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Abstract
Background: STAT3 phosphorylation is associated with the neoplastic state in many types of
cancer, including prostate cancer. We investigated the role of IL-6 signaling and phosphorylation of
STAT3 in 2 rat prostatic epithelial lines. NRP-152 and NRP-154 cells were derived from the same
rat prostate, yet the NRP-152 cells are not tumorigenic while the NRP-154 cells are tumorigenic.
These lines are believed to represent 2 of the stages in the development of prostate cancer,
hyperplasia and neoplasia. Differences in signaling pathways should play a role in the 2 phenotypes,
hyperplastic and neoplastic.

Methods: We looked at the phosphorylation state of STAT3 by intracellular flow cytometry, using
phospho-specific antibodies to STAT3. We used the same method to examine IL-6 production by
the cell lines. We also measured apoptosis by binding of fluorescent annexin V to the cells.

Results: Although both cells lines made IL-6 constitutively, phosphorylated-STAT3 was present in
untreated NRP-154 cells, but not in NRP-152 cells. Treatment with dexamethasone inhibited the
IL-6 production of NRP-152 cells, but enhanced that of NRP-154 cells. Treatment with the JAK2
inhibitor AG490 induced apoptosis in NRP-152, but not NRP-154 cells.

Conclusions: We conclude from these experiments that STAT3 activity plays a role in the
phenotype of NRP-154 cell, but not NRP-152 cells. The significance of alternative IL-6 signaling
pathways in the different phenotypes of the 2 cell lines is discussed.

Background
Prostate cancer (PCA) is the leading cause of death in the

American male over age 55, according to recent data [1].

To date, the mechanisms underlying the pathogenesis of

this disease, including how normal prostate cells become

neoplastic, remain unidentified. Moreover, the treat-

ment efficacy of this disease remains limited, especially

when it recurs. A thorough understanding of the neo-

plastic process could facilitate earlier detection of the

disease, lead to more specific therapies for PCA, and ul-

timately improve survival.

PCA is one of several types of cancers in which IL-6 has

been found or is thought to play a pathophysiological

role. Some researchers think IL-6 may play a role in PCA

because of what IL-6 does in other model systems of can-
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cer biology. For example, early investigators observed

that transfection of untransformed B cells with a plasmid

for constitutive expression of IL-6 conferred the tumori-

genic phenotype on the cells [2]. IL-6 is a key factor in
myeloma progression and survival [3,4], and also in Ka-

posi's sarcoma, a solid tumor [5]. In myeloma, the stand-

ard therapy for treatment includes prednisone, which

acts by inhibiting IL-6 synthesis. Experimental anti-IL-6

therapies for myeloma and B-lymphoproliferative disor-

ders have been shown to be of some use in limited clini-

cal trials [6–11], therefore this is an intensely-studied

target for myeloma therapy.

As mentioned above, IL-6 is a cytokine that functions as

a necessary growth factor in several cancer types, most

studied in multiple myeloma [12]. It is an essential factor

in the development and maintenance of B cell neoplasms

[13], and likely plays an important role in many other

types of cancer. IL-6 signals through a set of signaling

proteins of the JAK and STAT kinase families [14]. The

JAK and STAT kinases are activated by phosphorylation

initiated by the homodimerization of the IL-6/IL-6 re-

ceptor complex on the cell surface. The major IL-6 sign-

aling intermediates are JAK2 and STAT3 [15].

Homodimerization of the IL-6/receptor complex induc-

es the autophosphorylation of JAK2. The now-activated

JAK2 phosphorylates STAT3, which forms homodimers,

can cross the nuclear membrane and function as a tran-

scription factor, inducing various genes including genes
involved in the cellular transformation process [15].

An association between autocrine IL-6 and PCA has been

known for some time [16,17]. The change in prostate cell

phenotype from paracrine IL-6-stimulated to autocrine

IL-6-stimulated is believed to be a contributing factor in

the progression from benign hyperplasia to neoplasia

[17]. IL-6 is also implicated in the development of cancer

cell resistance to chemotherapy in PCA patients [18,19].

In other studies, a chimeric protein consisting of an anti-

IL-6 Ab fused to Pseudomonas exotoxin was found to in-

hibit proliferation of prostate carcinoma cell lines [20].

