 200 Record No. 203

+ ++ + + + + + ++ + ++ ++

(a)

(b)

(c)

* * * * * **** * * * ** *

Figure 3. Heartbeat (QRS complex) detection over Records 117, 200, and 203 of the MIT-BIH Arrhythmia
Database. (a) raw ECG signal (b) compressed ECG signal using Method III (c) compressed ECG signal
using Method III. Record 117 contains regular beats with large T waves, Record 200 contains irregular
beats (specifically premature ventricular contractions), and Record 203 contains severe baseline drift
and noise. The y-axis represents manipulated signal amplitudes. Here, the red + represents the
annotated R peak based on the MIT-BIH Arrhythmia Database while the green * represents the detected
R peak using the two-event-related-moving-average(TERMA)-based QRS detector.
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Table 2. Performance of the proposed compression of Method III using the MIT-BIH Arrhythmia
Database. The results were obtained using the optimal value of K = 60 Hz. TP stands for true positives
(QRS complexes detected as QRS complexes), FN stands for false negatives (QRS complexes that have
not been detected), FP stands for false positives (non-QRS complexes detected as QRS complexes),
SE stands for sensitivity, and +P stands for positive predictivity.

Record No. of Beats TP FP FN SE(%) +P(%) g(%)

100 2274 2274 0 0 100.00 100.00 100.00
101 1866 1866 3 0 100.00 99.84 99.92
102 2187 2187 0 0 100.00 100.00 100.00
103 2084 2084 0 0 100.00 100.00 100.00
104 2229 2231 27 0 100.00 98.80 99.40
105 2602 2602 5 0 100.00 99.81 99.90
106 2026 2025 4 1 99.95 99.80 99.88
107 2136 2137 0 0 100.00 100.00 100.00
108 1763 1791 42 2 99.89 97.71 98.79
109 2533 2533 0 0 100.00 100.00 100.00
111 2123 2123 3 0 100.00 99.86 99.93
112 2539 2539 0 0 100.00 100.00 100.00
113 1794 1794 3 0 100.00 99.83 99.92
114 1890 1881 9 9 99.52 99.52 99.52
115 1953 1953 0 0 100.00 100.00 100.00
116 2395 2395 1 0 100.00 99.96 99.98
117 1535 1535 1 0 100.00 99.93 99.97
118 2278 2278 1 0 100.00 99.96 99.98
119 1988 1988 0 0 100.00 100.00 100.00
121 1863 1863 0 0 100.00 100.00 100.00
122 2476 2476 0 0 100.00 100.00 100.00
123 1519 1519 0 0 100.00 100.00 100.00
124 1619 1619 0 0 100.00 100.00 100.00
200 2601 2601 6 0 100.00 99.77 99.88
201 1949 1949 13 0 100.00 99.34 99.67
202 2138 2133 0 5 99.77 100.00 99.88
203 2988 2979 10 11 99.63 99.67 99.65
205 2656 2655 0 1 99.96 100.00 99.98
207 2324 2163 3 167 92.83 99.86 96.22
208 2953 2947 0 6 99.80 100.00 99.90
209 3006 3006 0 0 100.00 100.00 100.00
210 2652 2650 1 2 99.92 99.96 99.94
212 2748 2748 0 0 100.00 100.00 100.00
213 3250 3249 0 1 99.97 100.00 99.98
214 2262 2260 1 2 99.91 99.96 99.93
215 3362 3362 1 0 100.00 99.97 99.99
217 2208 2208 1 0 100.00 99.95 99.98
219 2154 2154 0 0 100.00 100.00 100.00
220 2048 2048 0 0 100.00 100.00 100.00
221 2427 2427 0 0 100.00 100.00 100.00
222 2485 2485 4 0 100.00 99.84 99.92
223 2604 2604 0 0 100.00 100.00 100.00
228 2060 2059 39 1 99.95 98.14 99.04
230 2256 2256 1 0 100.00 99.96 99.98
231 1571 1571 0 0 100.00 100.00 100.00
232 1783 1783 14 0 100.00 99.22 99.61
233 3077 3077 1 0 100.00 99.97 99.98
234 2751 2751 2 0 100.00 99.93 99.96

