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Introduction
Since the earliest days of gene expression microarrays, 2-way 
clustered heatmaps have been a standard feature of papers 
studying genome-wide biological data sets.1,2 Such heatmaps 
remain ubiquitous, despite numerous difficulties in interpreta-
tion, in reproducibility, and in assigning statistical significance. 
Good clustering of the genes in such data sets is critical for 
understanding the biology. Because many biologists are more 
interested in signaling pathways than in individual genes, they 
want to find a source of consistent, robust, and interpretable 
blocks of genes that drive distinct functional characteristics of 
the pathways. These blocks of genes form clusters that are rel-
evant to comprehensive understanding of critical biological 
processes. For example, apoptosis is an important biological 
process, which is characterized by distinct morphological  
states and energy-dependent biochemical mechanisms.3 
Understanding how proteins cluster in the apoptotic pathway 
will help elucidate its underlying molecular mechanisms. Now, 
clustering can be thought of as a form of dimension reduction, 
and a natural question is the “true dimension” of the data. 
Various techniques have been developed to determine the 
dimensionality, the most common being principal component 
analysis (PCA). For our purposes, an important problem in 
PCA is to determine the number of statistically significant 
components.

Numerous methods have already been developed to estimate 
the number of significant components. There are 4 types of 
approaches: (1) ad hoc subjective and graphical rules; (2) meth-
ods based on distributional assumptions; (3) computationally 

extensive procedures relying on Monte Carlo, permutation, 
cross-validation, bootstrap, or jackknife4,5; and (4) Bayesian 
methods based on the probabilistic formulation of Tipping and 
Bishop6 with marginalization estimated through Laplace 
approximation and its variants.7–9 The scree plot method, which 
consists of plotting a curve of the eigenvalues of the sample 
covariance matrix versus their rank and looking for an “elbow” 
in the curve, is the most famous graphical approach.10 However, 
this method relies on the user’s subjective experience to find any 
possible “elbow.” Even so, other methods are not always superior 
to the simple scree plot. Legendre and Legendre11 used the 
“broken stick” distribution to compare the extra information in 
a model to one with fewer parameters. Ferre12 conducted an 
empirical study of many methods to select the number of PCs, 
using data simulated from known parameters. He concluded 
that there is no “ideal” solution to the problem of dimensionality 
in PCA. He also concluded that Bartlett’s tests13 are an improve-
ment because they are less subjective but may have a tendency 
to overestimate the true number of components. Peres-Neto 
et  al14 conducted an extensive simulation study to evaluate a 
wider variety of methods. They concluded that several methods, 
especially those based on randomization and permutation pro-
posed by ter Braak,15,16 outperform the others and should be 
applied to study general data sets. More recently, Josse and 
Husson5 showed that the generalized cross-validation method 
performs well. Sobczyk et  al9 proposed a Bayesian approach 
called PEnalized SEmi-integrated Likelihood (PESEL); by 
comparing it with other state-of-the-art methods, they found 
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that PESEL-based criteria are more robust against deviations 
from the assumptions of a probabilistic model than the other 
methods.

In 2008, Auer and Gervini17 addressed the problem of 
selecting principal components in the context of Bayesian 
model selection. Although their method has strong theoretical 
foundations and appears to work well in practice, it still depends 
on the subjective evaluation of a graphical display of how the 
maximum posterior estimate of the number of components 
depends on a parameter describing the choice of the prior dis-
tribution. Moreover, its performance has only been compared 
with the scree plot and broken stick methods and not to more 
sophisticated methods that have performed well in compara-
tive studies.

In this article, we consider several algorithms to extend 
and automate the Auer-Gervini method by providing objec-
tive rules to select the number of significant principal com-
ponents. Using an extensive set of simulations, we compare 
these algorithms with the broken stick model, Bartlett’s test, 
ter Braak’s randomization methods, generalized cross-vali-
dation, and Bayesian probabilistic PCA. The methods cho-
sen for comparison were the “winners” from the previous 
comparative studies.7,9,12,14 Our extensions to the Auer-
Gervini method are implemented in the PCDimension R 
package. Because the most promising versions of the rand-
omization algorithms appear not to be readily available, we 
have also implemented them in the PCDimension package. 
For convenience, the package also implements the broken 
stick method. For Bartlett’s test, we rely on an existing imple-
mentation in the nFactors package.18 For generalized cross-
validation, we use the implementation in the FactoMineR 
package.19 The implementation of Bayesian approximation 
methods including Minka’s approach and PESEL from 
probabilistic PCA is available in the pesel package and code 
on Github.9

This article is organized as follows. In section “Methods,” 
we review the theoretical framework of different types of 
methods. In section “Simulation Study” of the “Results” sec-
tion, we perform simulation studies to test the performance of 
the proposed algorithms. In the “Decomposing the Apoptosis 
Pathway in AML” section, we apply the methods to a study of 
apoptosis in acute myeloid leukemia (AML) using reverse 
phase protein arrays (RPPAs). Finally, we conclude the article 
and make several remarks in section “Conclusions.” A simple 
example to illustrate the implementation of different methods 
in the PCDimension package is also provided in the supple-
mentary material.

Methods
Let X  denote an n m×  data matrix, where each row repre-
sents an object to be analyzed, and each column represents a 
measured attribute. In PCA, each principal component is a lin-
ear combination of the attributes. Much effort has been 
expended on investigating many objects using relatively few 

attributes, but the opposite scenario—few objects and many 
attributes—is usually ignored. One practical application would 
be clustering a few genes or proteins from a single biological 
pathway using their expression values for many patients. 
Therefore, we are primarily interested in biological applica-
tions where n m . In this section, we briefly review the meth-
ods used to estimate the number of statistically significant PCs.

