
ARTICLE

A strategy to assess spillover risk of bat
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Emerging diseases caused by coronaviruses of likely bat origin (e.g., SARS, MERS, SADS,

COVID-19) have disrupted global health and economies for two decades. Evidence suggests

that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and

that their spillover is more frequent than previously recognized. Each zoonotic spillover of a

novel virus represents an opportunity for evolutionary adaptation and further spread;

therefore, quantifying the extent of this spillover may help target prevention programs. We

derive current range distributions for known bat SARSr-CoV hosts and quantify their overlap

with human populations. We then use probabilistic risk assessment and data on human-bat

contact, human viral seroprevalence, and antibody duration to estimate that a median of

66,280 people (95% CI: 65,351–67,131) are infected with SARSr-CoVs annually in Southeast

Asia. These data on the geography and scale of spillover can be used to target surveillance

and prevention programs for potential future bat-CoV emergence.
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Emerging coronaviruses (CoVs) of wildlife origin have sig-
nificantly disrupted global health security and economies
during the last two decades1,2. Severe acute respiratory

syndrome (SARS) and Middle East respiratory syndrome (MERS)
CoVs caused significant human morbidity and mortality in 2002
and 2012 respectively3,4. Swine Acute Diarrheal Syndrome CoV
caused substantial mortality in pigs in southern China during
2016 and 20195,6. The emergence of SARS-CoV-2 in 2019 led to
the current COVID-19 pandemic that has caused millions of
cases and deaths, with economic loss likely to be in the tens of
trillions of US dollars2,7. Efforts to increase preparedness and
improve surveillance for emerging coronaviruses therefore
represent a priority for global health programs8.

Phylogenetic analysis suggests that SARS-CoV, MERS-CoV,
SADS-CoV, and SARS-CoV-2 originate within CoV lineages from
bat reservoir hosts5,9–11. The initial spillovers of SARS and
MERS into human populations are thought to have occurred via
intermediate hosts (palm civets and dromedary camels,
respectively12,13). However, the role of civets in the emergence of
SARS is uncertain, and other bat SARSr-CoVs can directly infect
human cells, including airway epithelial cells, and thus have
potential to spill over directly from bats to humans14–16. In support
of this idea, serological evidence of prior infection with SARSr-
CoVs was found in communities living near bat populations in
China prior to the emergence of COVID-19, including in people
who reported no contact with SARSr-CoV intermediate hosts17,18.
Direct bat-to-human spillover events may occur more frequently
than has been reported, but go unrecognized because they cause
mild symptoms, cause symptoms similar to those of other infec-
tions, result in small case numbers, or lack sustained chains of
human-to-human transmission. However, every wildlife-to-human
spillover event represents an opportunity for viral adaptation that
could permit human-to-human spread19–22. Estimating the extent
of these undetected spillovers could therefore be important for
identifying the likelihood of future epidemics or pandemics.

Surveys of bats in China have revealed high diversity of SARSr-
CoVs, and often high infection prevalence (5–10%) in rhinolo-
phid and hipposiderid species that are widely distributed and
abundant, with varying resilience to habitat perturbation and
many synanthropic species (having contact and often interactions
with human populations)23–25. Many of the bat species and
genera known to harbor these β-CoVs occur in Southeast Asia, a
hotspot of bat diversity with 441 species reported, 115 (around a
quarter) of which are rhinolophids or hipposiderids26. Diversity
of SARSr-CoVs is also likely high in this region23, but may be
underestimated as CoV research effort in China appears to have
been far more intense than in nearby Southeast Asian or South
Asian countries27 (see Methods and Supplementary Fig. 1).
Furthermore, many of these less well-sampled countries are
undergoing dynamic social and environmental changes correlated
with zoonotic emergence (e.g., rapid human population growth,
movement of rural residents to urban centers, extensive wildlife
farming and trade, rapid land conversion from forested habitats
to agricultural land), and thus might represent hitherto unre-
ported hotspots for coronavirus spillover23,28–33.

In this study, we use host distribution modeling as well as
human behavioral and epidemiological data to estimate the
geographic distribution of SARSr-CoV bat hosts, and the likely
rate of zoonotic spillover in China, South and Southeast Asia. Our
results provide detailed estimates of the distribution of bat hosts
of SARSr-CoVs and suggest that the magnitude of SARSr-CoV
spillover from bats to humans may be substantially under-
estimated. Our approach provides proof of concept for assessing
the rate of zoonotic spillover and identifies key geographic areas
that can be prioritized for targeted surveillance of animals and
humans. Given the challenges of identifying the origins of

COVID-19 and pathways by which SARS-CoV-2 spilled over to
people34,35, our results may also aid efforts to identify the geo-
graphic sites where spillover first occurred.

Results
We assembled a list of 26 known SARSr-CoV bat host species
that occur in our geographic region of interest (a broad region
including parts of South Asia, China and Southeast Asian
countries; see Methods for a list of countries and administrative
regions included in the analysis). Host species were mainly
members of Rhinolophidae and Hipposideridae families, but also
included two members of Molossidae and one member of Ves-
pertilionidae (Supplementary Table 1). We derived the area of
habitat (AOH)36 for each species by refining the IUCN geo-
graphic range of each species according to habitat suitability,
elevation limits, and the boundaries of our region of interest.
Removing unsuitable areas within the IUCN geographic ranges
greatly reduced the size of species distributions. For example, the
reduction in area from the original IUCN range to the more
refined AOH ranged from 42% for Rhinolophus malayanus to
almost 100% for R. hipposideros, with a median of 65% reduction
across all species (Supplementary Fig. 2). The reduction in area
was 55% for R. rex, the only species in our list assessed as
endangered by the IUCN Red List.