48 Records 109,985 109,818 196 208 99.81 99.80 99.81

The QRS detection performance of the proposed compression methods and well-known QRS
detectors is shown in Table 3. As shown, Method III (along with a TERMA-based QRS detector)
outperformed most of the well-known algorithms, such as Hamilton and Tompkins [34], Poli et al. [35],
Afonso et al. [36], Martínez et al. [37], Chen et al. [38], Ieong et al. [39], and Nallathambi and
Principe [40]. Interestingly, Method III scored identical results as the multiscale morphology technique,
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which is highly computationally complex. In contrast, the proposed Method III is simple, faster,
and more efficient, more suitable for smart homes and remote monitoring. Method III outperformed
Method I and provided similar (though slightly lower) results to Method II.

Table 3. Performance of QRS detectors on the MIT-BIH Arrhythmia Database. SE stands for sensitivity,
while +P stands for positive predictivity. N/R stands for Not Reported.

Ref. Method SE(%) +P(%)

Hamilton and Tompkins [34] Band-pass filter/Search-back 99.69 99.77
Poli et al. [35] Genetic Algorithm 99.60 99.51

Afonso et al. [36] Filter Banks 99.59 99.56
Martínez et al. [37] Wavelet Delineation 99.66 99.56

Chen et al. [38] Wavelet De-noising 99.55 99.49
Zhang and Lian [41] Multiscale Morphology 99.81 99.80

Ieong et al. [39] Quadratic Spline wavelet 99.31 99.70
Nallathambi and Principe [40] Pulse Train 99.58 99.55

Method I Adaptive Predictor 99.64 99.81
Method II Decimating By A Factor B/K 99.78 99.92
Method III Decimating By A Factor K 99.81 99.80

Table 4 compares the performance of Methods I, II, and III with other compression schemes
implemented for remote monitoring. Method III scored the highest BCR at 6 with low PRD of 1.88
over the whole MIT-BIH Arrhythmia Database, outperforming existing well-known compression
methods. Note that Method III outperformed the delta predictor/Rice–Golomb coding [42], adaptive
predictor/Huffman coding [43], simple predictor/Huffman coding [44], slope predictor/fixed-length
packaging methods [45], Compressive Sensing [46], Nonuniform Binary Matrices [47], and Encoding
with Modified Thresholding [48], as well as Method I and Method II.

On the other hand, Method III scored a BCR similar to the Compressive Sensing method [49];
however, Method III scored a lower PRD of 1.88, which makes it superior. The only method that may
compete with Method III is the Simultaneous Orthogonal Matching Pursuit [50]; however, these results
were based on only one record from the MIT-BIH database, unlike Method III, which was validated
over the entire database.

Table 4. Performance comparison of compression methods. BCR stands for bit compression ratio, PRD
stands for percentage root-mean-square difference, N/R stands for Not Reported, and the symbol ≈
means nearly equal.

Compression Type Method Year No. Records Used BCR PRD Ref.

Lossless

Simple Predictor/Huffman Coding 2009 N/R 1.92 ≈0 [44]
Delta Predictor/Rice Golomb Coding 2011 N/R 2.38 ≈0 [42]
Adaptive Predictor/Huffman Coding 2013 N/R 2.43 ≈0 [43]

Slope Predictor/Fixed-length Packaging 2013 N/R 2.25 ≈0 [45]
Method I 2015 All records in MIT-BIH Arrhythmia DB 2.28 ≈0 [30]

Lossy

Simultaneous Orthogonal Matching Pursuit 2011 One record from MIT-BIH Arrhythmia DB 7.23 2.57 [50]
Compressive Sensing 2011 All records in MIT-BIH Arrhythmia DB 3.44 9 [46]

Wavelet Transform 2012 10 records from MIT-BIH Arrhythmia DB 4.0 1.66 [51]
Nonuniform Binary Matrices 2012 N/R 5.0 8.58 [47]

Compressive Sensing 2012 3 records from MIT-BIH Arrhythmia DB 2.5 2.6 [52]
Encoding with Modified Thresholding 2013 4 records from MIT-BIH Arrhythmia DB 5.4 2.7 [48]

Compressive Sampling 2013 One record from MIT-BIH Arrhythmia DB 2.5 9 [53]
Compressive Sensing 2015 11 records from MIT-BIH Arrhythmia DB 6.4 3.75 [49]