Bartlett’s test

Bartlett13 proposed a statistical method to conduct a hypothe-
sis test on the significance of the principal components based 
on the eigenvalues of Σ, the correlation matrix of the objects. 
This test is designated to check whether the remaining eigen-
values of the correlation structure are equal after removing the 
well-determined (highly significant) components. Let the 
eigenvalues of Σ  be λ λ1, , n  with λ λ1 0≥ ≥ ≥ n . The pro-
cedure, for various values of k , starting at n − 2  in decreasing 
order, is to test the null hypothesis H k

0  that the “ ( )n k−  small-
est eigenvalues of the correlation matrix are equal” against the 
alternative hypothesis H A

k  that “at least 2 of the ( )n k−  eigen-
values are different.” The test statistic is as follows:
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Under the null hypothesis, the test statistic follows a χ 2  
distribution with ( / )1 2 ( )( 1)n k n k− − −  degrees of freedom. 
The optimal number of principal components is the smallest k  
where H k

0  is accepted. Both Lawley20 and Anderson21 made 
some modifications to the multiplicative factor 
{ ( / ) ( / ) }m n k− + −1 6 (2 5) 2 3  for equation (1); these are viewed 
as improved variants of Bartlett’s test.

Broken stick model

Under the assumption that the total variance of the multivari-
ate data is divided at random among all possible components, 
the expected distribution of the eigenvalues in the covariance 
or correlation matrix follows a broken stick distribution.22 This 
model says that if we have a stick of unit length, broken at ran-
dom into n  segments, then the expected length of the kth  
longest piece is as follows:
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As the expected values under the broken stick model are 
obtained in decreasing order, it is necessary to rank the relative 
proportions of the variance that are accounted for by the PCs 
in the same way. The estimated number of PCs is the maxi-
mum index where the observed relative proportion of variance 
is greater than or equal to the expected value from the broken 
stick distribution.

Randomization-based procedure

This procedure involves a randomization approach to generate 
a large number of data sets by scrambling the observed data in 
a manner of sampling without replacement.15,16 These rand-
omized data sets are then used to compute empirical P values 
for the statistics of interest characterize the internal structure 
of the eigenvalues in the correlation matrix. The test procedure 
is as follows: (1) randomize the values with all the attribute 
columns of the data matrix, (2) perform PCA on the scrambled 
data matrix, and (3) compute the test statistics. All 3 steps are 
repeated a total of ( 1)B −  times, where B  is a large enough 
integer to guarantee the accuracy of estimating the P value; in 
practice, B  is usually set to equal 1000. In each randomization, 
2 test statistics are computed: (1) the eigenvalue λk  for the kth  
principal component and (2) a pseudo F ratio computed as 
λ λk ii k

n
/

1= +∑ . Finally, the P value for each k  and each statis-
tic of interest is estimated to be the proportion of the test sta-
tistics in all data sets that are greater than or equal to the one in 
the observed data matrix.

Bayesian approximation methods

The probabilistic PCA model d d n, {1, , }∈ 

 assumes that 
each observation xi

n i m∈ = ( 1, , )  arises from the follow-
ing model:

x wi i iH= + +µµ   (3)

where µ is the mean vector, wi dN I∼ (0, )  is a d-dimensional 
Gaussian latent vector, H  is an n d×  parameter coefficient 
matrix, and i nN I∼ (0, )2σ  is Gaussian noise. Tipping and 
Bishop6 showed that the principal components of X  can be 
retrieved using the maximum likelihood estimator of H , which 
is given as follows:

H U L I W U U I WW IML d
T

d
T

d= − = =( ) , ,1/2ν
 

(4)

where U  is the n d×  matrix of ordered principal eigenvectors 
of X XT , ν  is an estimator of the true noise level σ 2 , L  is the 
d d×  diagonal matrix with the estimates of the eigenvalues of 
the covariance matrix, and W  is an arbitrary orthogonal matrix.

Finding the number of principal components is then equiv-
alent to a model selection problem from d . The optimal 
number of components can be obtained by applying the fol-
lowing criteria:

d p X d
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where the number of components d  is implicit in the matrix 
H ML. With a noninformative prior, the mean vector µ can be 
integrated out and the probability of X  given H ML  and ν  is 
obtained as follows:
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where S  is the sample covariance matrix.7 With a prior 
p U L W( , , , )ν , the probability of observing X  given the signal 

dimensionality d  is as follows:

p X d p X H p U L W dUdLdWdML( | ) ( | , ) ( , , , )= ∫ ν ν ν  (7)

Because of the computational burden in calculating equa-
tion (7), Minka7 proposed a conjugate prior for ( , , , )U L W ν  
and derived a Laplace approximation of the marginal likeli-
hood in equation (7) which is then used in equation (5) to 
compute the optimal number of components. This approxima-
tion approach has been empirically shown to be efficient in 
small-sample scenarios. In 2008, Hoyle8 considered the high-
dimensional scenarios when m  and n  grow to infinity and 
proposed another approximation where more terms in the 
asymptotic expansion of the integrand of equation (7) are used 
to guarantee more accurate evaluation. However, similar to 
Minka’s Laplace approximation, it depends on the selection of 
the prior on ( , , , )U L W ν . This approach is not considered here 
because there is no publicly available implementation.

