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Abstract

Protein secondary structure prediction (SSP) has a variety of applications; however, there

has been relatively limited improvement in accuracy for years. With a vision of moving for-

ward all related fields, we aimed to make a fundamental advance in SSP. There have been

many admirable efforts made to improve the machine learning algorithm for SSP. This work

thus took a step back by manipulating the input features. A secondary structure element-

based position-specific scoring matrix (SSE-PSSM) is proposed, based on which a new set

of machine learning features can be established. The feasibility of this new PSSM was eval-

uated by rigid independent tests with training and testing datasets sharing <25% sequence

identities. In all experiments, the proposed PSSM outperformed the traditional amino acid

PSSM. This new PSSM can be easily combined with the amino acid PSSM, and the

improvement in accuracy was remarkable. Preliminary tests made by combining the SSE-

PSSM and well-known SSP methods showed 2.0% and 5.2% average improvements in

three- and eight-state SSP accuracies, respectively. If this PSSM can be integrated into

state-of-the-art SSP methods, the overall accuracy of SSP may break the current restriction

and eventually bring benefit to all research and applications where secondary structure pre-

diction plays a vital role during development. To facilitate the application and integration of

the SSE-PSSM with modern SSP methods, we have established a web server and stand-

alone programs for generating SSE-PSSM available at http://10.life.nctu.edu.tw/SSE-

PSSM.
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Introduction

The secondary structure prediction of a protein means determining the secondary structural

conformation for each residue of the protein merely based on the amino acid sequence.

Although SSP has been applied to many fields, its accuracy seems to stay on a plateau of 81–

86% for years. We believe that if the accuracy of SSP can be substantially improved, research

and applications dependent on it will all be advanced. This work aims to make a fundamental

improvement in SSP, hoping that, if the proposed algorithm can be adopted by state-of-the-art

SSP methods, the general accuracy of SSP will reach a new level. Thanks to many recent works

[1–11], much progress has been brought to the methodology and machine learning algorithms

for SSP. Thus, this study focuses on developing a new set of features that can be utilized in all

mature machine-learning-based SSP methods. The outcome of our efforts is a new position-

specific scoring matrix (PSSM) composed of secondary structural elements instead of amino

acid codes.

SSP methods have been developed for more than sixty-five years since Pauling and Corey

first proposed the helix and sheet conformations of polypeptides in 1951 [12, 13]. Despite

being an “ancient” topic, there have been still more than five methods published every year

since 2010 [14] because SSP has many applications in protein sciences, such as fold recognition

[15–17], tertiary/quaternary structure prediction and modelling [18–22], functional and evolu-

tionary analyses [23–25], prediction of folding pathway/elements [26, 27], and prediction of

disordered regions [28–31], functional sites [32, 33], binding sites [34–36], enzyme target sites

[37–39], and suitable bioengineering sites [40–43]. Moreover, predicted secondary structures

could be used in de novo protein design [44, 45] and protein drug design [46–48].

For carrying out SSP, protein secondary structural conformations were first classified into

secondary structure elements (SSEs). There are two widely used sets of SSE: 1) The three-state

(Q3) SSEs that describe a protein conformation as helixes (H), strands (E), and coils (C). 2)

The eight-state (Q8) SSEs defined by DSSP [49] that include 310-helix (G), α-helix (H), π-helix

(I), extended β-strand (E), β-bridge (B), turn (T), bend (S), and coil (C). Therefore, the devel-

opment and evaluation of SSP methods also fall into two major categories, i.e., methods mak-

ing three-state SSE predictions with Q3 accuracy and methods making eight-state predictions

with Q8 accuracy. In general, Q8 methods are also capable of making three-state predictions.

During the past four decades, SSP accuracy has been continuously raised until the last few

years. In 1978, Garnier, Osguthorpe, and Robson developed the GOR method based on infor-

mation theory and achieved ~60% accuracy for helices, β-pleated sheets, reverse turns, and

coils [50]. In 1988, Qian and Sejnowski accomplished 64.3% Q3 by neural networks [51]. In

1993, Rost and Sander used multiple sequence alignment (MSA) profiles of homologous

sequences as features for a neural network method PHD and increased the Q3 to 69.7% [52].

In 1999, Jones utilized the sequence profile computed by PSI-BLAST, known as the PSSM

[53], as features and developed a neural-network-based method PSIPRED, which promoted

the Q3 accuracy to 76.5% [1].

After PSIPRED, most SSP methods employed PSSM as the major feature set, and the com-

petition of accuracy had then mainly focused on the algorithm and improvement in machine

learning, such as neural networks [54–57], support vector machine [58–60], and hidden Mar-

kov models [56, 61]. The Q3 accuracy of methods developed in the early 2000s generally fell

between 76% and 78% [62]. Meanwhile, the Q8 accuracy of SSpro8 broke the record and

reached 62.6% [55]. In 2007, the Q3 came up to 79.5% when Dor and Zhou developed the

SPINE based on neural networks and a large training dataset [63]. Soon after that, Jpred 3

[64], another neural-network-based method, broke 80% Q3 in 2008. Since then, neural net-

work derivatives have formed the core of most SSP methods. Because of the rapid growth of
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computing power and the amount of available training data (proteins with determined struc-

tures), the architectures of neural networks became increasingly sophisticated, inclusive of the

BRNN [65], CNF [7], BRNN-LSTM [66], deep learning [8–10] and CRNN [11]. However, the

accuracy seems to meet a plateau; little improvement has been made during the past ten years.

The Q3 of current SSP methods evaluated with strict independent tests falls between 81% and

86%, while there has not yet been Q8 higher than 75%.

Since the PSSM was introduced into this field, few changes have been made to the funda-

mental feature set. Theoretically, the quality of features (and training data) should be the ulti-

mate limitation for the accuracy of a predictor, suggesting that if the feature set used by

current methods could be improved, the overall accuracy of SSP would be enhanced. We thus

proposed an SSE-based PSSM that might be easily integrated into various SSP methods to

achieve such enhancements. The way we computed this new PSSM was just a few steps away

from the traditional PSSM, the same as which the values of the proposed PSSM could be read-

ily used as features for machine learning. In order to make a reliable evaluation of the

SSE-PSSM, a careful experimental dataset preparation procedure was conducted such that any

two datasets for either training, testing, or independent tests shared<25% sequence identities.

Independent tests revealed that, by using the same machine learning strategy, the accuracy

accomplished by the SSE-PSSM feature set was much higher than that by the conventional

amino acid PSSM feature set. Preliminary tests, in which the SSE-PSSM feature set was indi-

rectly incorporated into state-of-the-art SSP methods, showed that these methods’ accuracy

could be significantly improved. For instance, when it was preliminarily integrated with

DeepCNF [7], Q3 raised from 82.9% to 84.1%, and Q8 from 68.4% to 71.8%, as assessed with

the CASP12 independent set [14, 67]. We aimed to bring a general improvement to SSP by

updating the machine learning feature set, and the proposed SSE-PSSM has been demon-

strated promising for this purpose.

Results

Example of the SSE-PSSM

The main contribution of this work is an SSE-based PSSM that may serve SSP algorithms as a

new feature set. Fig 1 demonstrates the difference between a traditional amino acid-based

PSSM and the proposed SSE-PSSM. The first advantage of the SSE-PSSM is its simplicity of

implementation. With a protein sequence similarity search program like the PSI-BLAST [53]

or HHBlits [68] and a protein structure dataset, a set of aligned amino acid sequences can be

transformed into aligned SSE sequences and construct the SSE-PSSM. Another advantage lies

in the density of information. The intermediate of a PSSM is the position propensity matrix

(PPM). If the query protein is so novel that few homologs exist in the target dataset, the PPM

generated from the aligned amino acid sequences may contain too many zeros to maintain the

quality of the generated PSSM. Because the number of SSE codes (3 or 8) was much smaller

than that of amino acids (20), with the same amount of homologs, the SSE-PPM will have

much fewer zeros and hence a higher quality of the PSSM. Besides, the small number of SSE

codes is feasible to improve the efficiency of machine learning algorithms, the time cost of

which usually increases as the number of input features increases [69].