We validated species AOHs using cleaned occurrence records
downloaded from the Global Biodiversity Information Facility
(GBIF; see Methods for details of data cleaning and validation).
After data cleaning, no occurrence records remained for R. hip-
posideros, while 1–621 (median= 42) occurrence points
remained for all other species (Supplementary Table 2). In vali-
dating each species’ AOH with GBIF occurrence points, we found
among species with ≥1 occurrence point, the median percent of
points (buffered by 5 km) that overlapped a species’ AOH was
62% (Supplementary Table 2). Among species with at least 40
occurrence points (n= 15), the median overlap was 76%. Overlap
was ≥80% for five species: R. luctus (63/69, 91%), R. creaghi (37/
41, 90%), R. malayanus (45/52, 87%), R. shameli (35/42, 83%),
and Hipposideros galeritus (64/80, 80%).

The size of individual species AOHs varied widely, but gen-
erally, the largest AOHs encompassed the most people (Fig. 1a).
For example, the AOH of R. luctus was the largest of all species,
covering ~2.9 million km2, and encompassed ~190 million peo-
ple, the most of any species. Only three other species had AOHs
encompassing more than 125 million people (R. pearsonii, R.
affinis, and R. ferrumequinum), with the AOHs of R. affinis and
R. ferrumequinum both encompassing ~130 million people
despite the AOH of R. ferrumequinum being less than half the
size of that of R. affinis. Fewer than 5 million people live in the
AOHs of R. hipposideros, Nyctalus leisleri, Tadarida teniotis, R.
creaghi, and R. shameli. Two species had AOHs with more limited
area but relatively high human population density: N. leisleri
(~262 people/km2) and R. stheno (~226 people/km2; Fig. 1a,
Supplementary Fig. 3). Within species AOHs, forest habitats and
carbonate (limestone) rock outcrops—used as a proxy for cave
distribution—typically comprised the largest proportion of sui-
table habitat (Fig. 1b). Four species were highly reliant on car-
bonate rock outcrops (i.e., their AOHs were comprised of >90%
of this habitat type): T. teniotis, R. thomasi, Aselliscus stoliczkanus,
and H. pratti. Only R. stheno and R. malayanus had AOHs
comprising >50% artificial habitats, including plantations and
arable land. Examining the number of people in the habitat type
of each species revealed that people tended to be over-represented
in carbonate rock outcrop areas compared to forest areas, relative
to the size of these habitats (Fig. 1c). For example, carbonate rock
outcrops comprised 28%, by size, of the AOH of R. luctus, but
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represented 54% in terms of people living in this habitat type;
similarly, these percentages were 53% and 73% for R. pearsonii.
Arable land also appeared overrepresented in terms of the
number of people living in this habitat versus its proportion by
size, as observed for R. stheno and R. malayanus.

The consensus area of all SARSr-CoV bat host species, created
by overlaying the 26 species AOHs, comprised ~5.1 million km2.
We calculated that ~499 million people live within this consensus
area, which covered most of Lao PDR, Cambodia, Thailand,
Vietnam, Nepal, Bhutan, peninsular Malaysia, Myanmar,

southeast China, and the western islands of Indonesia (Fig. 2a).
Bat species distribution was patchier in India, Sri Lanka, East
Malaysia, and the Philippines. Species richness ranged from
1–16 species, with the highest richness of SARSr-CoV bat host
species in southern China, eastern Myanmar, and northern Lao
PDR (Fig. 2a). When we visualized areas with both high host
richness and large human populations (bat-human overlap),
southern China remained a hotspot, while other areas emerged as
important because of their high human population sizes (e.g.,
Java, parts of northern India, parts of Myanmar; Fig. 2b).
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living in each AOH versus the total area, for each SARSr-CoV bat host species. A best-fit line was fit through the origin, for which the R2 is displayed. The
four unlabeled species at the bottom left corner are (left to right): R. hipposideros, N. leisleri, T. teniotis, and R. creaghi. b Proportion of each habitat type (by
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Fig. 2 Hotspots of SARSr-CoV bat host species richness and human overlap in Southeast Asia. a Species richness of SARSr-CoV bat host species in
Southeast Asia, created by overlaying area of habitat maps for all 26 SARSr-CoV bat host species known for this region. b Relative bat-human overlap: bat
host species richness multiplied by human population count. Values were ln(x+ 1) transformed and then normalized to a 0–1 scale. For both panels, redder
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After calculating the number of people living in the consensus
area of SARSr-CoV bat host species, we incorporated data from
the literature on human-bat contacts, viral seroprevalence among
humans reporting bat contact, and human SARS antibody
duration to estimate spillover risk of SARSr-CoVs in Southeast
Asia (see Methods for details). For this analysis, we define spil-
lover risk as the annual number of people infected by SARSr-
CoVs via bat-to human transmission events. This definition
draws from the work of Hosseini and colleagues37, who define
risk as equal to hazard x exposure x vulnerability, where a hazard
is a potential source of harm from a microbe, exposure is the
likelihood of contact between humans and hazards, and vulner-
ability is the chance of a hazard causing harm, given exposure.
Here, the hazard is a bat belonging to a species known to host
SARSr-CoVs, exposure is the likelihood of contact between a
person and a bat, and vulnerability is the chance that a human-
bat contact event results in a human infection that produces
detectable antibodies. Note that we do not consider whether a
human infection will lead to sickness or an outbreak, because
these outcomes depend on a range of other factors including viral
genotype and phenotype, host susceptibility (e.g., age, predis-
posing conditions), and population-level factors that would affect
the ability of a pathogen to spread; these are outside the scope of
the current study. We estimated that within the consensus area of
SARSr-CoV bat host species, a median of 66,280 people (95%
confidence interval for the median: 65,351–67,131; overall range:
1–54,905,544; interquartile range: 3,250–519,557) are infected
with SARSr-CoVs annually in Southeast Asia (Fig. 3a).