Sobczyk et al9 explored 2 other high-dimensional scenar-
ios: (1) n  is fixed and m →∞  and (2) m  is fixed and n →∞, 
where the second one is out of the scope of this article. For 
the 2 different scenarios, they modeled either the rows or the 
columns of the matrix via fixed effects models (with slightly 
different forms depending on the relative size of m  and n ). 
The 2 models are similar to equation (3) where either the 
matrix of PCA scores or the matrix of PCA loadings are 
used. They imposed a prior on these matrices and presented 
a methodology for approximating the posterior probability 
of d . Using 2 different prior distributions on terms similar 
to w  in equation (3), they proposed 2 corresponding forms 
of PESEL where either all the singular values in PCA are 
homogeneous (abbreviation homo) or heterogeneous (abbre-
viation hete). Therefore, there are 4 criteria to maximize the 
posterior probability of d  given the PESEL: PESELm

hete  and 
PESELm

homo  for Scenario 1 and PESELn
hete  and PESELn

homo  
for Scenario 2. In the rest of this article, we study the same 3 
criteria PESELm

hete , PESELn
hete , and PESELn

homo  used in the 
work by Sobczyk et al.
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Auer-Gervini model

We briefly review the Auer-Gervini method.17 Suppose that 
xi

n i m∈ =  ( 1, , )
 are all columns of data matrix X , and 

{ , , }1x x m  is a random sample with mean vector µ and covar-
iance matrix Σ. Note that in the work by Auer and Gervini, 
they assume that the rows are i.i.d. Gaussian. Here, we make a 
transposition and assume the columns of X are i.i.d. Gaussian to 
guarantee the consistency of notations with previous sections. 
Write Σ ΓΛΓ= T  where Γ = ( , , )1γ γ n  is orthonormal and 
Λ = diag( , , )1λ λ n  with λ λ1 ≥ ≥ n . Let d  be the model 
with d  significant components or eigenvalues, that is, 
λ λ λ λ1 1, >≥ ≥ + d d d , and λ λd n+1 = = , for d n≤ −1. Under 
d , a random sample is as follows:

x = + − ++ +
=
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where z zd1, ,  are uncorrelated random variables with mean 
0 and variance 1, and   is a random error vector with mean 0 
and covariance matrix In. Therefore, the problem of selecting 
the number of PCs is transformed into the problem of choos-
ing the correct model d .

A prior probability is assigned to d  of the following form:

p d C m d d n( )
2

, = 0, , 1= −








 −exp θ   (9)

where C  is a normalizing constant that satisfies p d
d

n
( ) =

=

−∑ 1
0

1
 

for θ > 0. Then, under certain approximations, one can use 
Bayes rule to derive a formula for the maximum posterior esti-
mate of d  as a function of the prior parameter θ :
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where p d m
� …( | , , )1 x x  is an estimator of p d m( | , , )1 x x , 

{ }λ k  are the eigenvalues of the sample covariance matrix and 
also the maximum likelihood estimators of { }λk  under 
model d , and G d

  and A d
  are the geometric and the arith-

metic means of λ λ� … �d n+1, , , respectively. The formula 
describes d( )θ  as a nonincreasing step function with respect 
to θ , with d n(0) = 1− . The step function is then plotted and 
the “highest dimension for which the step length is signifi-
cantly large” is selected to be the optimal number of 
components.

In other words, an exponential prior is placed on the num-
ber of significant components. The prior depends on a hyper-
parameter θ ≥ 0  that governs how fast the distribution decays. 
As θ  goes to ∞, the prior drops off rapidly and the posterior 
estimate of the number of PCs will go to 0. Auer and Gervini 
proposed graphing the posterior estimate as a step function of 
θ , which can visually help select the highest “nontrivial step 
length.” A large step length means that the estimated number 
of PCs is optimal under a wide range of prior model probabili-
ties. However, the notion of “nontrivial step length” remains 
subjective, which is similar to the situation where one needs to 
select a recognizable “elbow” in the scree plot. Automating the 
definition of nontrivial step length is further complicated by 
the fact that the final step for d = 0  is theoretically infinite. We 
will operationalize the final subjective step by putting an upper 
bound on the largest “reasonable” estimate of θ  and will 
develop criteria to automatically choose the significantly large 
step length.

Automating the Auer-Gervini method

As originally described, the Auer-Gervini model is a visual 
Bayesian approach, and the critical final step is to decide what 
constitutes a significantly large length of a step. This problem 
can be thought of as one of classification, in which the set of 
step lengths must be partitioned into 2 groups (short and long). 
We propose to test multiple algorithms to solve the problem as 
follows.

TwiceMean. Use twice the mean of the set of step lengths as a 
cutoff to separate the long and short steps. Intuitively, the idea 
is to view the distribution of the step lengths as exponential 
when the data arise from random noise. As the mean equals the 
standard deviation for an exponential distribution, twice the 
mean is the same as the mean plus one standard deviation and 
provides a plausible cutoff to select “long” step lengths. This 
simple idea is inspired in part by Chaterjee,23 who considered 
recovery of low-rank matrices by thresholding singular values. 
He proposed that one could have a single universal choice of 
the threshold parameter which is slightly greater than 2 and 
gives near-optimal mean square error for singular value hard 
thresholding.

K-means. Because the goal is to partition the step lengths into 
2 groups, a natural solution is to cluster them using the tradi-
tional K-means algorithm with K = 2. We seed the algorithm 
with starting centers using the minimum and maximum step 
lengths. As we will discuss in more detail below, the final step 
(when d = 0 ) is theoretically infinite. We will bound this last 
step but it will ensure that at least one step is “long.”

Kmeans3. Our initial experience (data not shown) using 
K-means with large n  found it to be overly conservative when 
assigning steps to the “long” group. Given its dependence on 
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Euclidean distances, that is exactly how one should expect it to 
perform when the true mixture distribution is skewed right. To 
address this problem, we modified the algorithm as follows. If 
the number of objects is large ( )n ≥ 55 , we use the K-means 
algorithm, with K = 3  and seeds of the minimum, median, and 
maximum values, to separate the step lengths into 3 groups: 
Low, Intermediate, and High. We then treat both Intermediate 
and High groups as long.