Method II 2017 All records from MIT-BIH Arrhythmia DB 4.5 0.53 [22]
Method III 2017 All records in MIT-BIH Arrhythmia DB 6 1.88 –

In this work, the proposed Method III along with the TERMA-based QRS detector were
implemented in MATLAB 2012a (MathWorks, Inc., Natick, MA, USA) on an Intel TM i5 CPU with
2.27 GHz (Santa Clara, California, United States). Figure 4 shows the BCR versus PRD and the average
processing time (APT) for a TERMA-based QRS detector. As expected, the APT decreased as the BCR
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increased. The TERMA-based detector took an APT of 0.15 s to achieve a BCR of 6. The compression
of Method III took an APT of 0.10 s to compress Record 100 from the MIT-BIH Arrhythmia database.
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Figure 4. Performance of proposed Method III. Here, BCR stands for bit compression ratio, PRD stands
for percentage root-mean-square difference, and APT stands for average processing time. The red
arrow shows the optimal combination of BCR, APT, and PRD.

3.1. Methods Implementation

To date, researchers have focused only on the ECG lossless compression methods, as seen in
Method I. The lossless compression methodology tries to achieve a PRD of value 0. However, the lossy
methods have no yet been investigated as extensively as the lossless methods [22]. We have therefore
developed Method III to improve the CR of the lossy method that was recently published in [22].

Method I uses the prediction error signal to detect the QRS complexes in ECG signals. Method II
and Method III detect the QRS complexes from the filtered ECG signal, and therefore they do not
need a linear predictor. The advantage of using the prediction error signal is its low amplitude
values and its center around zero amplitude, except for the QRS complex areas. However, a lossless
coding step is required to preserve the main events within ECG signals. It is known that the use
of lossless coding scheme would affect the signal quality and increase consumption of energy and
computational resources.

The CR (downsampling factor) in Method III ranges from 1 to 8. If we downsample by a
factor greater than 8, then the corresponding frequency band will be ≤40 Hz. In other words,
if the downsampling factor is 9, then the corresponding sampling frequency is 40 Hz (the original
sampling frequency of the ECG signals is 360 Hz). When applying the bandpass filter of the QRS
detection algorithm, there will be an error, as the cutoff frequencies must be within the interval of
0–1. For example, the QRS detection algorithm uses F2 = 20 Hz. If the factor is 9, then the sampling
frequency will be 40 Hz; if the cutoff frequency is F2/(Fs/2), then it will equal exactly one, which the
filter will fail to implement. Therefore, the maximum factoring for Method III is 8. In other words,
the sampling frequency of ECG signals is recommended to be greater than or equal to 40 Hz.

Method II was developed to compress ECG signals and focused on achieving a high QRS detection
rate and a high PRD. In comparison, Method III was developed to focus on increasing the CR with a
strong emphasis on the QRS detection method, rather than emphasizing the PRD method. The main
objective of Method III was to create a method that could be applied to smart homes and remote
monitoring, where long-term (over several days) ECG signals need to be collected in a fast and efficient
manner. In other words, if we have the computational resources, and the ECG processing speed
is not crucial, then Method II can be used; otherwise, Method III needs to be used to achieve high
processing speeds.
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3.2. Method Performance

The comparison of the compression performance of Methods I, II, and III with well-known
compression techniques can be seen in Table 4. There are more compression techniques that achieve
higher BCR, but these techniques are not suitable for low-power wearable applications [54,55], and are
therefore not included in the table. Note that low complexity compression algorithms that achieve
high BCR result in energy savings for both the compression process and the wireless transmission [46].
The overall energy consumption is more efficient when compared to transmitting the original signal
with more complex algorithms [56–58].

Method III achieved a BCR of 6 without the need for linear predictor, coding, or packaging.
The compression performance of Method III is substantially higher than all the algorithms, especially
when the value PRD is considered. Moreover, applying the TERMA-based QRS detector validates
the proposed Method III based on QRS detection accuracy. This step is crucial for developing a
compression methodology for smart homes and remote monitoring applications.

Most of the published ECG compression methods are typically not validated by a QRS detection
step, which makes it more difficult to assess compression quality. Method III succeeds in preserving
the main features of the ECG signal morphology given its lossy nature, as shown in Figure 3. It is clear
that Method III is a fast, efficient, and sufficient technique for remote monitoring.