Sensitivity analyses (see Methods) indicated that two para-
meters—the probability of human contact with a bat (Pcontact),
and the probability of antibody detection given contact with a bat
(Pdetect)—primarily contributed to variance in the outcome
(Fig. 3b, c). Specifically, Pdetect contributed most to variance in the
outcome (first-order sensitivity index: 0.486; 95% CI: 0.475–0.496;
total-order sensitivity index: 0.873; 95% CI: 0.864–0.881), while
Pcontact contributed moderately to variance in the outcome (first-
order sensitivity index: 0.125; 95% CI: 0.117–0.134; total-order
sensitivity index: 0.509; 95% CI: 0.499–0.519). We therefore
explored how refitting the distributions for these parameters
(Supplementary Fig. 4), after excluding the highest estimates of
Pcontact and Pdetect found in our literature searches, changed our
estimates of spillover (Fig. 3a). Refitting only the Pcontact dis-
tribution lowered the median number of people infected to 53,290
(95% CI: 52,621–53,957; range: 1–33,119,404; interquartile range:
2,817–375,452), while refitting only the Pdetect distribution low-
ered the median to 49,599 people (95% CI: 49,151–50,095; range:
1–20,694,204; interquartile range: 6,262–234,140). When both
distributions were refit, the median number of people infected
was 38,910 (95% CI: 38,551–39,268; range: 1–11,653,741; inter-
quartile range: 5,538–163,053).

Discussion
Our paper reports an analytical framework to assess SARSr-CoV
spillover risk in a region that includes the site of the first detected
spillover of SARS-CoV, and likely of SARS-CoV-2. We first
provide detailed maps of SARSr-CoV bat host richness and bat-
human overlap in South and Southeast Asia. Using information
gathered from the literature on human-bat contacts, viral ser-
oprevalence among humans with bat contact, and human SARS
antibody duration, we then provide the first estimates, to our
knowledge, of the number of people infected by SARSr-CoVs
annually. The analytical framework, maps, and other results
produced here may assist public health measures by identifying
regions for targeted surveillance and early detection of ongoing
spillover events, for viral discovery programs to identify novel

bat-CoVs, and for COVID-19 origin tracing. All of these are key
goals for pandemic preparedness and prevention38–41, and if used
to target future surveillance and disease control, may help to
reduce the possibility of future COVID-like outbreaks.

Our analysis identifies regions in southern China, northeastern
Myanmar, Lao PDR, and northern Vietnam as having the highest
diversity of SARSr-CoV bat host species, in concordance with
other recent efforts to map the distribution of SARSr-CoV bat
host species42. These hotspots of SARSr-CoV bat reservoir host
diversity may be particularly fruitful sites for viral discovery of
novel SARSr-CoVs, assuming that viral diversity scales with host
species diversity43. This finding supports conclusions from prior
phylogenetic analyses that particularly diverse SARSr-CoV
lineages are found in southern China23. Our results also help
explain the recent identification of multiple strains of SARSr-
CoVs in southern China33,44,45 and southeast Asian countries30,
despite small sample sizes. Our findings suggest that less intense
sampling in countries bordering southern China (Supplementary
Fig. 1) could have led to an underestimate of the diversity of these
viruses there27,32. Given that the bat species known to host the
closest relatives of SARS-CoV-2 are found in this region, our
species richness map may also guide efforts to identify the viral
clade from which a progenitor virus emerged23,33,35.

The map of bat-human overlap reveals hotspots in southern
China and bordering countries, but also in the populous regions
of Indonesia. This map may be useful in targeting surveillance to
identify SARSr-CoV spillover events in people, including syn-
dromic surveillance for SARS- or COVID-like respiratory disease
in communities within these hotspots. This has been proposed
previously as a tool for proactive surveillance for novel infections
that could become standardized across emerging disease
hotspots38,43. In this case, surveillance in clinics for severe/acute
respiratory illness, influenza-like illness, and fevers of unknown
origin would capture pneumonia or rapid-onset respiratory dis-
tress typical of SARS and COVID-19 patients, and likely to be
expected from other novel bat-SARSr-CoV spillover infections46.
More common infections such as influenza and bacterial or
fungal pneumonia could be ruled out relatively easily47. The bat-
human overlap map may also provide guidance for studies of
where initial spillover of the progenitor of SARS-CoV-2 may have
occurred, although epidemiological and other data suggest this
would most likely have been in China or neighboring
countries34,35.

Our estimate that a median of ~66,000 people are infected with
SARSr-CoVs each year in Southeast Asia suggests that bat-to-
human SARSr-CoV spillover is common in the region, and is
undetected by surveillance programs and clinical studies in the
majority of cases. While our results suggest significant levels of
spillover, many of the diverse viral strains that infect people in the
region each year may not be able to replicate well in people, cause
illness, or be transmitted sufficiently among people to cause an
outbreak. This has been shown in theoretical models of disease
emergence21,48, and supports earlier evidence from studies of
non-human primate virus spillover49, that cross-species trans-
mission of novel animal-origin viruses is not the rate-limiting
step in pandemic viral emergence. However, given the relatively
large number of people likely to be infected each year with bat-
CoVs, it is plausible that illnesses or clusters of cases due to novel
bat-CoV infection occur regularly within the region, and are
either not reported or are missed by clinical surveillance. Evi-
dence of underreporting has been demonstrated for other bat-
origin viral infections. For example, targeted syndromic surveil-
lance of encephalitis patients in a small number of clinics in
Bangladesh showed that Nipah virus causes outbreaks annually
with an overall mortality rate of ~70%, despite it only recently
being reported from the country50. Efforts to increase surveillance
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for novel SARSr-CoVs (and other emerging viruses) in clinical
cohorts, particularly using syndromic surveillance, may identify
the rate of missed cases and pre-empt larger scale outbreaks.
Estimating the true rate of spillover of previously unknown,
potentially zoonotic animal-origin viruses is difficult without

serological or genomic surveillance data. For most viruses, the
duration of infection in humans is relatively short (e.g., the
infectious period for COVID-19 is 2–3 weeks51), and if spillover
is rare, PCR surveillance is unlikely to give valuable data on
spillover rates due to lack of positives. One exception is for