Spectral. Use spectral clustering to divide the step lengths into 
2 groups. Spectral clustering is one of the most popular modern 
clustering algorithms. It sometimes outperforms the traditional 
clustering algorithms such as K-means.24,25

CPT. Instead of simply clustering the step lengths into 2 
groups, we can instead sort them into increasing order and 
view the problem as one of change point detection. One exist-
ing solution to this problem is provided by the At Most One 
Change (AMOC) method implemented by the cpt.mean 
function from the changepoint R package.26 The detection of 
the first change point is posed as a hypothesis test and a gen-
eralized likelihood ratio–based approach is extended to 
changes in variance within normally distributed observations 
(the reader can consult Hinkley27 and Gupta and Tang28 for 
more details).

CpmFun. The cpm R package defines several other “Change 
Point Models.”29 These are implemented by the detectCh-
angePointBatch function, which processes the step lengths in 
one batch and returns information regarding whether the 
sequence contains a change point. The default is to use the 
“Exponential” method, which computes a generalized likeli-
hood ratio statistic for the exponential distribution.

Ttest. We also implemented a novel change point detection 
algorithm based on the t test. We begin by sorting the steps 
lengths in increasing order. Then, we compute the gaps between 
successive step lengths. At each (sorted) step, we use the t dis-
tribution to determine the likelihood that the next gap is larger 
than expected from the previously observed gaps. The first 
time that the next gap is significantly larger than expected, we 
assert that this next step length is the smallest one that consti-
tutes a “long” step length.

Ttest2. Where the K-means algorithm was found to be con-
servative, the Ttest algorithm just described was sometimes 
found to be anticonservative. This can happen when the first 
few step lengths are all about the same size, which yields a 
small standard deviation. In this case, a relative short next step 
will be falsely discovered based on the Ttest criterion. To avoid 
this problem, it may be appropriate to include the next (test) 
step length and gap when estimating the mean and standard 
deviation of the gap distributon. We modified the Ttest algo-
rithm in this way to make it more conservative.

Bounding the last step

All of the proposed methods for separating short from long 
steps require us to bound the permissible length of the final 
step when d = 0, which would otherwise be infinite. This step 
is important because it allows the algorithm to conclude in 
some cases that the only long step is the final one, and the true 
number of principal components should equal 0. We use the 
largest of the following 3 quantities:

1. θ0 = 3%  further than the final change point (to d = 0 ) 
in the step function.

2. θ0 = 2 (0.01)− log m, where m  is the number of attrib-
utes. This procedure selects the value of θ  for which 
99% of the prior probability is assigned to d = 0 .

3. θ0
2= (18.8402 1.9523 * 0.0005 * ) /+ +n n m  if m n≥  

and θ0
2 2= (18.8402 1.9523 * 0.0005 * ) * /+ +n n m n , 

otherwise, where n  is the number of objects. This for-
mula was derived empirically from a Monte Carlo study 
on data sets with random noise. We estimate θ0  as the 
maximum of the empirical largest change point in the 
step function for various values of m  and n  in 2 sce-
narios: m n≥  and m n< . It can be seen as the value 
where the maximum point for d = 0  could be achieved 
when various d’s are sharing the prior information on θ   
under the uninformative noise structure.

Note that all simulations and computations in this article 
were performed using version 3.2.2 of the R statistical software 
environment with version 1.1.3 of the PCDimension package, 
which we have developed, version 2.3.3 of the nFactors pack-
age, version 1.39 of the FactoMineR package, and version 0.7.1 
of the pesel package. The details on how to select the number 
of PCs for a simple example using the PCDimension package 
are provided in the supplementary material.

Results
Simulation study

We follow a Monte Carlo procedure to study the robustness of 
different types of methods described above for estimating the 
number of PCs. For real data sets, we will never know the “cor-
rect” answer. So, we simulate a collection of data sets with dif-
ferent correlation structures to compare the numerical 
Auer-Gervini model we have implemented with the other 
types. We start by supplying details about the correlation struc-
tures and data sets used in the simulations.

Simulated datatypes. We use a protocol similar to those dis-
cussed in recent papers.5,14,17,30–32 In the simulations, the num-
ber of measured attributes is taken to be either m = 100  or 
m = 400. The range of 100 to 400 is chosen to represent small 
to moderately large data sets. We also consider data sets with 
either n = 24  or n = 96  objects. We view 24 objects as a small 
data set and 96 objects as a moderately large one.33 The number 
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of significant diagonal blocks is either the number shown in 
Figure 1 or twice that number (with finer correlation structures 
of double group blocks). By varying both the number of objects 
and the number of correlated blocks, we can explore the effects 
of the number of nontrivial components and the number of 
objects per component. To also explore the effects of different 
combinations of additional factors, including eigenvalue distri-
butions, signed or unsigned signals, uncorrelated variation, and 
unskewed normal or skewed distributions, we use the 19 differ-
ent covariance structures and correlation matrices illustrated in 
Figure 1. Matrices 1–3 are covariance matrices Σ  with different 

marginal distributions: normal, marginal gamma, and marginal 
t distribution, where Σ ΓΛΓ= T , and Λ = ( , , )1diag λ λ n  with 
λi i= 1 /  for 1≤i≤5 and λi = 1 10/  for i ≥ 6 . Matrices 4–19 are 
correlation matrices corr( )X  and we set the corresponding 
covariance matrices to be σ 2 * ( )corr X  where σ 2 = 1. Note 
that the correlation is the standardized version of the covari-
ance, that is, corr( ) = 1 1X D DT− −Σ  where D = ( ( )) 1/2diag Σ − . 
We use this form for most of the covariance matrices because 
we want to control the signal to noise ratio (basically, σ σ2 2/ e ) 
to test the robustness of methods to the noise level σ e

2. Matrix 
4 contains only noise; it is a purely uncorrelated structure. 

Figure 1. The 19 correlation matrices considered in the simulation study for 24 objects. Values of correlations are provided by the colorbar. Numbers in 

parentheses correspond to the known dimension.
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Matrices 5 and 6 represent correlation structures with various 
homogeneous cross-correlation strengths (unsigned signals) 0.3 
and 0.8. Matrices 7–13 are correlation matrices where between-
group (0.3, 0.1, or 0) and within-group (0.8 or 0.3) correlations 
of objects are fixed.14,31 Matrices 14–19 are correlation struc-
tures where negative cross-correlations (−0.8 or −0.3, signed 
signals) are considered within groups and mixture of signed and 
unsigned signals are also included.