Typically, a sequence alignment block is transformed into a position propensity matrix and

then the PSSM. In generating the proposed SSE-based PSSM, the main difference is an addi-

tional SSE transformation step (see Materials and methods). By introducing secondary struc-

ture information from the query protein’s homologs into the system, the SSE-PSSM feature set

helps improve SSP accuracy. The SSE transformation decreases the number of codes and sig-

nificantly reduces the proportion of null entries in the propensity matrix, which eventually
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enhances the quality of the final scoring matrix and may further improve the prediction accu-

racy. This illustration was made using part of the alignment of a real case, a Nudix hydrolase

(PDB 1mqw). For simplicity, three-state SSE codes were applied here. In this study, the actual

predictive models of the SSE-PSSM feature set were constructed using eight-state codes.

Accuracy of secondary structure prediction by SSE-PSSM

The SSE-PSSM is a feature set rather than a predictor. In order to evaluate it, an integrated

machine learning system we developed [41, 42] was utilized. Since the focus of this study is the

new feature set instead of machine learning, we simply adopted the default settings of this sys-

tem without optimization. As a basis for comparison, the traditional amino acid PSSM

(AA-PSSM) feature set was also generated. The predictive models of SSE- and AA-PSSMs

were trained with QuerySet-T, and independent tests were performed with QuerySet-I. For

avoiding the bias of prediction and information leakage, these datasets were iteratively homol-

ogy reduced such that any two proteins from them shared<25% identity (see “Experimental

datasets”).

As shown in Table 1, no matter in the three- or eight-state prediction, the overall accuracy

(Q3 and Q8), boundary accuracy, and internal accuracy of SSE-PSSM were all higher than

those of AA-PSSM; and the misclassification rates of SSE-PSSM were considerably lower. The

SOV (segment overlap measure), a more critical assessment measure than the Q accuracy, can

Fig 1. Position-specific scoring matrix of amino acids vs. secondary structure codes.

https://doi.org/10.1371/journal.pone.0255076.g001
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effectively capture the overall quality of SSP for a protein and reduce noises from individual

residues [70–72]. Previous studies calculated the SOV on the three-state basis (SOV3). Here a

more critical eight-state SOV, the SOV8, was also calculated. Judging from the SOV data, the

same conclusion was reached that SSE-PSSM outperformed the traditional AA-PSSM as an

SSP feature set.

Several state-of-the-art SSP methods were tested. Although the SSE-PSSM model achieved

higher scores in most measures, it is noteworthy that the SSE-PSSM and those methods were

not applied on an equal basis. In this experiment, except for the SSE-PSSM model, all methods

were developed based on the traditional PSSM. This experiment aimed to demonstrate the fea-

sibility of the SSE-PSSM as an SSP feature set but not to compare the accuracy among SSP

methods. The machine learning system we utilized to establish the SSE- and AA-PSSM models

was only a simple setup. If the advanced machine learning algorithms of those SSP methods

could be applied, the accuracy of the AA-PSSM model should be at a level similar to them.

Taking the accuracy of the AA-PSSM as a baseline, the SSE-PSSM achieved >12% and>18%

improvements in Q3 and Q8, respectively. If the SSE-PSSM could be adopted by those state-

of-the-art methods, their accuracy would be significantly improved as well, pushing much for-

ward the leading edge of SSP. The Q8 of several recent works may break the current upper

level of 75% [5–7].

The accuracies reported here were lower than those in previous reports because the way we

prepared datasets was so stringent that it limited the size of the PSSM target dataset TargetSet-

nr25, which consisted of only 11.4 thousand sequences. The size of target dataset has been

shown to exhibit a positive correlation with SSP accuracy [73]. When a conventional Uni-

Ref90-2015 of 38.2 million sequences was applied, the accuracies were all at the same levels as

previously reported (i.e., ~81% Q3; see “Applied secondary structure prediction methods”).

To ensure the reliability of the results based on the small TargetSet-nr25, we repeated all

Table 1. Accuracy of the SSE-PSSM and several state-of-the-art SSP methods.

SSE set Method Performance (QuerySet-I against TargetSet-nr25)

Three-state Measure Q3 SOV3 Boundary

Q3

Internal

Q3

H$E

err

H$C

err

E$C

err

SSE-PSSM 0.785 0.742 0.692 0.830 0.034 0.107 0.074

AA-PSSM 0.654 0.553 0.546 0.706 0.099 0.139 0.108

Scorpion 0.748 0.716 0.612 0.814 0.037 0.114 0.101

Spider2 0.755 0.688 0.625 0.818 0.033 0.112 0.100

SpineX 0.742 0.692 0.597 0.812 0.034 0.121 0.104

PSIPRED 0.751 0.694 0.612 0.818 0.023 0.124 0.102

DeepCNF 0.761 0.716 0.630 0.826 0.031 0.105 0.103

RaptorX 0.733 0.675 0.596 0.800 0.046 0.114 0.108

SSpro8 0.725 0.661 0.581 0.795 0.048 0.121 0.107

Eight-state Measure Q8 SOV8 Boundary

Q8

Internal

Q8

Hs$Es

erra
Hs$Cs

erra
Es$Cs

erra

SSE-PSSM 0.663 0.657 0.555 0.773 0.036 0.114 0.074

AA-PSSM 0.479 0.446 0.341 0.564 0.120 0.154 0.114

DeepCNF 0.642 0.587 0.487 0.801 0.031 0.105 0.103

RaptorX 0.617 0.553 0.451 0.786 0.046 0.114 0.108

SSpro8 0.605 0.548 0.432 0.781 0.048 0.121 0.107

aThese misclassification rates were computed by reducing the eight SSE codes of DSSP to three codes, helices (H, G, and I), strands (E and B), and coils (C, S, and T).

https://doi.org/10.1371/journal.pone.0255076.t001
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experiments three times by random sampling to obtain the averaged performance (see “Exper-

imental datasets”).

Performance for various structure classes

To our knowledge, the accuracy of SSP methods on different protein structural classes has not

been discussed. Here we grouped the query proteins of our independent test set (QuerySet-I)

according to their SCOP (Structural Classification of Proteins) classes [74] to analyze the per-

formance of the predictive model of SSE-PSSM and several SSP methods. Table 2 demon-

strated that most SSP methods were most sensitive to either alpha-beta mixed or all-alpha

proteins if the accuracy was determined based on residues (Q3/Q8). Interestingly, all predic-

tors showed the best performance for alpha-beta mixed proteins when measuring the accuracy

according to secondary structure segments (SOV3/SOV8; see Discussion). In implementing

the SSE-PSSM as an SSP feature set, attention might be paid to all-alpha proteins, for it per-

formed relatively weak in this class. The DeepCNF, an excellent algorithm based on deep con-

volutional neural fields [7], outperformed the SSE-PSSM model even with a traditional PSSM

as its main feature set. Nevertheless, an advantage the SSE-PSSM may bring to current SSP

methods is the balanced performance, for it achieved the smallest standard deviations of Q3,

Q8, and SOV8 among these structural classes.

An underline indicates that the SSP method performed best in this class compared to its

accuracy in these four classes.

These results also revealed an issue: all methods performed the poorest when predicting all-

beta proteins. Although it had been reported that most SSP methods performed worse in

strands than in helices [4, 14], this is perhaps the first time SSP methods were challenged with

proteins overall folded into strands versus helices, and the poor performance in all-beta pro-

teins should be informative for future SSP developments. One way out of this problem might

Table 2. Accuracy of several SSP methods for proteins of different structural classes.