Fig. 3 Spillover simulations and sensitivity analyses. a Density plots of the estimated total number of people in Southeast Asia infected with SARSr-CoVs
by bats each year. Line colors represent scenarios exploring how estimated spillover changes if one or both of two parameter distributions (Pcontact and
Pdetect) are refit after excluding the highest estimates of these parameters gathered via literature searches (see Methods for details). Note that the x-axis is
on a log10 scale. b Estimated total number of people in Southeast Asia infected with SARSr-CoVs by bats each year, plotted as a function of four input
variables. Values correspond to the original scenario (i.e., no adjusted parameters). c Sobol sensitivity indices, indicating the amount of variance in the
outcome due to each input on its own (first-order index) and the amount of variance in the outcome due to each input including interactions with other
inputs (total-order index). Sobol indices were calculated with two random samples of 200,000 points each. Red dots represent calculated index values and
error bars represent 95% confidence intervals. Values correspond to the original scenario (i.e., no adjusted parameters).
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viruses with long infectious periods such as lentiviruses and some
retroviruses; a previous genomic surveillance study of wildlife
hunters in Africa was able to find 10/1099 (0.9%) prevalence of
non-human primate origin simian foamy viruses52. Because
detectable antibodies or T cell responses are more long-lived,
serological surveys or activated T cell testing represent more valid
strategies to estimate spillover rates.

Our calculation of undetected spillover represents the first
published attempt, to our knowledge, to identify the spillover risk
of SARSr-CoVs from bats to people. It relies on a number of
input variables, and we attempted to account for uncertainty (e.g.,
potential inaccuracy of serological tests) and variation (e.g., dif-
ferences in human behavior due to gender, occupation, cultural
norms) associated with these inputs by assigning a probability
distribution to each variable, based on data gathered from the
literature. We discuss these data, and some of the assumptions we
make in using them, in more detail below.

Human-bat interactions likely vary widely across our study
region, and are influenced by a variety of social, ecological, and
economic factors at individual and community scales and
beyond53–55. We therefore performed a systematic literature
search to gather estimates of human-bat contact prevalence
reported in previous surveys and ethnographic investigations.
Our literature search revealed that limited data exist on human
contact with bats in Southeast Asia, and that most studies of
human-bat contact have targeted rural communities where bats
are present and contact events could occur due to occupational or
environmental exposure. As a result, estimates of human-bat
contact reported in these studies might be higher than would be
found in other human populations (i.e., more urban commu-
nities). However, we consider it plausible that urban residents
face comparable levels of contact with bats as rural residents,
though the interfaces may be different. For example, a recent
study showed that rural and urban human populations in China
displayed similar patterns of contact with wild animals, including
bats56. Although some dense urban areas may provide less sui-
table roosting habitat for many bat species as compared to rural
or peri-urban areas (meaning urban residents could be less likely
to have bats in their home, visit caves, or hunt bats), several
synanthropic bat species are able to thrive in human-developed
landscapes57. Of the host species considered in this study, IUCN
habitat type 14.5 (Urban areas) is considered suitable for two
species, while other artificial terrestrial habitat types (14.1: Arable
land, 14.2: Pastureland, 14.3: Plantations, 14.4: Rural gardens,
14.6: Subtropical/tropical highly degraded former forest) are
suitable for 2–5 species each (Supplementary Table 1). Further,
interfaces such as the wildlife trade—including physical markets
and the supply chain—represent a major potential exposure
pathway for people living in more densely populated urban set-
tings. For instance, a study of the bat trade in Indonesia
demonstrated that bats are harvested in rural areas but are
directly transported to more urban and developed areas with
more buying power58. Other work has found that wildlife (Rattus
and Bandicota spp.) CoV prevalence increases along the dis-
tribution chain (i.e., from traders to large markets to restaurants),
and suggested that end consumers face “maximal risk”59. Given
this evidence, and in the absence of better data on contact with
bats for urban residents, we believe it is reasonable to apply the
bat-human contact rates generated from our literature search
across our study region.

In determining the distribution for Pdetect (the parameter
describing the probability that a human-bat contact leads to a
serologically detectable human infection), we incorporated
literature-gathered seroprevalence estimates from people exposed
to CoVs and other directly transmitted RNA viruses. We believe
we are justified in using non-CoV data in our analyses for several

reasons. First, there are very few pre-COVID human serosurveys
that specifically tested for SARSr-CoV exposure17,60, and we
wanted to parameterize our spillover estimate with a wide range
of possible values for infection and seroconversion using other
RNA viruses that are known or likely able to be transmitted via
direct exposure to bats or bat excreta. We acknowledge that there
may be substantial variation in the ability of different SARSr-
CoVs or other bat-harbored viruses to cause infection and ser-
oconversion in humans; however, we know little about the large
diversity of viral strains circulating in bat populations and the
host cellular and immunological factors that could influence
seroconversion after exposure for most viruses61. Indeed, many
seroprevalence estimates reported in the literature may be an
underestimate. For example, some individuals subclinically
infected by SARS-CoV-2 may clear infection prior to production
of antibodies62 and some bat SARSr-CoVs may require limited
evolutionary adaptation before antibody responses can be pro-
duced (e.g., data from RaTG13 binding63). A study of memory
T-cells in people in Singapore detected SARS-CoV-2-specific
interferon-γ responses in approximately half (19/37) of people
negative for SARS-CoV-1 or SARS-CoV-2 infection, and sug-
gested unknown, potentially animal-origin CoVs could induce
cross-reactive SARS-CoV-2 T cells64. Data from serological ana-
lysis also demonstrates high seroprevalence in Lao PDR. Speci-
fically, Virachith and colleagues detected SARS-CoV-2-specific
anti-N and anti-S antibodies in 5.3% and 1.1%, respectively, of
human serum samples collected in 2018 (i.e., pre-COVID-19) in
Lao PDR60. The authors also tested serum samples collected
during the pandemic (August–September 2020) and detected
antibodies in 5.2% (anti-N) and 2.1% (anti-S) of the general
public, and in 20.3% (anti-N) and 6.8% (anti-S) of bat/wildlife
contacts (bat guano collectors, wildlife animal vendors, and
family members of bat contacts, catchers or guano collectors).
The authors noted that high seroprevalence may also reflect the
frequent trade in bush meat and low biosafety awareness reported
in earlier surveys in Lao PDR60,65.