Exogenous IL-6 activated androgen responsive gene ex-

pression in the absence of androgens in human LNCaP

cells [21]. More work is needed to clarify the role of IL-6

in prostate neoplasia.

While there is some evidence suggesting IL-6-mediated

neoplasia in PCA development [17,22], a system suitable

for following the transformation of prostate cells during

PCA development remains lacking. We chose to use the

NRP-152 and NRP-154 cell lines, derived by Danielpour,

et al. [23], to examine the question of IL-6-mediated ne-

oplastic progression via STAT3 activation. The 2 lines

were derived from the same part of the rat prostate, fol-
lowing treatment in vivo with N-methyl-N-nitrosourea.

The NRP-152 cells are immortalized but not trans-

formed, require several growth factors for in vitro surviv-

al, and do not give rise to tumors in vivo. The NRP-154

cells are transformed, grow in the absence of exogenous
growth factors, and are tumorigenic [23–27]. These lines

come from epithelial cells. While prostatic epithelium is

resistant to neoplastic transformation, it is not resistant

to the development of hyperplasia. Studying the neoplas-

tic transformation events in a cell type inherently resist-

ant to this type of change can yield much valuable

information about the transformation process in pros-

tate cells.

Materials & Methods
Cell lines and growth media
The tumorigenic (NRP-154) and non-tumorigenic (NRP-

152) rat prostate epithelial cell lines were the gift of Dr.

David Danielpour, Ireland Cancer Center, University

Hospital of Cleveland, Case Western Reserve University,

Cleveland, OH [23]. NRP-152 cells were propagated in

DMEM/ Ham's F12 medium (1:1; GIBCO) supplemented

with 10% fetal bovine serum (GIBCO), 2 mM glutamine

(GIBCO), epidermal growth factor (20 ng/ml), insulin (5

µg/ml), dexamethasone (0.1 µM) and cholera toxin (10

µg/ml; all reagents listed, Sigma), pH 7.3. NRP-154 cells

were grown in DMED/F12 plus serum and dexametha-

sone only. Both lines were grown in a humidified 37°C
CO2 incubator until the monolayers reached about 90%

confluence. For treatment with steroids, the cells were
cultured in complete medium, in which the serum was

replaced by charcoal-stripped serum overnight. Cells

were treated with 20 nM testosterone for 6 hr. The cells

were harvested with trypsin/EDTA solution, washed,

and subjected to further analyses.

Intracellular flow cytometry for analysis of IL-6 and phos-
pho-STAT3
NRP-152 and NRP-154 cells were grown as described

above. For analysis of IL-6 production, the cells were

fixed in Cytofix (Pharmingen) for 30 min on ice, then

washed and permeabilized with Cytoperm (Pharmingen)

for 15 min on ice. After washing with Perm/Wash buffer

(Pharmingen), cells were incubated in 5–10 mg/ml goat

Ig for 1 hr on ice. Cells were washed three times in Perm/

Wash buffer, then incubated with 1 µg biotinylated anti-
rat IL-6 (Pharmingen)/106 cells in 100 l Perm/Wash

buffer for 1 hr on ice. After washing with Perm/Wash

buffer three times (first wash being a 1 hr period in which

the cells remain in Perm/Wash buffer for 1 hr on ice),

cells were incubated with phycoerythrin-labeled strepta-

vidin (Pharmingen) for 1 hr on ice, and washed three

times as described for the Ab incubation step, then

brought to 1 ml with PBS [28].
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For analysis of phospho-STAT3, a different method was

used to visualize the phosphorylated protein species.

NRP-152 and NRP-154 cells were grown in the presence

or absence of testosterone, as described above. Cells
were fixed in Fix & Perm Medium A (Caltag) for 10 min

at room temperature. After washing twice in PBS, cells

were resuspended in ice-cold methanol with vortexing,

then allow to sit for 15 min on ice. After washing twice in

PBS, cells were resuspended in Fix & Perm Medium B

(Caltag) and allowed to remain at room temperature for

30 min. Medium B contained 2 mg/ml goat Ig for block-

ing non-specific binding. After washing three times (in-

cluding a 30 min time in cold PBS for the first wash), the

cells were incubated with rabbit anti-phospho-STAT3

(Biosource), 1 µg Ab/106 cells in 100 µl buffer. The Ab is
specific for the phosphorylated form of STAT3; it does

not bind to unphosphorylated STAT3 or to other phos-

phorylated signaling intermediates. After incubating for

1 hr on ice, the cells were washed, with a long period in

PBS for the first wash as described above. Next cells were

incubated with phycoerythrin-labeled goat anti-rabbit

F(ab2)' (Caltag) for 1 hr on ice, and washed as described.