SSE set Method All-alpha proteins

(SCOP class a)

All-beta proteins

(SCOP class b)

Alpha-beta mixed

proteins (SCOP class a/

b)

Alpha-beta segregated

proteins (SCOP class a

+b)

Normalized standard

deviationa

Three-state Measure Q3 SOV3 Q3 SOV3 Q3 SOV3 Q3 SOV3 Q3 SOV3

SSE-PSSM 0.775 0.699 0.764 0.733 0.819 0.794 0.781 0.741 0.029 0.050

AA-PSSM 0.638 0.463 0.641 0.584 0.681 0.619 0.655 0.554 0.029 0.108

Scorpion 0.765 0.718 0.709 0.671 0.771 0.758 0.744 0.714 0.036 0.047

Spider2 0.772 0.663 0.705 0.642 0.775 0.732 0.749 0.690 0.042 0.053

SpineX 0.761 0.699 0.692 0.646 0.760 0.732 0.735 0.693 0.042 0.048

PSIPRED 0.774 0.706 0.712 0.660 0.764 0.730 0.740 0.696 0.036 0.040

DeepCNF 0.791 0.725 0.726 0.682 0.780 0.759 0.756 0.724 0.036 0.042

RaptorX 0.757 0.673 0.694 0.657 0.757 0.725 0.735 0.690 0.039 0.040

SSpro8 0.753 0.667 0.681 0.641 0.745 0.711 0.725 0.678 0.043 0.041

Eight-state Measure Q8 SOV8 Q8 SOV8 Q8 SOV8 Q8 SOV8 Q8 SOV8

SSE-PSSM 0.657 0.636 0.624 0.626 0.711 0.710 0.659 0.658 0.051 0.053

AA-PSSM 0.478 0.374 0.417 0.426 0.496 0.487 0.456 0.430 0.069 0.095

DeepCNF 0.649 0.617 0.545 0.526 0.619 0.621 0.587 0.583 0.069 0.071

RaptorX 0.617 0.572 0.498 0.491 0.597 0.586 0.566 0.557 0.084 0.072

SSpro8 0.62 0.580 0.479 0.477 0.593 0.588 0.558 0.553 0.099 0.086

aThe standard deviation of an accuracy measure was normalized by dividing it by the maximum of the measure values obtained with the same predictor. The purpose of

this normalization is to present clearly for each predictor the relative range of fluctuation of accuracies.

https://doi.org/10.1371/journal.pone.0255076.t002
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be a two-staged approach in which the structural class of the query sequence is predicted at

first, and then the per-residue secondary structure is predicted by using predictive models spe-

cifically established for the predicted structural class.

Performance for different protein sizes

It is not clear whether current SSP methods perform equally for proteins of different sizes. The

independent test dataset (QuerySet-I) was divided into three size subsets. As revealed by

Table 3, except for the SSE-PSSM predictive model, the performance of all predictors dropped

as the size increased. The SSE-PSSM performed best for medium-sized proteins, whereas all

other methods performed best for small ones (see the underlined). Judging from the standard

deviation of accuracy, the SSE-PSSM had a relatively stable performance regarding the size of

proteins. This balance was not just the effect of how we trained the predictive model of

SSE-PSSM, because the model of AA-PSSM (trained with the same data and machine learning

procedure) performed best for small and worst for large proteins as the amino acid PSSM

methods did. Thus, adopting the SSE-PSSM feature set may help current SSP methods balance

the performance for proteins of different sizes.

Improvement in accuracy by combining SSE-PSSM with traditional PSSM

and state-of-the-art SSP methods

This study constructed two types of feature sets, the proposed SSE-PSSM and the widely used

AA-PSSM. For an SSP method using AA-PSSM already, we wondered whether its accuracy

would be enhanced if the SSE-PSSM were incorporated into the feature set. As a pretest, using

the same machine learning system [41, 42], we constructed a predictive model by combining

the AA- and SSE-PSSMs. This model was trained with QuerySet-T. In addition to our inde-

pendent test dataset (QuerySet-I), three independent datasets established in previous studies,

the TS115, CASP12, and CASP13 [14, 67], and their companion target dataset UniRef90-2015

were also recruited to make rigorous assessments. As shown in S1 Table, after the feature set

Table 3. Accuracy of several SSP methods for proteins of different sizes.

SSE set Method Small proteins (<150

residues)

Medium-sized (150–299

residues)

Large proteins (�300

residues)

Normalized standard

deviation

Three-state Measure Q3 SOV3 Q3 SOV3 Q3 SOV3 Q3 SOV3

SSE-PSSM 0.791 0.765 0.810 0.769 0.769 0.720 0.025 0.035

AA-PSSM 0.678 0.592 0.667 0.570 0.640 0.534 0.029 0.049

Scorpion 0.777 0.779 0.764 0.736 0.731 0.687 0.031 0.059

Spider2 0.774 0.738 0.763 0.693 0.738 0.660 0.024 0.053

SpineX 0.765 0.752 0.752 0.710 0.723 0.667 0.028 0.057

PSIPRED 0.781 0.749 0.764 0.728 0.731 0.668 0.033 0.056

DeepCNF 0.791 0.776 0.783 0.754 0.746 0.691 0.030 0.057

RaptorX 0.776 0.748 0.752 0.711 0.718 0.656 0.038 0.062

SSpro8 0.759 0.73 0.741 0.694 0.709 0.649 0.033 0.056

Eight-state Measure Q8 SOV8 Q8 SOV8 Q8 SOV8 Q8 SOV8

SSE-PSSM 0.678 0.674 0.692 0.678 0.643 0.641 0.036 0.030

AA-PSSM 0.509 0.478 0.475 0.434 0.443 0.412 0.065 0.070

DeepCNF 0.650 0.643 0.627 0.613 0.574 0.558 0.060 0.067

RaptorX 0.624 0.614 0.594 0.571 0.544 0.525 0.065 0.072

SSpro8 0.615 0.606 0.587 0.571 0.537 0.523 0.064 0.069

https://doi.org/10.1371/journal.pone.0255076.t003
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integration, the accuracy on all datasets was remarkably improved over solely using the

AA-PSSM.

The success in improving the accuracy of the traditional AA-PSSM feature set by combin-

ing it with the SSE-PSSM encouraged us to take a step further to incorporate the SSE-PSSM

into state-of-the-art SSP methods. However, the unavailability of the source codes of the pro-

grams made it impossible to change the feature set of those methods. Thus, we used a trick to

construct new predictive models by using the output of the programs as input features. For

verifying the feasibility of this “second-level” machine learning strategy, both the results of

training and independent test of constructed models were compared with the raw results of

these methods. As demonstrated in Materials and methods, this second-level learning did not

much influence their accuracy. With this strategy, additional features like the SSE-PSSM could

be “indirectly” integrated into a well-developed predictor. As diagramed in Fig 2, independent

tests concluded that the predictive models of these state-of-the-art SSP methods integrated

with the SSE-PSSM feature set all outperformed the models without integration. After the inte-

gration, in general, eight-state predictions were improved more significantly than three-state

ones. On average, the Q3/SOV3 and Q8/SOV8 were improved by 3–4% and ~7%, respectively

(see also S2 Table for detailed data). Taking only the results of third-party independent data-

sets (TS115 and the CASPs) into consideration, the improvements in Q3/SOV3 and Q8/SOV8

still reached 2.0%/2.9% and 5.2%/5.1%, respectively. As a control test, the traditional

AA-PSSM had also been integrated in the same way into those methods. Because the original

predictive models of those methods were all constructed with the traditional PSSM, this feature

set integration was expected to bring little benefit. Supported by the results listed in S3 Table,

most SSP accuracy values of these methods increased less than 1% while some even decreased.

Comparing the significant differences between integrating SSE-PSSM and the traditional

AA-PSSM, SSE-PSSM was demonstrated feasible to improve the accuracy of current SSP

methods. For precisely determining the extent to which SSE-PSSM can enhance accuracy, this

indirect feature integration experiment was just a preliminary test. Future collaboration for

implementing the SSE-PSSM feature set into state-of-the-art SSP methods is in demand to

directly examine the feasibility of SSE-PSSM.