Empirical simulation results. For each of the 19 scenarios, we 
simulate 1000 data sets. Then, the numbers of components are 
estimated based on all (19 variants of the) types of methods. 
That is, for each variant within each type of model, we com-
pute the estimated dimension. We also investigate a “majority 
rule” procedure for the Auer-Gervini model; that is, the dimen-
sion that more than 3 criteria out of 8 selected is the one that is 
estimated by the majority rule. Then, we calculate the absolute 
difference between the known dimensions and the estimated 
ones for each simulated sample and correlation structure. The 
mean of the absolute differences over both 1000 simulated data 
sets and 19 correlation matrices is plotted in Figure 2. The cor-
responding numeric values are also provided in Supplementary 
Table 1. The values in this table can help assess the quality of 
each method. The closer to 0 the values are, the better the cor-
responding variant within the type of method. However, the 
values do not describe whether a method overestimates or 
underestimates the number of nontrivial PCs.

In Figure 2 and Supplementary Table 1, one can see that, as 
anticipated, the results from most algorithms are better with 
fewer correlated blocks (Scenarios 1-4), probably because there 
are more objects representing each block. Also, accuracy in 
almost all methods is much better with fewer objects (Scenarios 
1-2 and 5-6). The situation is more complicated when the 
number of attributes changes. In general, the worst perfor-
mance occurs when the data matrix is nearly square (Scenarios 
3 and 7).

Overall, the most accurate methods when averaging across all 
8 scenarios are (1) the rnd-Lambda algorithm (mean deviation, 
MD = 1.005), (2) the PESEL method with criterion peselm

hete  
(MD = 1.105), (3) the Auer-Gervini model with criterion 
“CPT” (MD = 1.135), and (4) Minka’s Laplace approximation 
(MD = 1.136). Interestingly, the rnd-Lambda and Minka-
Laplace algorithms each produce the best average performance 
in only 1 out of 8 scenarios. Moreover, the Auer-Gervini CPT 
model and the peselm

hete  model are not the best performers in any 
of the 8 individual scenarios. By contrast, 3 other methods (the 
“TwiceMean” Auer-Gervini model, the “ttest2” Auer-Gervini 
model, and generalized cross-validation) have the best perfor-
mance in 1 out of 8 scenarios. The simple broken stick method 
is the best performer in 3 out of 8 scenarios.

This variabililty in the winners suggests that we look  
more closely at how the simulation parameters affect  
performance. When there are only 24 objects, the 4 best meth-
ods are (1) “TwiceMean” Auer-Gervini (MD = 0.915), (2) 

Figure 2. Log-transformed mean values, across the correlation matrices, of the absolute difference between the known dimension and the sample 

estimates from 15 different methods in 8 simulation scenarios (Scenario 1: 24 × 100, 1X correlated blocks; Scenario 2: 24 × 400, 1X; Scenario 3: 96 × 100, 

1X; Scenario 4: 96 × 400, 1X; Scenario 5: 24 × 100, 2X; Scenario 6: 24 × 400, 2X; Scenario 7: 96 × 100, 2X; and Scenario 8: 96 × 400, 2X).
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generalized cross-validation (MD = 0.918), (3) rnd-Lambda 
(MD = 1.005), and (4) “kmeans” Auer-Gervini (MD = 1.115). 
When there are 96 objects, the 4 best performers are (1) broken 
stick (MD = 0.7400), (2) rnd-Lambda (MD = 0.928), (3) 
pesel 1.053m

hete ( )MD = , and (4) Minka-Laplace (MD = 1.115). 
A slight shuffling of the order of the same set of high-perform-
ing methods occurs when we vary the number of blocks (bro-
ken stick is best with 1X [ ]MD = 0.605 , Minka-Laplace with 
2X [MD = 1.075]) or the number of attributes (Minka-Laplace 
is best with 100 [MD = 0.93], and rnd-Lambda with 400 
[MD = 0.9575] ).

The variants of Bartlett’s test, as implemented in R, have the 
worst performance of all the stopping rules we have considered 
(Figure 2). Furthermore, the rnd-F algorithm is not as good as 
expected because a previous study found it to be one of the 
most successful rules tested.14 Even though the CPT criterion 
is one of the best overall, and the TwiceMean criterion is the 
best when there are 24 objects, some of the criteria that we use 
to automate the Auer-Gervini model are not good candidates 
for computing the dimension. For example, the “Ttest” and 
“CPM” criteria often result in large deviations from the true 
dimension. The PESEL criteria peseln

hete  and peseln
homo  have 

middle-of-the-road performance, which may by due to consid-
ering n m  in this article.

Running time. In addition to the absolute differences between 
the true dimension and the estimates, we computed the average 
running time of all types of methods over all correlation matri-
ces per data set (Table 1). All timings were conducted on a 
computer with “Intel Xeon CPU E5-2690 v3 @ 2.60-GHz 
2.59-GHz” processors running Windows Server 2008 R2 
Enterprise. Note that the time shown in the table is the total 
time of all the variants or criteria within each type of model. It 
is obvious that the computation time becomes longer as the 

Table 1. Average running time of all types of methods across correlation matrices (unit: seconds).