For analysis, cells were brought to 1 ml in PBS. All flow

cytometric analyses were performed on a Becton-Dickin-

son FACScan, using CellQuest software for acquisition

and analysis.

Treatment of NRP-152 and NRP-154 cells with dexameth-
asone
NRP-152 and NRP-154 cells or clones (see below) were

seeded at 105 cells/well in microtiter plates in the pres-

ence or absence of dexamethasone (Sigma) at 0.1 and 1

µM. After 48 hr, NRP-152 and NRP-154 cells replicate

wells of cells were harvested with either trypsin/EDTA

(GIBCO) or 0.15 M NaCl/ 0.01 M Na citrate buffer (cit-

rate-saline buffer), and the cells were processed for in-

tracellular flow cytometry to analyze IL-6 production, as

described above.

Cloning NRP-154 cells by limit-dilution
Washed NRP-154 cells were diluted to 10 cells/ml in

complete medium, and 100 l/well of diluted cells were

placed in wells of a microtiter plate. An additional 100

µl/well complete medium were added, and the cells were

incubated until growth was noted, 10 days later. At that

time, 16/96 wells had cells growing in them (16.7% clon-

ing efficiency), while the remaining wells did not. Medi-

um was replaced, and plate was incubated until cells had

grown enough to be removed to bigger wells. Clones were

expanded, then analyzed for IL-6 production, as de-

scribed above.

Analysis of NRP-152 and NRP-154 cells for expression of 
IL-6 receptor
Harvested NRP-152 and NRP-154 cells were washed

twice in cold FACS buffer (PBS/0.1% serum/0.01%
NaN3). Cells were blocked by incubation on ice in goat Ig

(Sigma), 2 mg/ml, for 45 min. After washing twice, cells

were incubated with 1 or 2 µg/106 cells in 100 µl bioti-
nylated goat anti-human IL-6 receptor (ligand-affinity

purified; R&D Systems) on ice for 45 min. After washing

three times, cells were incubated with phycoerythrin-la-

beled streptavidin for 45 min on ice. After washing three

times, cells were analyzed on the flow cytometer.

Treatment of NRP-152 and NRP-154 cells with AG490
The tyrphostin protein kinase inhibitor AG490 was pur-

chased from Calbiochem. It was dissolved in DMSO, and

stored at -20°C in single-use aliquots. NRP-152 and

cloned NRP-154 cells were placed in 60 mm wells, and

treated with AG490 for 48 hrs. The cells were removed

with trypsin, and stained after washing with FITC-an-

nexin V (5 µl/106 cells; Caltag) for 15 min at room tem-

perature. Apoptotic cells (cells staining with FITC-

annexin V) were quantified by measuring green fluores-

cence in FL1 on the flow cytometer. CellQuest software

was used to acquire and analyze the data. STATView

software was used to perform statistical analyses.

Results
Determination of the phosphorylation state of STAT3 in 
NRP-152 & NRP-154 cells
We had very preliminary data, from a microarray exper-

iment comparing the RNA of NRP-152 to NRP-154 cells,

which indicated that STAT3 might be over-expressed on

NRP-154 cells relative to NRP-152 cells (data not

shown). Since STAT3 is active only when phosphorylat-

ed, we decided to confirm these preliminary results by

looking for phospho-STAT3 in both cell lines by intracel-

lular flow cytometry. We observed that STAT3 was con-

stitutively phosphorylated in NRP-154, but not NRP-152

cells. Even when treated with testosterone as described

in Materials and Methods, NRP-152 cells did not exhibit

phosphorylated STAT3 (Figure 1). These data indicate

that the over-expressed STAT3 observed in NRP-154

cells in the gene microarray was putatively active as a

transcription factor, since the amount of phospho-

STAT3 in NRP-154 cells was increased relative to NRP-

152 cells.