Improvement in accuracy by combining SSE-PSSM with state-of-the-art

SSP methods that depend on HHBlits PSSM

After this study was initiated, more and more SSP algorithms utilized the HHBlits [68] to per-

form MSA analysis between the query protein and target dataset proteins, encode the resultant

conservation profile as a PSSM, and make SSP either directly by the HHBlits-PSSM (e.g., Net-

SurfP-2 [10]) or by both the PSSMs generated by HHBlits and PSI-BLAST (e.g., MUFOLD-SS

[9], Porter5 [11], and Spider3 [8]). To examine whether SSE-PSSM is compatible with the

HHBlits-based SSP methodology, we first implemented it based on HHBlits MSA and assessed

it by 1) using it along as the predictive feature set, 2) combining it with the AA-PSSMs pro-

duced with HHBlits and PSI-BLAST (AA-PSSMhh for short) as a large feature set, and 3) pre-

liminary integrating it with several HHBlits-based SSP algorithms in the same way stated

above. As summarized in S4 Table, the average Q3/Q8 on TS115 and the CASP datasets of the

HHBlits-based SSE-PSSM (SSE-PSSMhh) and AA-PSSMhh was 77.9%/63.3% and 73.8%/

52.8%, respectively. After combining with the SSE-PSSMhh, the Q3/Q8 and SOV3/SOV8 of

AA-PSSMhh was respectively improved by 7.8%/12.5% and 9.0%/12.5% on average. As dem-

onstrated in Fig 3, the four HHBlits-based SSP algorithms mentioned above were preliminarily

integrated with the SSE-PSSMhh feature set (refer to S4 Table for raw data). Before the feature

integration, the average Q3 and Q8 of those algorithms on TS115 and the CASPs were 84.1%
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Fig 2. Performance of preliminary incorporation of SSE-PSSM into state-of-the-art SSP methods using PSI-BLAST to generate PSSM. (A) QuerySet-I

against TargetSet-nr25, the developmental PSSM target dataset of this study. (B) TS115 against UniRef90-2015, the standard PSSM target dataset used in

most SSP works. (C) CASP12 against UniRef90-2015. (D) CASP13 against UniRef90-2015. The SSE-PSSM was preliminarily incorporated with different

SSP methods using a second-level machine learning feature set integration strategy. After the feature integration, the accuracy of most methods was

significantly improved, especially in Q8 and SOV8. The fundamental prediction feature set of all the tested SSP methods are the amino acid PSSM

generated by PSI-BLAST.

https://doi.org/10.1371/journal.pone.0255076.g002
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and 67.2%, respectively. After integration, the average Q3 and Q8 increased to 85.7% (+1.6%)

and 70.0% (+4.3%), respectively. In general, the performance of these HHBlits-based algo-

rithms in SOVs was weaker than in Q measures. The improving effect of SSE-PSSMhh for the

assessed four SSP algorithms on the SOV3/8 accuracies was +2.2%/+3.1% on average.

Fig 3. Performance of preliminary incorporation of SSE-PSSM into state-of-the-art SSP methods using HHBlits to generate PSSM. (A) TS115 against the

UniRef90-2015 PSSM target dataset. (C) CASP12 against UniRef90-2015. (D) CASP13 against UniRef90-2015. These methods used HHBlits as the main PSSM

generator. Except for NetSurfP-2, the PSI-BLAST PSSM was also applied in their algorithms. We used both HHBlits and PSI-BLAST to implement the SSE-PSSM and

preliminarily integrate it with these HHBlits-based SSP methods. Their accuracies were higher than those of the algorithms tested in Fig 2. However, since their

programs were released after 2017 and TS115 and CASP12 proteins were released before 2017, they might have learned some homologs of these datasets. Thus, the

CASP13, which comprised proteins released between 2017 and 2019, should be the most reliable independent test dataset among the three. Assessed with CASP13, the

preliminary feature integration of SSE-PSSM into these HHBlits-based methods improved the Q3 and Q8 by 1–3% and 2–6%, respectively.

https://doi.org/10.1371/journal.pone.0255076.g003
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Discussion

Category of a predictor established with the SSE-PSSM

According to whether a template structure is utilized to infer the per-residue conformation of

a query protein, SSP algorithms can be classified into two categories: template-based and tem-

plate-free [6]. Since the critical step of the proposed version of SSE-PSSM algorithm is to deter-

mine the SSE sequences of the query protein’s homologs based on a reference structure

dataset, an SSP method developed using this SSE-PSSM is essentially a template-based method.

Nevertheless, there are some differences between the SSE-PSSM feature set and classic tem-

plate-based methods. Firstly, an extensively aligned homolog of the query protein is not

required. If the query protein is unique or if the target dataset consisted of highly non-redun-

dant sequences, the homologs retrieved by the sequence search engine can be very divergent,

and the aligned regions between the query protein and homologs are highly fragmented. Even

in such cases, the SSE-PSSM can still be assembled. Secondly, the SSE-PSSM scores of a residue

position are determined by the substitution rates of conformations, not by the conformations

of residues aligned with it.

In this work, the query and target datasets for training and independent tests were all highly

non-redundant. The non-redundancy not only existed between datasets but also within every

dataset. For instance, QuerySet-I and TargetSet-nr25 are 25% identity non-redundant in

between; meanwhile, in QuerySet-I, any two sequences shared<25% identity, so did

sequences in TargetSet-nr25. Therefore, it should be tough for any query in our experiments

to find closely related homologs to be its template. It is more likely that the SSE-PSSM of a

query was constructed entirely based on marginally aligned far-related homologs. The high

accuracy accomplished by the predictive model of SSE-PSSM indicated that SSE-PSSM did

not rely on high-quality templates.

For comparison, we performed accuracy assessments and feature integration tests on the

template-based version SSpro8 (SSpro8T) using the same independent datasets as well as the

testing dataset of SSpro8T [6] (abbreviated as TSsspro8 in this paper). SSpro8T exhibited dif-

ferent properties from the eleven template-free algorithms we utilized. First, its accuracy

dropped rapidly as the independent dataset became more updated, supposedly because of the

increasing difficulty in finding good templates for new novel proteins that are very different

from old PDB (Protein Data Bank) [75] releases. For instance, as listed in S5 Table, the macro-

average Q3 of the seven PSI-BLAST-based algorithms on TSsspro8 and CASP12 was 79.8%

and 79.5%, and that of the four HHBlits-based algorithms was 85.5% and 84.7%, respectively.

Both types of template-free algorithms exhibited a<1% drop in accuracy. However, the

macro-average Q3 of SSPro8T on TSsspro8 and CASP12 was 94.4% and 78.9%, a 15.5% drop.

As for the predictive model of SSE-PSSM, its Q3 on these datasets was 86.2% and 79.0% (S1

Table), equivalent to a 7.2% drop. This fact supported that an SSP method working based on

the SSE-PSSM is essentially template-based. Second, when SSpro8T was integrated with

SSE-PSSM, the accuracy improvement in Q3/SOV3 was negligible (<0.1%, see S2 Table), no

matter assessed with any dataset. The Q8/SOV8 on most datasets were even reduced. It has

been demonstrated that all the eleven template-free algorithms would significantly gain accu-

racy once integrated with SSE-PSSM. To determine whether this difference between SSpro8T

and template-free methods resulted from the opposite properties of template-based and tem-

plate-free algorithms or it was because of the weakness of SSE-PSSM, we applied the same

feature-integration procedure to combine SSpro8T with DeepCNF, the most accurate PSI-

BLAST-based template-free method we utilized, and PSIPRED, the rapidest one. The results

summarized in S2 Table, where the Q3/SOV3 of SSpro8T integrated with either DeepCNF or

PSIPRED were barely improved and the Q8/SOV8 decreased, revealed that the SSE-PSSM is
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analogous to template-free SSP methods in some aspects. We speculated that, when the inte-

grated feature set of SSpro8T and SSE-PSSM (or a template-free method) was trained with the

QuerySet-T, which consisted of PDB structures deposited before 2015, the SSpro8T would

dominate the accuracy because it was trained by structures deposited before or in 2013, rather

close to the deposit year of QuerySet-T proteins. Once the predictive model was established,

features other than SSpro8T would be ineffective or even become noise in actual predictions.