Previous authors have commented on the need to develop
approaches to assessing zoonotic spillover risk that explicitly
incorporate uncertainty66, and we recognize that further data
would likely help refine estimates of SARSr-CoV spillover rates
(Fig. 4). Perhaps most critical is a lack of information on the role
of intermediate hosts in the emergence of SARSr-CoVs. It has
been postulated that civets and other commonly farmed and
traded mammalian species played a role in the emergence of
SARS-CoV by acting as efficient amplifier hosts within wildlife
farms and markets12,67–70. SARS-CoV-2 can infect civets, raccoon
dogs, and other mammals commonly farmed and traded for food
in the region71,72. SARS-CoV-2 has also caused significant out-
breaks in animals bred for fur (e.g., mink, raccoon dogs) that have
in some cases led to transmission to people73,74. These and other
data led an international team to conclude that the most likely
pathway for COVID emergence was from bats to people through
a farmed mammalian intermediate host34. Accurate data are not
available on the number of wildlife farms and potential inter-
mediate hosts bred each year, or on the market systems that
supply live animals into cities within China and Southeast Asia. It
was estimated that 14 million people were employed in the
wildlife farming system within China alone during 2016, in an
industry worth $77 billion annually75,76. Additionally, some of
these potential intermediate hosts occur naturally in the region
(e.g., pangolins, civets), and other livestock species that are
common (e.g., pigs, cattle, rabbits) are susceptible to SARSr-CoVs
either naturally or experimentally72. Spillover of SARSr-CoVs
may therefore be substantially skewed to people who have high
contact with these species, and this would likely have been missed
in the serological surveys upon which our analyses are currently
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based. Thus, better estimates of the role of farmed and traded
intermediate hosts are likely to substantially increase the esti-
mated spillover rates of SARSr-CoVs across the region.

Other data are needed to improve and help validate our estimates
from limited knowledge. Useful research could include bat surveys
to identify contemporary, accurate species presence records, and
sampling a range of bat species for SARSr-CoVs to identify pre-
viously unknown SARSr-CoV hosts (Fig. 4a). Statistical models can
inform prioritization of species to sample to optimize viral
discovery77. Further data are also needed on the role of host biology
and ecology in spillover: for instance, improved species-specific
estimates of SARSr-CoV prevalence, and the effects of environ-
mental factors (e.g., location, season, year) and host factors (e.g., sex,
age, body condition, reproductive status) on viral shedding78–81

(Fig. 4d). As described previously, there is a need to better under-
stand how and why people and bats come into contact in regions of
overlapping occurrence (Fig. 4b, c). Crucial immunological infor-
mation includes expanded survey data on the background ser-
oprevalence of bat SARSr-CoVs in people across different
populations and geographies, improved understanding of factors
that could influence seroconversion after exposure, and studies of
how serological titers and duration of antibody persistence relate to
severity of infection (Fig. 4d, e). Finally, it is also possible that
taxonomic errors have occurred in the data we analyzed. Taxo-
nomic standards in viral discovery and surveillance studies vary
widely, and point to a need for better taxonomic training of field
teams, standardized DNA barcoding of hosts, collection of voucher
specimens, and closer collaboration among disease ecologists, vir-
ologists, field biologists and taxonomists66,82,83.

Our refinement of species ranges has produced a detailed picture
of SARSr-CoV bat host species potential occurrence. The AOHs we
produced may be useful for targeting surveillance to key species. For
example, only a few species’ AOHs contained a sizable proportion
(≥25%) of one or more artificial habitats (Fig. 1b): R. malayanus
(arable land, plantations), R. stheno (plantations, arable land), and

N. leisleri (pastureland). These species may be more important as
spillover hosts considering that these modified landscapes have a
higher opportunity for human-wildlife contact and are known to
have heightened diversity of other zoonotic disease hosts84. Cave
habitats were classified by the IUCN as suitable for nearly all species
in our analyses, and carbonate rock outcrops (used here as a proxy
for caves) made up a large proportion of species AOHs. Public
presence in caves and livelihoods or occupational activities involved
in bat guano collection are likely particularly hazardous given these
findings85–88. Our validation process indicated good agreement
between species AOHs and GBIF occurrence data, suggesting that
the maps we generated accurately reflect species presence for
occurrence records collected after 1990. We note that external
forces could drive bats away from otherwise suitable habitats; for
example, many cave-dwelling bats face disturbance in the forms of
tourism, guano harvesting, vandalism, land use change, and
more89–91. Limitations of AOH maps include the potential inac-
curacy of the IUCN species ranges, habitat suitability assignments,
and elevation limits36,92. All but one of the species in our dataset
were last assessed by the IUCN in 2016 or more recently (A. sto-
liczkanus was last assessed in 2008); in future, revised AOHs can be
developed based on new IUCN range data. The map of terrestrial
habitat types used in our analyses93,94 is not a perfect representation
of habitat, but is the most accurate and detailed analysis of its kind
to date. In particular, the map did not include caves, an important
habitat type for many bat species. We used carbonate rock outcrop
data as a proxy for cave distribution and this should be ground-
truthed. Finally, though grid cells are assigned to one dominant
habitat class, at a fine-scale level they are comprised of various
microhabitats which may be more or less attractive to wildlife.