IL-6 is produced constitutively by NRP-152 and NRP-154 
cells
In order to determine if IL-6 was the activating ligand for

phosphorylation of STAT3, we examined IL-6 expression

in untreated NRP-152 and NRP-154 cells by intracellular

flow cytometry. While both cell lines made IL-6, NRP-
154 cells displayed a different pattern, in that there was a
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peak of cells negative for IL-6 (Figure 2). This may have

been due to heterogeneity of the NRP-154 cells, since the

parental lines had not been subcloned by us. Therefore,

we derived 16 clones of NRP-154 cells by limit-dilution

cloning, and examined these for level of IL-6 expression.

We observed that 9 clones were highly-positive for IL-6,

while the rest expressed little IL-6, thereby accounting

for the 2 peaks we observed in the parental NRP-154 line

(Figure 3).

IL-6 receptor was expressed on the surfaces of NRP-152 
and NRP-154 cells
When we examined NRP-152 and uncloned NRP-154

cells for expression of the IL-6 receptor, we observed that

all NRP-152 cells expressed the IL-6 receptor, while the

uncloned NRP-154 cells had a population that apparent-

ly did not express the receptor (Figure 4). In studies cur-

rently underway, we are analyzing the 16 NRP-154 clones

we derived for differences in IL-6 receptor expression,

and to see if there is any correlation with levels of IL-6

expression.

Effect of dexamethasone treatment on NRP-152 and NRP-
154 cells
To examine the role of autocrine IL-6 on NRP-152 and

NRP-154 cells, we looked at the effect of dexamethasone

treatment on IL-6 expression on both cell lines, and on

high and low IL-6-expressing clones of NRP-154 cells.

Dexamethasone is known to inhibit IL-6 synthesis by

acting at the steroid-response elements of the IL-6 pro-

moter . NRP-152 and NRP-154 cells were routinely

grown in the presence of dexamethasone, so the effect on
proliferation was not quantified. In the following experi-

Figure 1
NRP-154 cells, but not NRP-152 cells, have constitu-
tively-activated STAT3. NRP-152 and NRP-154 cells
were grown in their respective complete media. For IC flow
cytometry, confluent cells were harvested, fixed, permeabi-
lized, and stained for P-STAT3, as described in Materials &
Methods. Cells were analyzed on a Becton-Dickinson FACS-
can for fluorescence in FL2. The thin purple line on the histo-
gram shows the results for NRP-152 cells + testosterone;
the thick blue line shows the results for NRP-154 cells minus
testosterone. The fluorescent staining of NRP-152 cells plus
testosterone was the same as for the fluorochrome control
on both cell lines, and the same for NRP-152 cells not
treated with testosterone (data not shown). The NRP-154
cells were approximately 10 times more fluorescent than the
NRP-152 cells (p < 0.001 by Kolmogorov-Smirnov {KS} sta-
tistical analysis). A representative histogram from 4 inde-
pendent experiments is shown here.

  

Figure 2
Constitutive IL-6 expression by NRP-152 & NRP-154
cells. Confluent cells were harvested, fixed, and permeabi-
lized as described in Materials & Methods. They were stained
with goat anti-rat IL-6, then with fluorescent anti-goat Ig.
Cells were analyzed on a FACScan for fluorescence in FL2. A,
NRP-152 cells. B, NRP-154 cells. In both histograms, green =
fluorescent anti-goat Ig only; purple = goat anti-rat IL-6 plus
fluorescent anti-goat Ig. KS analysis revealed that the fluores-
cence intensity of the NRP-154 cells in the second peak in
panel B were 3 to 5 times the fluorescence intensity of the
control-stained cells (green peak in panel B; p < 0.01). A his-
togram from 1 experiment is shown here.
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ments, we used dexamethasone-free medium, and also

treated the serum twice with activated charcoal, to re-

move endogenous steroids (stripped serum), then added

defined amounts of dexamethasone for carying out the

experiments. We observed that dexamethasone treat-

ment of NRP-152 cells inhibited IL-6 synthesis without

affecting NRP-152 growth, as expected. In contrast, dex-

amethasone treatment of NRP-154 cells did not inhibit

IL-6 synthesis; instead dexamethasone treatment appar-

ently enhanced IL-6 production (panel B). This effect

was observed for high and low IL-6-expressing clones of

NRP-154 (Figure 5, panels C and D), and therefore was

independent of IL-6 production by the cells. However,

clones expressing low amounts of IL-6 expressed less en-

hancement of IL-6 production that clones expressing

high amounts of IL-6 (Figure 5, panels C and D).