To sum up, an SSP method developed based on the template-based SSE-PSSM can signifi-

cantly outperform template-free methods when good template(s) are available; otherwise, it

will still work by assembling fragmented far-related templates and produce analogous results

of template-free methods.

From where SSE-PSSM brings improvements

An apparent reason why the SSE-PSSM could help current SSP methods achieve improved

accuracies is the usage of secondary structure information of the homologs of the query pro-

tein. According to the alignment of homologs, as a traditional amino acid PSSM provides per

residue the conservation pattern of amino acids [53], an SSE-PSSM provides the conservation

pattern of secondary structure elements, which is supposed much more referable in SSP than

the former. Another reason for the improvement might be the high information density of the

matrix, as demonstrated by the fact that the PPM of an SSE-PSSM may contain fewer null data

than an AA-PSSM (Fig 1). To examine the influence of the information density, we computed

the average proportion of codes with zero occurrence frequency in the PPM of the AA-PSSM

and SSE-PSSM. As shown in S6 Table, the proportion of null-occurrence codes of the

SSE-PSSM was remarkably lower than that of the AA-PSSM. If the proportion of null-occur-

rence did influence the performance of a PSSM in SSP, when the size of the SSE alphabet

increased, the accuracy should decrease. As expected, when the SSE alphabet was changed

from the DSSP alphabet (8 codes) to the kappa-alpha (22 codes) [76] or the SARST alphabet

(23 codes) [77], as the proportion of null-occurrence codes increased, the SSP accuracy

dropped.

On the accuracy of secondary structure prediction for proteins of different

structural classes and sizes

Among helix, strand, and coil conformations, SSP methods’ accuracy is usually highest in heli-

ces and lowest in strands [4, 14]. Similar results were observed in Table 2. The accuracy of all

applied state-of-the-art SSP methods yielded the highest or second-highest Q3/8 in all-alpha

(mainly helices) and the lowest Q3/8 in all-beta (mainly strands) proteins. Interestingly, when

measuring the accuracy using SOV3/8 instead of Q3/8, the most inferior accuracy remained in

the all-beta class; however, the highest changed to the alpha-beta mixed class. We speculate

that the reason is the property of the SOV algorithm, which is more sensitive to whether the

pattern of SSE segments is correctly predicted than whether each SSE code is precisely posi-

tioned [71]. Because of it, if the boundaries of SSE segments were predicted imperfectly, the

decrease of SOV in all-alpha proteins may be greater than that in alpha-beta mixed. The tradi-

tional Q3/8, on the contrary, is sensitive to the boundary of SSE segments because it counts

every residue position equally. As a result, imprecise boundary predictions will decrease the

Q3/8 more in alpha-beta mixed than in all-alpha proteins, as exemplified below,
All-alpha, Q3 = 0.600, SOV3 = 0.441
Actual CHHHHCHHHHCHHHHCHHHHCHHHH
Predicted HHCHHHHCHHHHCHHHHCHHHHCHH
Alpha-beta mixed, Q3 = 0.440, SOV3 = 0.526
Actual CHHHHCEEEECHHHHCEEEECHHHH
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Predicted HHCHHHHCEEEECHHHHCEEEECHH
Alpha-beta segregated Q3 = 0.520, SOV3 = 0.462
Actual CHHHHCHHHHCHHHHCEEEECEEEE
Predicted EECHHHHCHHHHCHHHHCEEEECEE

where the syntaxes of these pseudo secondary structures are the same (-CXXXX-), and the

only difference between an actual and a predicted SSE sequence is a frameshift. With the same

secondary structural segment patterns, the fluctuations of Q3 are higher than those of SOV3.

When Q3 of the alpha-beta mixed case is so much lower than Q3 of the all-alpha case

(0.440 < 0.600), SOV3 of the alpha-beta mixed case is even higher than SOV3 of the all-alpha

case (0.526 > 0.441). In addition to the different algorithmic properties regarding imprecise

boundaries, these examples reveal that Q and SOV have very different tendencies for proteins

of different structural types. We would like to suggest a cautious use of both measures in situa-

tions where the accuracy of an SSP method is assessed with multiple datasets, especially when

the contents of protein structure classes of those datasets vary.

The formation of a β-strand-pleated sheet may involve residues distant in a protein

sequence, while residues of a helix are usually located nearby. Therefore, most previous studies

explained that the higher prediction accuracy in helices than strands is because of the difficulty

of catching the long-range residue interactions of strands [14, 62]. Here we speculate that

imbalanced training cases may be another reason. The natural prevalence of strands is lower

than that of helices (around 3:5). In the development of an SSP predictor, if the balance of the

structural classes of cases were not considered, it is very likely that the training datasets contain

fewer strands than helices and hence make the predictor less sensitive to strands. The first sup-

porting data are the relatively balanced performances of the SSE-PSSM model in different

structure classes (Table 2), which might be accomplished partly because of the SCOP class-bal-

anced training dataset (QuerySet-T; Materials and methods). Indirect support comes from the

balanced performance of the SSE-PSSM model for proteins of different sizes (Table 3), which

might be the effect of the fact that QuerySet-T was also a size-balanced dataset. Hence, we sug-

gest future SSP studies use the approach we prepared the training dataset to balance the SSP

performance for various types of proteins.

Limitation of the proposed approaches

An understandable disadvantage of the current SSE-PSSM algorithm is that the SSE sequences

of target proteins are required. When the structure of a hit retrieved by sequence similarity

search from the target dataset is not available, our solution was to run a second-round similar-

ity search against a reference dataset of non-redundant structures to construct an approximate

SSE sequence for the hit (Subsection: Algorithm of the SSE-PSSM). Although this approxima-

tion indeed helped improve the accuracy of all applied SSP methods as the SSE-PSSM was

incorporated, the improvements were smaller than situations where the target protein struc-

tures were available (compare the TargetSet-nr25 and UniRef90 results of S1 and S2 Tables).

Therefore, the best way to implement the SSE-PSSM is to utilize a target dataset of known

structures, such as a non-redundant PDB or SCOP set. This strategy will bring another benefit:

efficiency. Because PDB and SCOP databases are much smaller than the UniRef, carrying out

SSP on them will significantly reduce the time cost. For instance, nrPDB90-2015 is approxi-

mately one-thousandth of UniRef90-2015 in size. As S7 Table shows, when nrPDB90-2015

was applied as the target set to run PSI-BLAST-based SSP methods, the speed was enhanced

by 410 folds on average. Although using a small target set may decrease the accuracy (see also

[73] for the influence of target set size on SSP accuracy), if the proposed SSE-PSSM could be

implemented in those powerful methods, this decrease might be compensated or even

overcome.
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We designed a second-level machine learning approach to preliminarily test the accuracy

of several SSP methods as if the SSE-PSSM were integrated into their feature sets. Before the

test, we have demonstrated that this second-level machine learning wrap had little influence

on the normal performance of the applied SSP methods (Materials and methods). Thus,

accuracy improvements observed in the preliminary feature integration tests (Figs 2 and 3)

were accomplished because of the integrated SSE-PSSM. Notwithstanding, this approach

was just a simulation, and it had a weakness. When the output of a program was not the

probabilities of SSEs but a single SSE classification, like in the Scorpion [3], there will be

only one informative feature obtained for each residue, and hence the applicability of this

wrapped integration may be reduced. Nevertheless, as a preliminary test, our results mani-

fested the potential of the SSE-PSSM for serving current SSP methods as a new predictive

feature set.