The performance of different QRS detectors published in the literature is shown in Table 2.
Unfortunately, some researchers have excluded records from the MIT-BIH arrhythmia database due
to noise or arrhythmia, and, consequently, their algorithms appear to achieve higher performance
levels. Other researchers have excluded specific segments from each recording [37,59]. In contrast, we
tested the TERMA-based QRS detector over the output of Method III without excluding any records or
segments making the results more robust and meaningful [3].

Figure 5 shows that Method III smooths the frequencies with a power spectrum capturing the
main frequencies in the range of 10 Hz to 18 Hz. This observation confirms the findings in [26,60–62].
Method II also enhances the ECG frequencies, creating a bimodal distribution and improving the
frequency spectra of Method I.
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Figure 5. Comparison of power spectra for compression methods. The first 60 s of Record 100 from the
MIT-BIH Arrhythmia Database.

The detection performance of Method III on the QT database on a record-by-record basis is shown
in Table 5, while Table 6 shows the overall comparison of our results with the existing QRS detection
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algorithms on the QT database. The performance of each algorithm was reported in terms of number
of beats, SE, and +P. The proposed algorithm performed higher in terms of SE and +P when compared
to Pan–Tompkins [26] and Elgendi [26] over the same number of beats. Moreover, Method III scored
an overall performance similar to Method II with a higher compression rate (CR = 6) when compared
to the recently published Method II. We applied Method III to the QT database without changing the
value of any parameter and without re-training the algorithm. It is clear that the results of Method III
are promising (with the fixed parameter K = 60 Hz) and can be applied over different databases with
different sampling frequencies.

Table 5. Performance of Method III using K = 60 Hz on the QT Database. The TP stands for true
positives (the number of QRS complexes detected as QRS complexes), FN stands for false negatives
(the number of QRS complexes that have not been detected), FP stands for the number of false
positives (non-QRS complexes detected as QRS complexes), SE stands for sensitivity, and +P stands
for positive predictivity.

Record No. of Beats TP FP FN SE(%) +P(%)

100 1134 1134 0 0 100.00 100.00
102 1088 1088 0 0 100.00 100.00
103 1048 1048 0 0 100.00 100.00
104 1109 1118 0 0 100.00 100.00
114 867 866 3 1 99.88 99.65
116 1186 1186 0 0 100.00 100.00
117 766 766 0 0 100.00 100.00
123 756 756 0 0 100.00 100.00
213 1641 1641 0 0 100.00 100.00
221 1247 1247 1 0 100.00 99.92
223 1309 1309 0 0 100.00 100.00
230 1077 1077 0 0 100.00 100.00
231 732 732 0 0 100.00 100.00
232 866 866 2 0 100.00 99.77
233 1532 1532 0 0 100.00 100.00
301 1352 1352 0 0 100.00 100.00
302 1501 1501 0 0 100.00 100.00
306 1040 1040 0 0 100.00 100.00
307 853 853 0 0 100.00 100.00
308 1294 1294 3 0 100.00 99.77
310 2012 2012 0 0 100.00 100.00
803 1026 1026 0 0 100.00 100.00
808 903 903 5 0 100.00 99.45
811 704 704 0 0 100.00 100.00
820 1159 1159 0 0 100.00 100.00
821 1557 1557 0 0 100.00 100.00
840 1180 1180 0 0 100.00 100.00
847 803 801 8 2 99.75 99.01
853 1113 1113 0 0 100.00 100.00
871 917 917 1 0 100.00 99.89
872 990 990 0 0 100.00 100.00
873 859 859 0 0 100.00 100.00
883 892 892 0 0 100.00 100.00
891 1267 1267 0 0 100.00 100.00

16265 1031 1031 0 0 100.00 100.00
16272 851 851 0 0 100.00 100.00
16273 1112 1112 0 0 100.00 100.00
16420 1063 1063 0 0 100.00 100.00
16483 1087 1087 0 0 100.00 100.00
16539 922 922 0 0 100.00 100.00
16773 1008 1008 0 0 100.00 100.00
16786 925 925 0 0 100.00 100.00
16795 761 761 0 0 100.00 100.00
17453 1047 1047 0 0 100.00 100.00

104 804 804 0 0 100.00 100.00
106 897 897 17 0 100.00 98.14
107 823 822 25 1 99.88 97.05
110 872 872 15 0 100.00 98.31
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Table 5. Cont.