Inhibition of JAK2 induced apoptosis in NRP-152 but not 
NRP-154 clones
In continuing our studies on the role of IL-6 in STAT3

phosphorylation, we used the JAK2 phosphorylation in-
hibitor AG490, to see if inhibiting JAK2 phosphorylation

would inhibit survival of NRP-152 or NRP-154 cells, as

had been described for LNCaP cells previously [29]. We

examined clones of NRP-154, selected by amount of IL-6

expression each had: 2 high IL-6-expressing clones and

2 low-IL-6-expressing clones were used for these experi-

ments. Treatment with the JAK2 inhibitor for 48 hrs in-

duced apoptosis, measured by cellular binding of FITC-

annexin V, in NRP-152 but not NRP-154 clones (Table 1).

We detected no effect of the vehicle (DMSO) at the high-

est concentration used. Our data imply that JAK2-medi-
ated phosphorylation of STAT3 was essential for the

Figure 3
IL-6 expression of clones A4 (red) and D8 (green) of
NRP-154 cells. Clones of NRP-154 cells were derived by
limit dilution at 1 cell/well; calculated cloning efficiency was
17.8%. Clones were fixed, permeabilized, and stained with
biotinylated anti-IL-6 (R&D Systems) plus streptavidin-phyco-
erythrin (Pharmingen), as described in Materials & Methods.
Fluorescence in FL2 was analyzed on a FACScan. The IL-6
expression of the 16 clones was either high, like A4 (shown
in red), or low, like D8 (shown in green). A4 cells are 8 times
as fluorescent as D8 cells. The IL-6 expression of 2 of the 16
clones is shown for the sake of clarity. The fluorescence
intensity of clone A4 was 10× that of clone D8 in this exper-
iment (p < 0.001 by KS statistics). A histogram from 1 deter-
mination is shown here.

 

Figure 4
IL-6 receptor is expressed on untreated NRP-152 &
NRP-154 cells. Confluent cells were removed with citrate-
saline buffer and stained with 2 µg/106 cells goat anti-IL-6
receptor (R&D Systems). Fluorescent anti-goat Ig was then
added. Fluorescence in FL2 was analyzed using a FACScan. A,
NRP-152 cells. The blue line is the fluorescence control; the
red line is the fluorescence due to the IL-6 receptor on the
cells. The anti-IL-6 receptor-stained cells were 30 times as
fluorescent as the control stained cells (p < 0.001 by KS sta-
tistics). B, NRP-154 cells. The green line is the fluorescence
control; the purple curve is the IL-6 receptor on the cells.
The anti-IL-6 receptor-stained cells (second red peak) were
10 times brighter than the control-stained cells (green peak;
p < 0.001 by KS statistics). The first red peak was comprised
of cells that did not stain positive for the IL-6 receptor.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
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survival of NRP-152 cells, but that NRP-154 cells did not

require activated JAK2 for survival, regardless of

amount of IL-6 produced by the cell. Further experi-

ments are underway to determine if STAT3 requires

phosphorylation by a different kinase, such as JAK1, in

NRP-154 cells.

Discussion
We observed that STAT3 was constitutively phosphor-

ylated in NRP-154, but not NRP-152 cells (Figure 1).