Future perspectives

Even though more and more powerful machine learning technologies have been applied in

predicting protein secondary structures and both the records of Q3 and Q8 are broken in

every short period, the improvements accomplished recently were minor. A prevailing opinion

about the decelerated improvement in SSP is that the Q3 of recent works has been approaching

the 88–90% theoretical limit [14, 70]. However, this limit was just an estimate, and Rost et al.
had also reported a large standard deviation associated with it (88.8±9.1%; Fig 2 of [70]). If we

were not so closely approaching the ultimate limit of SSP (refer to [78] for stringent evaluation

of the current SSP methodology where SSE-PSSM applied), there must be certain factors

restricting the progress. Since the amino acid PSSM was introduced into this field in around

2000, there have been few fundamental changes in the predictive feature set. In order to push

the accuracy of current SSP algorithms out of the plateau, perhaps it is time to refine the foun-

dation of the entire SSP methodology. The proposed SSE-PSSM may serve as a good alterna-

tive or addition to the current AA-PSSM feature set and help make a breakthrough.

The idea of SSP by synthesizing the secondary structure information of the query protein’s

homologs had been tested. The PROSP algorithm of the HYPROSP approach (a hybrid pipe-

line of PROSP and PSIPRED) [79] used PSI-BLAST to retrieve structural homologs of the

query and analyzed their alignments by statistics to construct a knowledge base, which con-

tained oligopeptide fragments with associated structural information, for making predictions.

The Q3 of PROSP was 60–80%, depending on the match rate of the knowledge base with the

query [79]. The knowledge base is analogous to SSE-PSSM, in which every residue of the

query is assigned with a set of SSE scores. Besides the difference that PROSP encoded second-

ary structures in three-state while the SSE-PSSM did in eight-state, PROSP made predictions

by assigning the SSE of the highest score to each residue, whereas SSE-PSSM was proposed to

act as a standard PSSM to be processed by machine learning. MUPRED, which encoded the

alignments between the query protein and its structural homologs with a fuzzy k-nearest

neighbor algorithm into fuzzy three-state SSE class memberships for every residue, integrated

the class memberships with PSI-BLAST PSSM into a feature set to make SSP by a neural net-

work and achieved 79–80% Q3 [80]. SSE-PSSM took advantage of the eight-state SSE classifi-

cation and could encode the secondary structure of homologs in more detail than did the

fuzzy class memberships. Regardless of some algorithmic differences, the concepts of SSE

knowledge base and class memberships were similar to SSE-PSSM. If those scoring schemes

could be assessed with current machine learning techniques, their accuracy would be remark-

ably enhanced. To facilitate the evolution of SSE-based SSP concepts and the renewal of mod-

ern SSP feature sets, we have implemented the proposed algorithm into an SSE-PSSM
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generating web server and standalone programs available at http://10.life.nctu.edu.tw/

SSE-PSSM.

SSP is an essential basis for many research and applications. If future SSP methods can

adopt SSE-PSSM, a fundamental advancement in SSP is expectable and supposed beneficial

for a variety of fields. For example, a homology modelling system for protein complexes we

developed integrates predicted secondary structures into the template search algorithm [81].

Introducing an accurate SSP engine into this system may help improve the quality of identified

templates and enable it to predict the contact interface of subunits. In bioengineering, predict-

ing viable circular permutation sites is restricted to proteins with known structures at present

because many predictive features were derived from secondary and tertiary protein structures

[40, 42]; with accurate SSP, predicting viable permutation sites for proteins with only

sequences will be achievable and thus expanding the application of circular permutation.

Materials and methods

Experimental datasets

When performing sequence similarity searches to generate PSSMs, one needs a set of query

sequences and a set of target sequences. Evaluating the performance of a machine-learning-

based predictor requires a set of training data and a set of testing data. If the composition of

the testing dataset is very different from that of the training dataset, the extent of information

leakage is supposed low, and overestimation of the predictor may be prevented. For protein

sequences, the difference between datasets is typically judged by their non-redundancy of

sequence identities. Following previous studies, we termed a testing dataset very different from

the training dataset, i.e., sharing <25% sequence identities, as an independent dataset. The pri-

mary purpose of data preparation in this study was to sustain stringent evaluation of the pro-

posed algorithm by independent tests, and it was achieved by 1) creating a highly non-

redundant pair of query datasets (QuerySet-T and QuerySet-I) for training and independent

tests, and 2) utilizing well-developed independent test datasets from previous studies.

Datasets for training and independent tests. The experimental structural data were

obtained from the 30% identity non-redundant (nr) dataset released by PDB [75] in Dec. 2015

and then homology-reduced to 25% sequence identity. Proteins with chain breaks or shorter

than 20 residues were discarded. Since the official PDB nr sets were prepared by heuristic clus-

tering [82], for ensuring the<25% identity, homology reduction methods CD-HIT [83],

USEARCH [84], and MMseqs2 [85] were iteratively applied to it until no sequence could be

removed at the 25% identity cutoff. In the produced dataset, abbreviated nrPDB25-2015

(11,449 proteins; S1 File), any two sequences were very different; when a sequence was selected

from it to be the query protein and the rest were used as the target dataset, all the hits retrieved

by sequence search would be very different from the query. To evaluate the performance of the

SSE-PSSM feature set on proteins of different structural classes and sizes, we randomly

selected 90 small (<150 residues), 90 medium (150–299 residues), and 90 large proteins (�300

residues) from each of the four structural classes: all-alpha (a), all-beta (b), alpha-beta mixed

(a/b) and alpha-beta segregated (a+b) according to SCOP [74]. There were 12 categories (4

classes × 3 sizes) comprising 1,080 (90 × 12) proteins. Form each category, 60 proteins were

randomly selected to constitute the query dataset for training (QuerySet-T), and the other 30

were collected into the query dataset for independent tests (QuerySet-I). Finally, the QuerySet-

T and QuerySet-I contained 720 and 360 proteins, respectively. After removing the sequences

appearing in these query sets, the rest of nrPDB25-2015 served as the target dataset, which

shared<25% identities with the query sets and was abbreviated TargetSet-nr25. Because of the

stringent homology reduction, the number of sequences available for assessing the SSE-PSSM
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was small. In order to ensure the results are stable, random sampling was applied three times

to generate the QuerySet-T, QuerySet-I, and TargetSet-nr25 datasets, meaning all experiments

in this study were repeated three times, and the reported data were average.

Datasets from previous studies. To make rigorous assessments of the proposed method,

we sought for suitable independent test datasets. In a review by Dr. Yaoqi Zhou, state-of-the-

art SSP techniques developed before 2016 were evaluated with two independent datasets com-

prising structures released after Jan. 1st 2016 with very low sequence identities to those

released before 2016 [14]. These two datasets, the CASP12 obtained from the 12th biannual

meeting of Critical Assessment of Structure Prediction techniques [67] (15 proteins of 91–540

residues), and the TS115 prepared by them (115 proteins of 43–1,085 residues), were utilized

because the predictive model of SSE-PSSM and most SSP algorithms tested in this study were

trained with proteins released before 2016. Since some tested SSP algorithms were released

after 2016, the CASP13 obtained from the 13th biannual meeting of CASP consisting of struc-

tures released between 2017 and 2019 was also utilized (43 proteins of 32–718 residues). When

performing independent tests with these query sets, the target datasets for generating PSSMs

were the UniRef90 of 2015 (UniRef90-2015; 38.2 million proteins) [86] and a 90% identity nr

set of PDB of the same year (nrPDB90-2015; 34,835 proteins; see S2 File). Most SSP methods

applied in this study were template-free algorithms. We also tested the template-based version

of SSpro8 (SSpro8T) to compare different categories of methods. The SSpro8T was evaluated

by a large testing dataset of ~11,000 proteins, which was not released [6]. Following the prepa-

ration procedure stated in [6], we established an equivalent testing dataset containing 10,226

proteins abbreviated as TSsspro8 (listed in S3 File with the CASP13).