RULES ORIgINAL BLOCKS (1X) TWICE BLOCKS (2X)

24 OBjECTS 96 OBjECTS 24 OBjECTS 96 OBjECTS

m = 100 m = 400 m = 100 m = 400 m = 100 m = 400 m = 100 m = 400

Broken stick 0.002 0.003 0.008 0.018 0.002 0.003 0.008 0.018

Bartlett’s test 0.004 0.004 0.013 0.015 0.004 0.004 0.013 0.016

gCV 0.004 0.006 0.012 0.032 0.003 0.006 0.012 0.032

Minka’s Laplace 0.005 0.007 0.024 0.047 0.005 0.007 0.024 0.048

PESEL 0.010 0.102 0.026 0.191 0.008 0.104 0.026 0.183

Auer-gervini 0.035 0.034 0.234 0.269 0.033 0.035 0.236 0.275

Rand. based 2.121 2.990 9.253 20.152 1.832 3.131 9.212 20.061

number of objects or attributes increases, and there is almost no 
change in time usage when the number of blocks is doubled. 
From the table, we can see that Bartlett’s test and the broken 
stick method use the least time in computing the number of 
components. However, the accuracy using the broken stick 
approach is much better than in Bartlett’s test. The most accu-
rate overall method, rnd-Lambda, is by far the slowest, taking 
several orders of magnitude more time than the other methods. 
Of the remaining 3 methods, which achieve nearly the same 
level of accuracy, Minka’s Laplace approximation is the fastest 
and the “CPT” Auer-Gervini model is the slowest.

High-accuracy methods: rnd-Lambda and Auer-Gervini with 
CPT. More detailed results on the performance of the rnd-
Lambda algorithm are presented in Figure 3 and Supplemen-
tary Tables 2 and 3 for the case of the original block structure 
shown in Figure 1. Similar results for the “CPT” criterion in 
the Auer-Gervini model are presented in Figure 4 and Sup-
plementary Tables 4 and 5. For each covariance or correlation 
matrix, we computed the percentage of deviations between the 
estimates and the known dimension. The results are similar 
regardless of the number of attributes (100 or 400) or objects 
(24 or 96). Both methods tend to underestimate the dimension 
for covariance matrices of unskewed or skewed distributions 
(matrices 1-3). They are quite accurate for correlation matrices 
of normal distribution (matrices 4-19). When they make errors 
with the normal distribution, the rnd-Lambda algorithm is 
more likely to slightly overestimate the dimension, whereas the 
Auer-Gervini CPT method is more likely to underestimate.

Special-case methods: TwiceMean and broken stick. We present 
details on the performance of the “TwiceMean” criterion in the 
Auer-Gervini model and the broken stick method, which were 
best when restricting to either the 24-object or 96-object 
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simulations, respectively, as shown in Figure 5 and Supplementary 
Tables 6 and 7. For data sets with 24 objects, the Auer-Gervini 
method with criterion “TwiceMean” is very accurate for uniform 
matrices (matrices 5 and 6), correlated matrices (matrices 7-13) 
and unsigned data with or without signed signals (matrices 14-19). 
When the sample covariance matrix is either skewed or unskewed 
(matrices 1-3), the dimension is usually underestimated. Also, the 
results do not vary too much with different numbers of attibutes. 
For 96 objects, there is not much difference between the results of 
the broken stick method in Supplementary Table 7 and that of the 
criterion “TwiceMean” in Supplementary Table 6. And the results 
of the broken stick method for 100 attributes are slightly better 
than those for 400 attributes.

Robustness to random noise. We investigated the influence of 
random noise on the ability of different methods to correctly 
detect the underlying structure. We conducted additional sim-
ulation studies by adding different levels of (i.i.d. normal) noise 
corresponding to 3 different values of the variance: σ e

2 = 0.01, 
σ e

2 = 0.1, and σ e
2 = 1. Summaries of the absolute difference 

between the known dimension and the estimates made using 
various methods under different levels of noise are presented in 
Supplementary Tables 8 to 10. Although the error rate tends to 
increase with increasing noise, we found that the relative per-
formance of the methods is consistent regardless of the size of 
the noise. That is, most algorithms still perform better with 
fewer objects, and accuracy is almost always worse when the 

Figure 3. Percentage of deviations between the estimate from randomization-based procedure (rnd-Lambda) and known dimension.

Figure 4. Percentage of deviations between the estimate from the “CPT” criterion in the Auer-gervini model and known dimension.
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number of blocks doubles. Most importantly, the best method 
for each scenario does not change in most cases as the noise 
moves from 0 to 1. The “TwiceMean” criterion in the Auer-
Gervini model is better when the number of objects is small 
relative to the number of objects, whereas the broken stick 
method is better when the number of objects is close to the 
number of attributes. Finally, regardless of the noise level, the 
rnd-Lambda algorithm, the Auer-Gervini model with “CPT” 
criterion, the PESEL method with criterion peselm

hete , and 
Minka’s Laplace approximation outperform the others on aver-
age across all scenarios.

Decomposing the apoptosis pathway in AML

Since the introduction of gene expression microarrays in the 
1990s, most statistical analyses of omics data have treated 
pathways as second-class objects, in the following sense: pri-
mary analyses are performed at the gene level. That is, the data 
are first analyzed gene by gene to find differences between 
known groups of patients such as responders and nonrespond-
ers. Then, a significance cutoff is chosen and a second statistical 
test conditional on the gene-by-gene results (such as gene set 
enrichment analysis34) is performed to infer which pathways 
differ between the 2 groups. One reason analysts give prece-
dence to individual genes is that univariate analyses are easier 

than the multivariate ones needed for pathways. However, 
many biologists are more interested in pathways than in indi-
vidual genes because they give a higher-level functional picture 
of biological behavior.