Treatment of NRP-154 cells with testosterone did not in-
crease the level of phosphorylation in NRP-154 cells (da-

ta not shown). Even after testosterone treatment, STAT3

was not phosphorylated in NRP-152 cells (data not

shown). There is evidence that androgen treatment may

increase the survival of PCA cells through activation of

STAT3 [29]. Further experiments are underway to test

this possibility. STAT1, another signaling intermediate in

the IL-6 pathway, has been observed to be activated in

non-tumorigenic cells, and may function as a "check" for

STAT3 phosphorylation, a possible oncogenic event

[30,31]. We are investigating whether or not STAT1 is

phosphorylated by JAK2 in NRP-152 cells, and whether
STAT1 phosphorylation is required for the survival of

Figure 5
Dexamethasone treatment inhibited IL-6 expression in NRP-152 but not NRP-154 cells. Cells were grown in
charcoal-adsorbed serum-containing medium prior to beginning dexamethasone treatment (10-6 M) for 2 days. Cells were har-
vested, fixed, and permeabilized, stained for IL-6, then analyzed for fluorescence in FL2, as described above. Panel A, NRP-152
cells. Panel B, NRP-154 cells. Panel C, NRP-154 clone A3 (high IL-6 – expressing. Panel D, NRP-154 clone G7 (low IL-6-
expressing). All panels, purple line = no dexamethasone; red line in panels A & B = + dexamethasone; blue line in panels C &
D = + dexamethasone.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A) NRP-152 (B) NRP-154 A B 
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NRP-152 cells. These results would explain why we saw

an effect of AG490 on NRP-152 cells, in the absence of

phospho-STAT3 in these cells (Table 1).

We looked at the effect of anti-rat IL-6 Ab on both NRP-

152 or NRP-154 cell growth rate, but were unable to de-

tect an effect, using 3H-thymidine incorporation to

measure proliferation (data not shown). We think this is

due to failure to reach high enough Ab (commercially-

available anti-rat IL-6) concentrations necessary to neu-

tralize the IL-6 produced by the NRP-154 cells (highest

concentration achieved was only 20 µg/ml). We are lim-

ited in performing Ab studies by the lack of commercial-

ly-available rat-specific reagents. However, we are using

alternative strategies in more experiments currently un-

derway to determine the role of IL-6 in STAT3 activation

to answer this important question in NRP-154 cells.

We found that dexamethasone treatment of NRP-152

cells inhibited IL-6 synthesis without affecting cell

growth. In contrast, dexamethasone treatment of NRP-

154 cells did not inhibit IL-6 synthesis; instead dexame-

thasone treatment eliminated the IL-6 negative peak and

enhanced IL-6 production albeit to a smaller extent in

low IL-6-expressing clones (Figure 5, panel D). Enhance-

ment of IL-6 production by dexamethasone treatment
has been previously observed in Kaposi's sarcoma cells

[32]. In the case of NRP-154 cells, the steroid-responsive

element for dexamethasone on the IL-6 promoter may

have been mutated to a form that does not bind steroid

receptors. Mutations in the IL-6 promoter region may
play a role in the tumorigenic effects of constitutive IL-6

expression in prostatic carcinoma cells [33]. Such poly-

morphisms have been described for the IL-6 receptor in

Kaposi's sarcoma, and are believed to play a role in IL-6-

mediated progression of this type of cancer [32].

We observed that inhibition of STAT3 activation by

treatment with AG490, which inhibits JAK2 activation,

resulted in apoptosis of NRP-152 but not NRP-154 cells

(Table 1). A possible explanation of the data would be the

use of JAK1 for phosphorylation of STAT3 in NRP-154

cells, which would not be inhibited by AG490. IL-6 re-

ceptor binding activates JAK1 as well as JAK2, which in

turn phosphorylates STAT3 [14]. This in fact has been

shown to be the case for v-src-transformed fibroblasts

[34]. Another hypothesis is that STAT3 activation in

NRP-154 cells is not dependent upon a signaling cascade,

but is constitutive, possibly due to a mutation not unlike

that contained within the cSTAT3 plasmid generated by

Bromberg, et al. [35]. We are investigating in detail the

signaling pathway in NRP-152 and NRP-154 cells to an-

swer these important questions.

The importance of STAT3 activation via IL-6 in prostatic

cancer development has been suggested by previous in-
vestigators. For example, IL-6 acting via its receptor has

been shown to activate STAT3 in LNCaP cells. IL-6 given

exogenously, since LNCaP cells do not produce IL-6, re-

sulted in increased growth of the cells concomitant with

activation of STAT3 [36]. LNCaP cells transfected with a

plasmid conferring constitutive IL-6 expression demon-

strated increased growth, relative to untransfected or

sham-transfected cells [36]. However, other investiga-

tors have observed that IL-6 treatment of LNCaP cells re-

ulted in terminal differentiation and inhibition of

growth, associated with STAT3 activation [17,37,38].