Applied secondary structure prediction methods

Methods using PSI-BLAST as the PSSM generator. Several PSI-BLAST-powered SSP

methods were applied to help evaluate the SSE-PSSM and determine whether integrating this

new feature set into those advanced methods would improve SSP accuracy. The standalone

programs of all those methods were trained and released before 2016, including three-state

algorithms: PSIPRED (v3.3) [1], SpineX (v2.0) [2], Scorpion (v1.0) [3], and Spider2 (v2.0) [4],

and eight-state algorithms: RaptorX (v1.0) [5], SSpro8 (v5.2) [6], and DeepCNF (v1.02) [7].

The original packages of these programs used different versions and parameters of PSI-BLAST,

such as the E-value cutoff and the number of iterations of sequence similarity searches. To

make the experiments performed on an equal basis, we modified their pipeline scripts such

that the psiblast program of NCBI blast 2.3.0 [53] with a given set of parameters became the

only PSSM engine (see S8 Table for the original and modified settings). The way we set up

PSI-BLAST parameters was based on 1) the common settings used by most applied methods,

2) the settings suggested by the secondary structural code generating algorithms utilized in this

work [77, 87], and 3) the default of psiblast.

To make sure that we correctly ran these programs and our modifications did not disturb

their normal performance, as a pretest, we conducted SSP using these methods with the TS115

and CASP12 query sets and the UniRef90-2015 target dataset and compared the results with

previous reports on the same methods using equivalent datasets [7, 14]. In most, if not all, pre-

vious SSP studies, the accuracy data were presented as average values over queries. The aver-

ages of accuracy computed in this way using our pipeline were all close to and even slightly

higher than those obtained from the literature (Table 4). In this experiment, we also presented

the accuracy measures as their average over residues. These accuracy values were all close to

but a little lower than the values averaged over queries. The average of a measure Q over
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queries (Qqry) and residues (Qres) can be expressed as,

Qqry ¼

Pn
q¼1

Q qð Þ
n

¼

Pn
q¼1

Nr q;accurateð Þ

Nr qð Þ

n
ð1Þ

Qres ¼

Pn
q¼1

Nrðq; accurateÞ
Pn

q¼1
NrðqÞ

ð2Þ

where q stands for a query protein, n is the number of query proteins, Q(q) denotes the Q accu-

racy of q, Nr(q) represents the number of residues of q, and Nr(q,accurate) means the number

of residues of q that are accurately predicted. The Qqry computes the proportion of correct pre-

dictions for each query and makes the arithmetic mean over all queries. It weights proteins

equally, regardless of their sizes, thus tending to overweight small ones. The Qres divides the

total number of correctly-predicted residues by the total number of residues. It weights all resi-

dues equally and reduces the effects of the size imbalance of query proteins. For example, if the

Q3 of a 50-residue protein A is 0.90 and that of a 350-residue protein B is 0.50, then the Qqry of

A and B will be 0.70. However, among the 400 (= 50 + 350) residues of A and B, only 220

(= 50×0.90 + 250×0.50) are correctly predicted. Using the same example, the Qres will be 0.55

(= 220 / 400), clearly reflecting the percentage of correct predictions among all residues. In

fact, Qqry and Qres are respectively analogous to the macro- and micro-average commonly used

to assess machine-learning classifiers. In a multi-class system, micro-average is preferable

because of its robustness in the face of the imbalance of training data. Since query sets with dif-

ferent distributions of protein sizes were utilized in this study, even though the Qres values

Table 4. Results of performance pretest for several state-of-the-art SSP methods.

SSE set Method Datasets: TS115 vs UniRef90-2015 Dataset: CASP12 vs UniRef90-2015 Dataset: CASP13 vs UniRef90-

2015

Three-

state

Measure Q3,

literature

Q3, avg over

queriesc
Q3, avg over

residuesc
Q3,

literature

Q3, avg over

queriesc
Q3, avg over

residuesc
Q3, avg over

queries

Q3, avg over

residues

Scorpiona 0.817 0.819 (0.002) 0.816 (-0.001) 0.805 0.821 (0.016) 0.822 (0.017) 0.793 0.796

Spider2a 0.819 0.823 (0.004) 0.819 (0.000) 0.798 0.806 (0.008) 0.813 (0.015) 0.802 0.801

SpineXa 0.801 0.805 (0.004) 0.801 (0.000) 0.769 0.779 (0.010) 0.783 (0.014) 0.776 0.777

PSIPREDa 0.802 0.811 (0.009) 0.800 (-0.002) 0.780 0.780 (0.000) 0.781 (0.001) 0.782 0.781

DeepCNFa 0.823 0.826 (0.003) 0.819 (-0.004) 0.821 0.819 (-0.002) 0.829 (0.008) 0.798 0.800

RaptorXb 0.812 0.813 (0.001) 0.808 (-0.004) 0.791 0.790 (-0.001) 0.794 (0.003) 0.778 0.779

SSpro8b 0.795 0.798 (0.003) 0.789 (-0.006) 0.776 0.771 (-0.005) 0.778 (0.002) 0.762 0.766

Average 0.810 0.814 (0.004) 0.807 (-0.003) 0.791 0.795 (0.004) 0.800 (0.009) 0.784 0.786
Eight-

state

Measure Q8,

literature

Q8, avg over

queriesc
Q8, avg over

residuesc
Q8,

literature

Q8, avg over

queriesc
Q8, avg over

residuesc
Q8, avg over

queries

Q8, avg over

residues

DeepCNFa 0.720 0.716 (-0.004) 0.703 (-0.017) 0.730 0.714 (-0.016) 0.728 (-0.002) 0.681 0.669

RaptorXb 0.697 0.709 (0.012) 0.699 (0.002) 0.651 0.680 (0.029) 0.693 (0.042) 0.670 0.660

SSpro8a 0.680 0.686 (0.006) 0.672 (-0.008) 0.690 0.664 (-0.026) 0.675 (-0.015) 0.642 0.635

Average 0.694 0.704 (0.010) 0.691 (-0.003) 0.679 0.686 (0.007) 0.699 (0.020) 0.664 0.655

aObtained from [14], where the query datasets were TS115 and CASP12, and the target dataset was UniRef90-2015.
bObtained from [7], where the query datasets were CullPDB and CASP11, and the target dataset was UniRef90-2015.
cValues in parentheses are the differences between the measures computed here and those obtained from the literature.

https://doi.org/10.1371/journal.pone.0255076.t004
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were slightly lower than the Qqry in this pretest, we decided to use this micro-averaged accuracy

for all experiments.

Methods using HHBlits as the PSSM generator. HHBlits is an efficient iterative protein

sequence similarity search algorithm that aligns sequences according to their hidden Markov

models [68]. Since the MSA conservation profile of HHBlits can be readily transformed into a

PSSM, it is increasingly utilized by recent SSP methods as a PSSM generator. The HHBlits-

based SSP algorithms applied in this study fall into two types. The NetSurfP-2 [10] used only

HHBlits to generate its SSP feature set, while the others used both the PSSMs generated by

HHBlits and PSI-BLAST as predictive features, including MUFOLD-SS [9], Porter5 [11], and

Spider3 [8]. As listed in S8 Table, we also unified the version and settings of PSI-BLAST used

in the pipelines of these programs. Additionally, the version of HHBlits was fixed to be 3.3.0.

These HHBlits-based SSP algorithms were significantly more accurate than the PSI-BLAST-

based ones. Assessed with the TS115 and CASP12/13 independent datasets, both Q3 and Q8 of

the former were >3% higher than the latter (see S5 Table).

Algorithm of the SSE-PSSM

The major innovation of this work is the secondary structure element-based PSSM, the algo-

rithm of which is illustrated in Fig 4. Most of the steps follow the traditional procedure for con-

structing an amino acid-based PSSM. The key modification is an SSE transformation.