Our analytical framework provides a strategy that has potential
for improving preparedness for emerging diseases and pan-
demics. However, it is important to recognize that our results
specifically identify spillover risk, which we defined as the annual
number of people infected by SARSr-CoVs via bat-to-human

Fig. 4 Key data inputs and future research needs to improve estimates of SARSr-CoVs spillover from bats to humans. Additional data inputs are
organized according to steps in our probabilistic risk assessment to improve our understanding of: a wildlife reservoir host (bat) distribution, b people
overlapping with bat hosts, c probability of human-bat contact, d probability of detecting antibodies given contact, and e dynamics of antibody response in
individuals.
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transmission events. Our analyses do not assess the impact of
spillover, the severity of disease that results (if any), the ability of
infections to lead to human-to-human (community) transmis-
sion, or the likelihood of a regional outbreak or a pandemic37.
Furthermore, we did not account for differences in vulnerability
among populations, communities, or individuals. However, our
analyses have public health value in that the maps can be used to
conduct more cost-effective field surveys for viral discovery
programs, guide human surveillance to identify clusters of cases
of a new CoV infection earlier and help prevent spread, and guide
targeted epidemiological studies of small-scale processes that
increase spillover risk95–97. Our analysis pipeline and framework
are based on open-source code and can therefore serve as a
resource to update and modify spillover risk maps and estimates
as new data become available. Finally, our framework can be
rapidly adapted for spillover risk assessment of other viral groups,
such as the HKU-2/SADS-CoV α-CoVs that have recently been
found able to infect primary human airway epithelial cells
in vitro, and therefore pose a heightened spillover risk, or any of
the other ~25 viral families that include known zoonoses43.

Methods
All analyses were performed in the R statistical environment v. 4.0.3 (R Core
Team 2020).

Estimation of coronavirus research effort. To assess CoV research effort in
Southeast Asia, we used the R package rentrez v1.2.398 to query the PubMed
database for the number of publications from each country in Southeast Asia (see
below), as of November 17, 2021, using the search string: (“bat” OR “bats” OR
“Chiroptera”) AND (“coronavirus” OR “coronaviruses”)83. We visualized a map of
CoV research effort using the R package rworldmap v1.3–699.

Compilation of SARSr-CoV bat host data. We identified all bat species from
which molecular evidence of SARSr-CoV infection had been reported, and for
which associated sequence confirmation data were available. We supplemented a
recently compiled list100 with hosts listed in other more recent
publications23,30,32,44,101,102. We refrained from including bat species that have
been predicted, but not confirmed, to be SARSr-CoV hosts. We considered R.
paradoxolophus to be a subspecies of R. rex103. We excluded R. monoceros because,
although recent work has retained it as a distinct species104, no recent assessment
of the species has been published by the IUCN Red List of Threatened Species. H.
pomona and H. gentilis were split in 2018, with H. pomona restricted to a small area
in southern India while H. gentilis is broadly distributed across Southeast Asia105.
Although Latinne and colleagues23 listed H. pomona as a host species, because the
field sampling was conducted in China, we substituted H. gentilis in our analyses.

We included only bat hosts with geographic distributions either partially or
entirely within Southeast Asia (see Supplementary Table 1 for the finalized list of
SARSr-CoV bat hosts). The area covered by the following countries and
administrative regions is included in our analysis extent: Bangladesh, Bhutan,
Brunei, Cambodia, China, Hong Kong SAR, Macao SAR, India, Indonesia, Lao
People’s Democratic Republic, Malaysia, Myanmar, Nepal, the Philippines,
Singapore, Sri Lanka, Thailand, Timor-Leste, and Vietnam. Note that while we use
the term Southeast Asia, the region we considered has broader range than is used
for political definitions of the region and includes China and parts of South Asia,
due to the extensive range of some of the bat host species. All analyses described
below were restricted by the regional boundaries of Southeast Asia as
defined above.

Calculation and validation of host area of habitat. To assess SARSr-CoV bat
host distribution and richness across our study area, we derived the area of habitat
(AOH) for each species. AOH describes the habitat suitable for a species within its
range according to the species’ habitat preferences and elevation limits36. Previous
validation of AOH maps with species occurrence data has demonstrated their high
accuracy; for example, ~92% (241/263) of terrestrial mammal species AOHs pre-
dicted species point localities better than their IUCN geographical range106.
Determining a species AOH does not rely on presence data, making it useful when
assessing species with few occurrence records (as was the case for many species in
our analysis; see Results).

To derive the AOH for each species, we downloaded its geographic range from
the IUCN Red List of Threatened Species26 (last update: March 25, 2021), overlaid
it onto a raster map of terrestrial habitat types93,94, and selected areas of the map
that occurred within its range. We then selected areas of suitable habitat for each
species. Specifically, using the IUCN Red List data, we assessed if each of 22 habitat
types was suitable for each bat host species. According to the IUCN Habitats

Classification Scheme, a designation that a habitat is suitable means “the species
occurs in the habitat regularly or frequently”107. The 22 habitat types we examined
included various forest habitats, shrublands, rocky areas and caves, and artificial
habitats, chosen from a larger list of ~100 habitat types107 as being influential in
determining the occurrence of one or more target host species (Supplementary
Table 1). A global land cover map of these habitat types93,94 included 18 of the 22
target habitats. Because two habitat types (7.1. Caves and Subterranean Habitats
(non-aquatic)—Caves; 7.2. Caves and Subterranean Habitats (non-aquatic)—Other
subterranean habitats) were not included in the global land cover map, but were
suitable for many host species, we supplemented the land cover dataset with the
World Map of Carbonate Rock Outcrops v3.0108 as a proxy for karst landscape and
cave distribution. This dataset comprises two layers, one with areas of continuous
carbonate rocks and another with abundant but not continuous rocks; we used the
former for our analyses. We rasterized the carbonate rock outcrop shapefile using
the R package fasterize v1.0.3109 and combined this with the land cover raster.
When restricting species IUCN ranges by suitable habitat, we used the combined
land cover/carbonate rock raster if a species was found in habitat type 7.1, and the
land cover-only raster if a species was not found in this habitat type. The other two
habitat types not represented on the land cover raster were only suitable for 1–2
host species (i.e., 14.6. Subtropical/Tropical Heavily Degraded Former Forest; 15.8.
Seasonally Flooded Agricultural Land); therefore, we did not attempt to find other
data to use as a proxy for these habitats.

Finally, we overlaid elevation data (Shuttle Radar Topography Mission data
obtained with the getData function of the R package raster v3.4–5110) onto each
species’ range and habitat map and selected areas that fell within a species’
elevation limits (Supplementary Table 1); these remaining areas represented the
species’ AOH. Using the area function of the raster package110, we calculated the
size (in km2) of each species’ AOH and compared it to the size of its original
IUCN range.