Record No. of Beats TP FP FN SE(%) +P(%)

111 908 907 161 1 99.89 84.93
112 684 684 12 0 100.00 98.28
114 698 698 1 0 100.00 99.86
116 560 560 16 0 100.00 97.22
121 1434 1434 2 0 100.00 99.86
122 1414 1414 0 0 100.00 100.00
124 1121 1121 0 0 100.00 100.00
126 945 945 0 0 100.00 100.00
129 672 671 184 1 99.85 78.48
133 840 838 2 2 99.76 99.76
136 810 810 0 0 100.00 100.00
166 813 813 4 0 100.00 99.51
170 897 897 0 0 100.00 100.00
203 1246 1246 1 0 100.00 99.92
210 1063 1063 5 0 100.00 99.53
211 1575 1575 0 0 100.00 100.00
303 1045 1045 0 0 100.00 100.00
405 1216 1216 0 0 100.00 100.00
406 959 959 3 0 100.00 99.69
409 1737 1737 0 0 100.00 100.00
411 1202 1202 0 0 100.00 100.00
509 1028 1028 0 0 100.00 100.00
603 869 869 0 0 100.00 100.00
604 1031 1031 1 0 100.00 99.90
606 1442 1442 0 0 100.00 100.00
607 1184 1184 0 0 100.00 100.00
609 1127 1127 0 0 100.00 100.00
612 751 751 1 0 100.00 99.87
704 1094 1094 0 0 100.00 100.00
30 1018 1018 4 0 100.00 99.61
31 1087 1087 0 0 100.00 100.00
32 1196 1197 2 0 100.00 99.83
33 527 527 0 0 100.00 100.00
34 897 897 0 0 100.00 100.00
35 882 882 101 0 100.00 89.73
36 948 948 1 0 100.00 99.89
37 682 682 62 0 100.00 91.67
38 1563 1563 0 0 100.00 100.00
39 1171 1171 3 0 100.00 99.74
40 1069 1069 1 0 100.00 99.91
41 1366 1366 0 0 100.00 100.00
42 1247 1247 0 0 100.00 100.00
43 1430 1430 0 0 100.00 100.00
44 1337 1340 6 0 100.00 99.55
45 971 971 0 0 100.00 100.00
46 856 856 1 0 100.00 99.88
47 886 886 0 0 100.00 100.00
48 1398 1398 0 0 100.00 100.00
49 833 833 2 0 100.00 99.76
50 661 661 0 0 100.00 100.00
51 749 749 0 0 100.00 100.00
52 1411 1411 0 0 100.00 100.00

17152 1628 1628 0 0 100.00 100.00
14046 1260 1260 0 0 100.00 100.00
14157 1081 1081 0 0 100.00 100.00
14172 663 663 0 0 100.00 100.00
15814 1036 1036 0 0 100.00 100.00

105 Records 111,201 111,206 656 8 99.99 99.31
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Table 6. Comparison of the QRS detection with other published algorithms on the QT database.
SE stands for sensitivity, while +P stands for positive predictivity.

Ref. No. of Beats SE(%) +P(%)

Aristotle [37] 86,892 97.20 99.46
Martínez et al. [37] 86,892 99.92 99.88

Pan and Tompkins [26] 111,201 97.99 99.05
Elgendi [26] 111,201 99.99 99.67

Method II (B/K Decimator) 111,201 99.90 99.84
Method III (K Decimator) 111,201 99.99 99.31

Method III scored a BCR of 6, whereas Method II scored a BCR of 4.5, demonstrating that
Method III outperformed Method II given the fact that Method III does not require the upsampling
step as seen in Method II. Method III provided reconstructed ECG signals that were as informative as
the reconstructed ECG signals in Method II. The accuracy of detecting QRS using Method III was more
balanced in terms of SE and +P; additionally, Method III achieved an SE of 99.81% and a +P of 99.80%,
while Method II achieved an SE of 99.78% and a +P of 99.92%.