Informally, biologists talk about pathways as though they 
are 1-dimensional entities. At a cell level they are “on” or “off ”; 
at a tissue level, they have a simple “degree of activation.” But 
we hypothesize that most pathways, including the apoptosis 
signaling pathway, are intrinsically multidimensional. To test 
this hypothesis, we used a subset of RPPA data on samples col-
lected from 511 patients with AML.35,36 The subset consists of 
33 proteins that are involved in the apoptosis signaling path-
way. Apoptosis is known to be an essential component of sev-
eral processes including normal cell turnover, proper 
development and functioning of the immune system, and 
chemical-induced cell death.3 It is generally characterized by 
distinct morphological states and energy-dependent biochemi-
cal mechanisms. Even though many important apoptotic pro-
teins have been identified, the molecular mechanisms of these 
proteins still remain to be elucidated.

We applied different methods to determine the number d  
of significant components in this RPPA data set; the results are 
displayed in Table 2 and Supplementary Table 11. The number 
of components that they find is highly variable, ranging from 
d = 1 31to . Even the best methods from our simulations give 

Table 2. Number of principal components (PCs) from different algorithms on reverse phase protein array data.

RULES AUER-gERVINI BROKEN STICK RAND. BASED MINKA gCV PESEL

 TWICEMEAN CPT BROKEN-STICK RND-LAMBDA LAPLACE gCV PESEL.M.HETE

PCs 6 1 1 8 20 12 15

Figure 5. Percentage of deviations between the estimate from either the “TwiceMean” criterion in the Auer-gervin model or the broken stick model and 

known dimension.
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different values. However, our simulation studies suggest that 
the TwiceMean Auer-Gervini method works particularly well 
when the number of objects (in this case, 33 proteins) is small 
compared with the number of attributes (in this case, 511 sam-
ples). In the top panel of Figure 6, we have plotted the maxi-
mum posterior estimate of the number of components as a 
function of the prior parameter θ ; this plot gives better support 
for d = 6  than for d = 8.

To understand the biology driving these mathematical prin-
cipal components, we then projected the proteins into the 
6-dimensional PC space and used their directions to cluster 
them using a von-Mises Fisher mixture model.37 Using the 
Bayesian information criterion for model selection, we found 
an optimal clustering into 6 groups of proteins, which are dis-
played in different colors in a 2-dimensional projection in the 
bottom panel of Figure 6. The 6 protein clusters are as 
follows:

1. AIFM1, BCL2, and DIABLO, which we interpret as a 
block corresponding to the mitochondrial release of 
apoptosis-inducing factor38;

2. BID, CASP3, CASP8, and XIAP, which are part of a 
caspase 3 feedback loop39;

3. CASP3.cl175, CASP7.cl198, CASP9.cl315, and 
MDM2, a cleaved caspase block40;

4. ARC, BAD.pS112, and YAP1p;
5. BAD.pS136, BAD.pS155, and BAX; and
6. The core group of 16 apoptosis-related proteins: BAD, 

BAK1, BCL2L1, BCL2L11, BIRC2, BIRC5, BMI1, 
CASP9, CASP9.cl330, MCL1, MDM4, PARP1, 
PARP1.cl214, TP53, TP53.pS15, and YAP1.

The fact that 3 of these 6 clusters can be immediately iden-
tified from the literature as coherent biological subcomponents 
of the apoptosis pathway provides strong support for our 
approach.

Conclusions
Principal component analysis is one of the most popular and 
important techniques in the multivariate analysis of general 
data sets. However, because principal components are linear 
combinations of correlated variables, these components usually 
lack interpretability when analyzing biological data sets, espe-
cially transcriptomic or proteomic data sets from patients with 
cancer. Our study of the apoptosis pathway using proteomic 
data from patients with AML shows that we can use mixture 
model clustering in principal component space to replace the 
uninterpretable mathematical components with natural collec-
tions of related genes that enhance the biological interpetabil-
ity of the decomposition. We expect that applying these 
methods to the genes or proteins in other signaling pathways 
will divide these pathways into 1-dimensional “building blocks” 
that are interpretable, robust, and can yield new biological 
insights. It would be of particular interest to apply these ideas 
to overlapping pathways to better understand the way similar 
components are reused in different contexts.

Our ability to find biologically interpretable components, 
however, depends in a fundamental way on being able to deter-
mine the dimension of the principal component space. To 
accomplish this task, we introduced the PCDimension R pack-
age, which implements 3 types of models—the broken stick 
method, the randomization-based procedure of ter Braak,15,16 
and our enhancments to the model developed by Auer and 
Gervini17—to compute the number of significant principal com-
ponents. Through extensive simulations, we have shown that the 
enhanced Auer-Gervini methods are competitive with the 
methods that performed best in previous comparative studies.

It has been claimed that simulation of multivariate data sets 
can always be criticized as unrepresentative because they can 
never explore more than a tiny fraction of the wide range of 
possible covariance and correlation structures.4 As with previ-
ous simulation studies, our work may have the same limitation. 
However, Ferre has also pointed out that simulations are the 
only way to test and compare these methods.12 It is still valua-
ble to compare methods empirically when the dimension of the 
data set is known, and factors of interest can be manipulated 
under simulation. We have endeavored to explore a wide vari-
ety of different correlation structures to identify settings where 
each method is likely to fail.