We validated the AOH of each species using occurrence data downloaded from
GBIF using the R package rgbif v3.6.0111–113. We cleaned GBIF data by removing
records with inaccurate or imprecise coordinate data (i.e., no coordinates, identical
longitude and latitude, coordinates of 0, coordinate uncertainty >35 km,
coordinates in the ocean, country–coordinate mismatch), records from areas
outside our geographically defined region, records of absence rather than presence,
and records with a Basis of Record other than human observation, machine
observation, observation, material sample or preserved specimen. We removed
records within 5 km of country capitals and within 1 km of country/province
centroids (as coordinates are likely to be assigned to capitals and centroids in the
absence of detailed location information), and within 100 m of biodiversity
institutions (as these coordinates would represent the physical location of a
specimen, rather than its capture location). We removed records before 1991, as
older records tend to have less precise location data114 and could reflect species
ranges that have since shifted. Within each species, we removed records with
duplicate coordinates. Cleaning was facilitated with the R package
CoordinateCleaner v2.0–18115. For each species, we buffered each of its occurrence
points by a five-kilometer radius and calculated the percent of buffered points that
overlapped the species’ AOH.

Estimation of bat-human overlap, bat species richness, and habitat propor-
tions. To identify regions where human populations might be exposed directly or
indirectly to SARSr-CoV bat hosts, we overlaid human population count data on
each host species’ AOH. We used a 1-km resolution raster of 2020 population
count data from WorldPop116 and resampled it with bilinear interpolation using
the R package gdalUtils v2.0.3.2117 so that its extent and resolution matched that of
the habitat raster. We calculated the number of people living within the AOH of
each species separately, and divided this by the size of each AOH to obtain average
human population density values. As living in areas with high diversity of SARSr-
CoV bat hosts and large human populations may increase the likelihood of human-
bat contact, viral spillover, and subsequent pathogen spread, we visualized bat
species richness as well as bat species richness multiplied by human population size
(which we term bat-human overlap) across the consensus map. To examine the
relative importance of different habitat types to SARSr-CoV bat hosts, we calcu-
lated the proportion (by area) of each habitat type within the AOH of each species.
To examine which habitat types might be most important for human exposure to
bats, we calculated the number of people living in each habitat type of each
species’ AOH.

Estimating human infection with SARSr-CoVs. We used a probabilistic risk
assessment to estimate SARSr-CoV spillover risk in Southeast Asia. For this ana-
lysis, we define spillover risk as the annual number of people infected by SARSr-
CoVs via bat-to human transmission events. We draw on an established framework
that defines risk as equal to hazard times exposure times vulnerability, where a
hazard is a potential source of harm from a microbe, exposure is the likelihood of
contact between humans and hazards, and vulnerability is the chance of a hazard
causing harm, given exposure37. Here, the hazard is a bat belonging to a species
known to host SARSr-CoVs, exposure is the likelihood of contact between a person
and a bat, and vulnerability is the chance that a human-bat contact event results in
a human infection that produces detectable antibodies.
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We assumed that spillover risk can be approximated as the number of people
who live in the consensus area of SARSr-CoV bat hosts (Npeople), multiplied by the
probability that a human comes into contact with a bat (Pcontact), multiplied by the
probability that a human-bat contact leads to a serologically detectable human
infection (Pdetect), multiplied by the probability that serological detection is due to
an infection within the previous year (Ppastyear) (1).

Spillover risk ¼ Npeople � Pcontact � Pdetect � Ppastyear ð1Þ
We accounted for uncertainty (e.g., potential inaccuracy of serological tests) and

variation (e.g., differences in human behavior due to gender, occupation, cultural
norms) associated with the input variables by assigning a probability distribution
(rather than a single fixed value) to each. We performed Latin hypercube sampling
with the R package lhs v1.1.1118 to generate 400,000 sets of input combinations and
calculated the corresponding spillover risk for each set of inputs, creating an output
distribution for spillover risk. We then calculated summary statistics (median, 95%
confidence interval for the median, overall range, interquartile range) for this
distribution. The 95% confidence interval for the median was calculated using the
MedianCI function in the R package DescTools v0.99.41119 with 1000 bootstrap
replicates. Our choices of probability distributions for Npeople, Pcontact, Pdetect, and
Ppastyear are described below.

For Npeople, we assigned the normal distribution N 499101844; 166367282
� �

.
The mean value was derived from our calculation of the number of people living in
the consensus area of SARSr-CoV bat hosts within Southeast Asia, based on 2020
WorldPop population count data. The standard deviation was chosen so that the
tails of the distribution (3 standard deviations) would extend 10% beyond the
mean, to reflect potential uncertainty associated with the WorldPop dataset.

To inform our choice of distribution for Pcontact, we gathered data on bat-
human contacts in Southeast Asia using a systematic search of Google Scholar,
PubMed, and Web of Science with the following keywords: (“bat contact” OR
“human bat contact” OR “human bat interaction” OR “bat human contact” OR
“bat human interaction”) AND (“Bangladesh” OR “Bhutan” OR “Brunei” OR
“Cambodia” OR “China” OR “India” OR “Indonesia” OR “Lao PDR” OR
“Malaysia” OR “Myanmar” OR “Nepal” OR “Philippines” OR “Singapore” OR “Sri
Lanka” OR “Thailand” OR “Timor-Leste” OR “Vietnam”). English language papers
published from January 1, 2000 to May 07, 2021 were included in the search. A
total of 421 records were initially identified, of which 24 were retained following
title and abstract screening that excluded duplicate articles, studies that only
focused on bat-borne pathogens or bat ecology, and studies based outside of
Southeast Asia. Full text review was performed on these 24 articles. Six articles
provided data on the frequency of human contact with bats or their excreta within
the last 12 months. These studies included specific data on behaviors and practices
that might allow viral transmission (e.g., eating bats, receiving a bat scratch or bite,
exposure to urine or guano, being in a bat cave, having bats in one’s house;
summarized in Supplementary Table 3). Given that the probability of contact is
bounded between 0 and 1, we assigned the beta distribution
β 0:9366017; 5:2604551ð Þ to the 24 estimates of bat-human contact reported in the
final set of six articles, using the R package fitdistrplus v1.1–3120 to determine the
shape parameters (Supplementary Fig. 4a).