The molecular basis for the apparent contradiction is un-

known at this time. Continued use of the NRP-152 and

NRP-154 cell lines in parallel experiments should be use-

ful in elucidating the discrepancies among various labo-

ratories.

It is possible that exogenous or autocrine IL-6 is not re-

quired for constitutive STAT3 activation in NRP-154

cells. For example, viral IL-6 might be incorporated into

the genomes of prostatic carcinomas, as has been de-

scribed for Kaposi sarcoma [5,32,33,39–41]. The route of

introduction of the viral IL-6 is believed to be through

previous herpesvirus infection [39,41]. Another possibil-

ity is that the insertion of the oncogene BRCA1 results in
the constitutive activation of STAT3 in NRP-154 cells, as

Table 1: Inhibition of JAK2 resulted in apoptosis of NRP-152 cells

Cell Rx µM % Apoptotic +/- SD

NRP-154 AG490 0 8 + 4
(uncloned) 30 8.5 + 5

100 7.5 + 5
154 clone A3 AG490 0 7.2 + 2
(high IL-6) 100 9.8 + 3
154 clone B1 AG490 0 8.5 + 5
(high IL-6) 100 9.3 + 4
154 clone G3 AG490 0 3.7 + 3
(low IL-6) 100 8.3 + 5
154 clone G7 AG490 0 13.2 + 5
(low IL-6) 100 11.9 + 7
NRP-152 AG490 0 7.5 + 4

30 12 + 0
100 45 + 10*

Legend: NRP-152 and NRP-154 cells were placed in 60 mm plates for 
48 hr with compound at the concentrations indicated. Zero concen-
tration of the compound is the vehicle (DMSO) control. At the end 
of the incubation period, cells were harvested, washed, and stained 
with FITC-annexin V, to demonstrate apoptotic cells. Quantification 
of fluorescence was performed on a Becton-Dickinson FACScan flow 
cytometer using CellQuest software. * p < 0.005 by Student t-test, 
compared to vehicle-treated cells.
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has been described in Du-145 prostate cancer cells [42].

Du-145 cells do not make IL-6; nor are they dependent

upon it for continued proliferation in vitro. However,

they were dependent upon STAT3 activation for survival,
as demonstrated by experiments in which anti-sense oli-

gomucleotides for STAT3 were incoporated by Du-145

cells [42]. We are currently performing similar experi-

ments to determine if IL-6 is a necessary ligand for the

activation and survival of NRP-154 cells.

In summary, we have demonstrated that a major differ-

ence between NRP-152 and NRP-154 cells is that NRP-

154 cells over-express the gene for STAT3, relative to

NRP-152 cells, and untreated NRP-154 cells. Further-

more, NRP-154 cells express constitutively-activated

STAT3, while NRP-152 cells do not. Moreover, we found

that while both cell lines synthesized IL-6 constitutively,

only the IL-6 production of NRP-152 cells was inhibited

by dexamethasone treatment (Figure 5). Finally, we

demonstrated that while both cell lines expressed the IL-

6 receptor on their surfaces, the patterns were different.

NRP-154 cells had a subpopulation of cells which did not

stain with anti-IL-6 receptor Ab, while all the NRP-152

cells stained with Ab to the IL-6 receptor. Although the

results presented above give us more insight into the role

of IL-6 in PCA, they do not tell us if constitutive STAT3

activation is a determining factor in the change to pros-

tate neoplasia, or if anti-apoptotic factors induced by

STAT3 play a role in prostatic neoplasia.

Conclusions
We have shown that NRP-152 and NRP-154 cells exhibit

fundamental differences in the regulation of IL-6 pro-

duction by dexamethasone, and in the requirement for

JAK2-mediated events for survival. The tumorigenic line

NRP-154 expressed phospho-STAT3 under normal

growth condition, while the non-tumorigenic line did

not. These data indicate a very important role for STAT3

in conferring the neoplastic state on prostatic epithelial

cells, and point out the future direction of our laborato-

ry's investigations.
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