Figure 6. Analysis of AML RPPA data. Auer-gervini step function 

relating the prior hyperparameter θ  to the maximum posterior estimate 

of the number d  of significant principal components (top). Projection of 

proteins on the space of the first 2 components; colors denote different 

clusters (bottom).
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In our simulations, the variants of Bartlett method clearly had 
the worst performance. This finding may be somewhat surpris-
ing: Peres-Neto et al14 found these methods to be only a little 
worse than the best performers in their simulations and con-
cluded that they were actually the best for distinguishing d = 0  
from d ≥ 1. There are 2 factors that distinguish their simulations 
from ours. First, we considered a wider variety of correlation 
structures. The matrices considered by Peres-Neto are repre-
sented by our matrices 4 to 13. Second, the matrices we consid-
ered were larger. Motivated by problems from ecology, they 
looked at matrices that were 9 30 50×( )or  or 18 60 100×( )or . 
Motivated by the larger gene or protein expression data sets cur-
rently being produced in biology, we looked at matrices that were 
( ) ( )24 96 100 400or or× . We think that both factors contribute 
to the different results. Supplementary Figure 3 shows that the 
errors arise primarily from matrices 1 to 4 and 10 to 12. This 
subset is comprised precisely of those matrices that include a 
substantial amount of unstructured noise. We suspect that the 
underlying difficulty arises because the stepwise hypothesis tests 
give rise to a classical problem of multiple comparisons. Thus, 
the likelihood of incorrectly rejecting a null hypothesis (and 
inflating the dimension) increases. This may also explain why 
Ferre12 cautioned that Bartlett’s test can overestimate the num-
ber of components.

The rnd-F method introduced by ter Brack also performed 
significantly worse in our simulations than in those of Perres-
Neto. The plots in Supplementary Figure 3 reveal 2 things. 
First, for virtually every correlation matrix we considered, 
rnd-F is more variable and less accurate than rnd-Lambda. 
Second, the most serious large errors arise from matrices 10 to 
13. These matrices contain a mix of both highly structured data 
and completely unstructured noise. Similar matrices were con-
sidered in the previous study, so we conclude that the rnd-F 
method simply works poorly with larger matrices.

We investigated the graphical Bayesian method of Auer and 
Gervini17 in some detail. Specifially, we introduced and tested 
8 algorithms to enhance the method by automatically selecting 
the number of components. Two of these—the novel T test–
based changepoint algorithm and the exponential model from 
the CPM package—were abysmal. In virtually every simula-
tion, the T test seriously overestimates the number of compo-
nents. The exponential CPM model overestimates the number 
at least half the time. The remaining 6 methods have acceptable 
performance most of the time.

The overall winner in terms of accuracy from our simulation 
study is the rnd-Lambda randomization-based procedures. 
This additional accuracy, however, was obtained at a sustantial 
cost in computation time. The randomization methods take at 
least 2 orders of magnitude longer than any other methods that 
we studied. Three other methods were competitive with rnd-
Lamda in terms of overall accuracy, but considerably faster: the 
Auer-Gervini model with criterion “CPT,” the PESEL method 
with criterion peselm

hete , and Minka’s Laplace approximation. It 
is interesting to note, however, that the 4 best overall methods 

rarely give the absolute best results for any fixed size of data 
matrix. Their ultimate strength is their consistency: their esti-
mates are always competitive, and the average error in the esti-
mated dimension is always less than 2.

Two other methods perform well in complementary set-
tings. The broken stick model is most accurate when there  
are 96 objects, and the Auer-Gervini method using the 
TwiceMean criterion is the most accurate when there are 24 
objects. The TwiceMean criterion appears to overestimate the 
number of components when the size of the data matrix 
increases. By contrast, the broken stick model appears to ben-
efit from having extra data available. MacArthur22 and De 
Vita41 showed that the broken stick model worked well when 
fitting the relative abundance data of species in ecological pop-
ulations. It is possible that the distribution of the expected 
lengths in equation (2) will be better approximated with larger 
data matrices. This may explain why its performance improves.

Our simulation studies uncovered at least 2 (possibly 
related) contexts where it is particularly difficult to estimate 
the number of components correctly. Every reasonable 
method severely underestimates the dimension for correla-
tion matrices 1 to 3. In addition, most methods overestimate 
the dimension when there are 96 objects and 100 attributes, 
especially when we doubled the number of correlated blocks. 
In both cases, there is very little redundancy in the signals we 
are trying to detect. (The biological contexts where we expect 
to apply these methods are expected to contain considerable 
redundancy in the form of highly correlated genes or pro-
teins.) To handle more general data sets, however, new meth-
ods will need to be developed to improve performance in 
these examples without sacrificing it in other examples. 
Further work will also be needed to clarify what kinds of 
structural changes occur as the number of objects increases 
from 24 to 96 and beyond.

We do not expect our study to be the final word on how to 
determine the number of significant principal components; 
similar to Ferre,12 we must conclude that there is no ideal solu-
tion to the problem. If forced to choose one method for all data 
sets, we would pick the Auer-Gervini model using the CPT 
criterion, as it is both reasonably accurate and reasonably fast. 
This would especially be the case if we were trying to analyze 
many data sets at once; for example, when performing an anal-
ysis similar to the one in our AML data set for a long list of 
different biological pathways or gene sets. When focused on 
only one data set, we would compute the estimates from mul-
tiple methods (including rnd-Lambda, PESEL with criterion 
peselm

hete, Minka’s Laplace approximation, broken stick, and 
Auer-Gervini with TwiceMean), and review them in light of 
both the traditional scree plot and the Auer-Gervini plot of the 
maximum posterior dimension as a function of the hyperpa-
rameter. When we used this method with the RPPA apoptosis 
data set, we successfully selected a dimension that produced 
clusters that made biological sense. We believe that this combi-
nation of analytical and graphical methods, as provided in the 
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PCDimension package, will guide researchers to the most reli-
able results.
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