It is known that more complex algorithms consume more energy and take more time, when
compared to simpler algorithms [63,64]. Our results demonstrate that Method III took only 0.08 s on
average to process one 30-min ECG recording, while Method II took 0.157 s. In other words, Method III
took less than half of the processing time when compared to Method II. Thus, we can conclude that
Method III consumes half of the power. Objectively, if we only look at the algorithm complexity,
the time complexity of Method III is an O(N/2) algorithm, which is less than the algorithm complexity
of Method II [O(N)] and Method I [O(Nlog2N)].

One of our next steps is to test Method III in a wireless healthcare system to confirm the findings.
Given the fact that we implemented the algorithm on Matlab, the results are promising and give an
approximation of real-world application. Mamaghanian et al. [46] found that the processing time
of compression method provided by the TI MSP430 microcontroller and the CC2420 radio chip-set,
which operates on a Li-ion battery, is close to the processing time estimated by Matlab.

3.3. Smart Homes

This proposed lossy algorithm aims at developing a smart home solution based on ECG signals
that is environmentally friendly, maintains and enhances occupant lifestyles, and cares for users
both physiologically and psychologically. There are several technical challenges that exist in remote
monitoring, health, wellness, and home operations. Through this paper, we investigate the possibility
of overcoming the technical challenges associated with transmitting and processing ECG signals as
part of a smart home system.

To provide a long-range remote monitoring, several gateway devices can be deployed to interface
with the existing wireless systems in healthcare [65]. These gateway devices will mainly be used to
provide communications between the sensor unit and the remote computers or mobile devices [8].
Two scenarios can be considered:

• Scenario 1: The lossy compression method is applied on the sensor unit and the analysis of
ECG signals such QRS detection can be implemented on the gateway(s) or the processing unit
(computers, internet, etc.). This will depend on the gateway computational capability in terms of
processing and memory.

• Scenario 2: The lossy compression method is applied on the gateway unit and the analysis of ECG
signals such QRS detection can be implemented on the processing unit (computers, internet, etc.).

We believe that the key to establishing a smart home system lies in developing and enabling
hybrid technologies that are user-friendly, affordable, and allow for a seamless transition as new
technologies evolve, such as cloud computing, the Internet of Things, 5G wireless networking, and sensor
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networks. Such an integrated system can augment current healthcare methods and empower
healthcare professionals and patients with an advanced personalized smart home for continuous
monitoring, quality diagnosis and prognosis, and assessment of rehabilitation efficacy for better
treatment, well-being, and smart care. The proposed ECG compression algorithm will facilitate health
care cost reduction, early release from hospitals, quality patient care through continuous monitoring,
reduced pressure on health care providers, and accessibility to care for underserved populations in
remote areas.

3.4. Global Health

Method III potentially plays a major role in the development of ECG-based point-of-care
technologies to assist in the prediction and diagnosis of diseases in low- and middle-income countries
(LMICs). It is known that LMICs struggle to attain high quality and universally accessible healthcare.
Many factors need to be considered when developing robust medical monitoring technologies, one
of the most important parts being data collection and transmission. A framework was created to
standardize the way of tackling this issue in [66], and Method III achieves all the requirements of the
global health framework in [66]: simplicity, mining, connecting, reliability, affordability, and scalability.
Simpler algorithms that achieve the same or even higher accuracy than complex algorithms are
necessary for global health application [66].

In LMICs, mobile network penetration has reached 89% [66], and, consequently, the use of mobile
devices in these countries has increased. This gives researchers an opportunity to collect ECG signals
using mobile phones as a gateway for transmitting ECG data. Some analysis can be done locally on
point-of-care devices, phones, and wearable devices before transmission; however, this step requires
a large amount of energy. Investigating efficient ECG compression methods for local analysis and
transmission is valuable in these scenarios.

4. Conclusions

We discuss in this paper the lossy compression Method III, which is suitable for remote health
monitoring systems. The proposed Method III is validated with QRS detection and is scalable for
smart homes, wearable devices, and point-of-care devices. It can provide long-term and continuous
monitoring for the elderly and other patients whose mobility and access to healthcare is limited.
Given the considerable data collection, transmission, and analysis involved in the monitoring process,
Method III achieves a compression ratio that is six times faster with a high QRS detection accuracy
(an SE of 99.90% and a +P of 99.56% using the MIT-BIH arrhythmia and QT databases). The results
demonstrate system readiness, and effectiveness for real-time healthcare monitoring.
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