In a similar manner, to inform our choice of distribution for Pdetect, we gathered
data on viral seroprevalence among people with self-reported bat contact using a
systematic search of Google Scholar, PubMed, and Web of Science with the
following keywords: (“bat contact” OR “human bat contact” OR “human bat
interaction” OR “bat human contact” OR “bat human interaction”) AND
(“serological prevalence” OR “seroprevalence” OR “serological evidence” OR
“human infection” OR “spillover”). English language papers published from
January 1, 2000 to June 21, 2021 were included in the search. A total of 339 records
were initially identified, of which 12 were retained following title and abstract
screening that excluded (i) duplicate articles, (ii) studies that reported
seroprevalence in animal populations, (iii) studies that provided either
seroprevalence or human-bat contact but not both, (iv) studies that detected
pathogens that are unlikely to be transmitted from contact with bats, and (v)
studies that analyzed human-bat contact only among identified seropositive human
cases. Full text review was performed on these 12 articles. Seven articles provided
data on human viral seroprevalence among populations who reported contact with
bats. An additional relevant article was discovered during the revision process,
making a total of eight final articles included and 16 reported estimates of
seroprevalence (Supplementary Table 4). We assigned the beta distribution
β 0:2405859; 6:57698ð Þ to these data, again using the fitdistrplus package120 to
determine the shape parameters (Supplementary Fig. 4c). We note that it is
unlikely that all known and as-yet-undiscovered bat SARSr-CoVs are likely able to
infect people directly, or at all. However, the use of serology data from human
surveys provides a way to account for this by providing information on exposure
that has led to prior infection, albeit that the severity of that infection remains
unknown.

Studies of SARS patients have provided a range of estimates for the persistence
of antibodies at diagnostically detectable levels, with a maximum of six years,
suggesting that the proportion of those testing seropositive could include people
infected more than one year prior to testing. We note that studies of memory
T cells have shown that it is possible to identify antibodies as long as 17 years after
SARS infection121. However, our analysis uses published data on serological tests,
not memory T-cell activation studies, therefore we set the maximum at six years,

which is the longest time after exposure that published data for serological testing
provided evidence of detectable IgG122. Given that our aim was to estimate the
amount of bat-to-human spillover each year, we performed a calculation to
estimate the likelihood that someone who tested seropositive was infected within
the past year. We gathered data from papers that reported the duration of SARS-
CoV immunoglobulin G (IgG) antibody detection among patients who recovered
from SARS (Supplementary Table 5). Generally, the detectability of IgG rose
rapidly following infection, peaked at 3–4 months following symptom onset and
remained high for the first 16 months following symptom onset. Detectability then
decreased over time, with ~40–70% of patients having detectable IgG after three
years, and only ~10% having detectable IgG after six years. We fit a 2nd order
polynomial to these data, then divided the integral from 0 to 12 months by the
integral from 0 to 71.5 months (when antibody detection declines to ~0 on the
curve) to calculate the probability that antibody detection is due to an infection in
the past year. We then repeated this process excluding the only data point at
72 months, this time dividing the integral from 0 to 12 months by the integral from
0 to 49.5 months (when antibody detection goes to ~0 on the curve). We used the
two values generated from these processes to assign the uniform distribution
β 0:232444; 0:3059904ð Þ for Ppastyear.

Finally, we performed a global sensitivity analysis by calculating first-order and
total-order Sobol sensitivity indices123 to understand the relative contribution of
each input variable to the outcome. Sobol sensitivity indices measure the amount of
variance in an outcome (here, spillover risk) due to input variables, and can be used
for non-linear relationships. The first-order index represents the amount of
variance in the outcome due to each input on its own. The total-order index
represents the amount of variance in the outcome due to each input including
interactions with other inputs. First-order and total-order indices are always ≤ 1,
and first-order indices are ≤ total-order indices. All sensitivity indices were
calculated using the R package sensitivity v1.25.0124 using the Janon-Monod
method, and 95% confidence intervals were calculated using 100 bootstrap
replicates using the same package125,126.

Sensitivity analyses indicated that Pcontact and Pdetect primarily contributed to
variance in the outcome (see Results). Therefore, we repeated our calculation of
spillover risk by excluding the three highest estimates of Pcontact and the two highest
estimates of Pdetect found in our literature searches and refitting the distributions
for these parameters. We explored three scenarios: (1) only the distribution for
Pcontact was refit, (2) only the distribution for Pdetect was refit, and (3) both
distributions were refit. See Supplementary Fig. 4 for an illustration of the original
and adjusted distributions for Pcontact and Pdetect.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Bat distribution shapefiles are available at https://www.iucnredlist.org/resources/spatial-
data-download. Elevation and habitat suitability for individual species are available at
https://www.iucnredlist.org/. Bat occurrence data are available at https://doi.org/10.
15468/dl.8w26d8. Human population count data are available at https://doi.org/10.5258/
SOTON/WP00647. Carbonate rock outcrop data are available at https://crc806db.uni-
koeln.de/layer/show/296/. A global map of terrestrial habitat types (version 001) is
available at https://doi.org/10.5281/zenodo.3666246. A global land shapefile is available
at https://www.naturalearthdata.com/downloads/50m-physical-vectors/. Data from
published sources are available in Supplementary Tables and also at https://doi.org/10.
5281/zenodo.5251725.

Code availability
All R scripts needed to reproduce the analysis and figures are available in a Github
repository (https://github.com/ecohealthalliance/sars_cov_risk), also deposited in
Zenodo at https://doi.org/10.5281/zenodo.5251725.
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