1. Sequence similarity search. Take one query sequence, use a search tool like PSI-BLAST or

HHBlits to search against a given target set, retrieving a hit list of homologous sequences

(Fig 4A). If PSI-BLAST is used, make sure it provides the alignment between the query and

each hit by setting the same value for “num_descriptions” and “num_alignments” parame-

ters (S8 Table). If HHBlits is used, the multiple sequence alignment between the query and

all hits can be obtained from its .hhr output file. For ensuring that the produced PSSM is

not biased, in a careful experimental design, the hits should be filtered according to

sequence homology [53]. We did not need to do it because all the hits had been highly non-

redundant from the query (<25% identity; see “Experimental datasets”).

2. Obtaining the SSE sequences of the hits (Fig 4B). For each hit protein h, if its structure is

available, use DSSP [49] to compute its SSE sequence. Otherwise, make a representative

SSE sequence of it by 1) using PSI-BLAST/HHBlits to find its homologs from a reference

structure dataset, 2) computing the SSE sequences of the secondary homologs identified

from the reference dataset by DSSP, and 3) for each residue r of h, based on the alignment

between h and its homologs, collecting the SSE codes of all residues aligned with r and

determining the representative SSE code by vote.

3. SSE transformation (Fig 4A). After obtaining all SSE sequences of the hits, for each hit,

based on its alignment with the query, replace per residue the amino acid code with the SSE

code. For instance, if the amino acid and SSE sequences of a hit are “ILGWL” and

“CHHEE”, respectively, and the way the hit aligned with the query is “IL-GW--L”, then

the transformed alignment string will be “CH-HE--E”. The result of this step is a set of

sequences, the residues of which were aligned according to their amino acid sequences, but

the apparent residue codes were their SSE.

4. Computation of the code occurrences. For each residue position p of the query, according

to the SSE-transformed alignments, compute the occurrences (Occ) of each SSE code
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among those residues aligned with p using equations,

Occðc; pÞ ¼
Xnh

h¼1
IðCodeh;p; cÞ �W hð Þ ð3:1Þ

Iðx; cÞ ¼
1; x ¼ c

0; otherwise

(

ð3:2Þ

Fig 4. Flowchart of the SSE-PSSM algorithm. (A) The core procedure of the algorithm. (B) Determination of the SSE sequence of a hit. A sequence similarity search

is performed to retrieve a hit list for the query sequence. Next, for each hit protein, directly obtain its SSE sequence from the known structure or synthesize one by

position-specific voting according to the homologs (Hom) of the hit retrieved by the second-round sequence similarity search against a reference protein structure

dataset. An SSE transformation of the sequence alignments between the query and hits is then carried out by replacing the amino acids with SSE codes. Finally, the

PSSM is generated according to the transformed alignments.

https://doi.org/10.1371/journal.pone.0255076.g004
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where c stands for a code symbol, nh denotes the number of hits, Codeh,p means the code sym-

bol of the residue of hit h aligned with p, and W(h) is a weight function of h. The purpose of a

weight function is to make the hits that may carry more information contribute more to the

matrix [53]. For the speed and simplicity of implementation, the weight function we used was

the sequence similarity between the query protein and h.

5. Generation of the position propensity matrix (PPM). Based on the occurrence data, a PPM

can be created using Eq (4) (see Fig 1 for an illustration).

PPMs;p ¼
Occðs; pÞ

Pns
c¼1

Occðc; pÞ
ð4Þ

where s is the set of code symbols in the SSE alphabet, ns denotes the number of symbols, and c
stands for a code symbol. Several SSE alphabets were tested. See Settings of the principle fac-

tors and S9 Table for details.

6. Conversion of the PPM to the final PSSM. The elements in the proposed SSE-PSSM are cal-

culated as log likelihoods according to the BLOSUM algorithm [88] using the formula,

PSSMs;p ¼ log
2
ðPPMs;p=BsÞ ð5Þ

where Bs is a collection of the background occurrence frequencies of each SSE code symbol in

the code set s. The background frequencies were computed based on the reference dataset.

7. If there is no hit retrieved for the query sequence in Step 1 or there is no aligned residue

from the hits for any residue of the query, the pseudocount method [53] is applied to com-

pute the substitution scores. The prerequisite of the pseudocount method is a pre-estab-

lished substitution matrix of SSE codes. The matrix used in this study was produced based

on nrPDB-2015 using SARST structure alignments and the BLOSUM algorithm [77]. See

S4 File for the matrix and the details of its production.

Computation of the classic secondary structure prediction features

Amino acid-based PSSM. Following most previous studies [1–7], the AA-PSSM was gen-

erated by the PSI-BLAST [53]. In the experiment of Fig 3, it was also generated by HHBlits

[68]. For every residue of the query, this PSSM provides 20 substitution scores for training the

predictive model by machine learning.

Amino acid type. Many recent studies also used each residue’s amino acid type as a fea-

ture [7, 89, 90]. For instance, Dr. Wang and colleagues used 21 binary features to indicate the

amino acid type (20 types plus the undetermined) at a residue position as they developed the

DeepCNF [7]. Here we proposed a strategy to encode amino acid types as a feature: 1) classify

amino acids into five classes based on their side-chain physiochemical properties [91], 2) sort

the class by hydrophobicity high to low, 3) sort the amino acids in each class by their natural

abundance low to high, and 4) assign an integer, low to high, to the sorted amino acids in all

classes (see S5 File for the encoded amino acids). The benefits of this strategy include the speed

of machine learning and implicated biological meaning. First, the proposed strategy encodes

20 amino acids into just one feature, helpful for keeping the feature set small. Second, we have

tested several other methods to encode the amino acids, inclusive of the DeepCNF algorithm,

the molecular weight, the hydrophobicity scale, the side chain hydropathy, the solvent accessi-

ble surface area, the isoelectric point, the radius of gyration of the side chain, and the
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occurrence frequency in the PDB. Most of them produced similar SSP accuracies, and the pro-

posed amino-acid feature slightly outperformed them. We presumed that the proposed classi-

fication step resulted in the fact that physiochemically similar amino acids were assigned with

similar integers, making it easier for machine learning algorithms to identify the relationship

or closeness between amino acids.

Integration of the SSE-PSSM with standard features. There were three major types of

predictive features used in this study, the SSE-PSSM, the amino acid PSSM, and the amino

acid type. The integration of any two or all of them was simply a merge of the feature sets.

Since the amino acid type is usually applied in recent works [7, 89, 90], the final version of the

SSE-PSSM assessed in this study was integrated with it, so was the amino acid PSSM.

Application of machine-learning methods

We did not develop any new machine learning method but utilized a system we had to evaluate

the SSE-PSSM as a set of SSP features. If the advanced machine learning methods of recent

studies, such as the deep convolutional neural fields (CNF) [7], bidirectional recursive neural

networks (BRNN) [6, 57, 65, 66], and convolutional recurrent neural network (CRNN) [90,

92] can be applied with the SSE-PSSM, the outcome will be much better than the reported.

Previously as we studied a protein structural rearrangement phenomenon known as the cir-

cular permutation [87], an artificial intelligence system was developed to integrate several

machine learning, random sampling, and parameter optimization algorithms [41, 42]. In the

present work, this system was applied, and the recruited algorithms included bootstrap sam-

pling, decision tree, and artificial neural network. After obtaining the answers and feature val-

ues from the training query set (QuerySet-T) and TargetSet-nr25, 100 bootstrap samples each

with a bootstrapped feature set were made to train minor models of decision tree and artificial

neural network (50 samples for each algorithm). The final prediction model was then formed

by collecting the minor models, which made predictions by vote (note that the collection of

bootstrapped decision trees is known as a random forest). With this final model, the probabili-

ties of candidate answers for a given residue could be estimated as the percentages of votes the

answers received.

With the same input data and machine learning layout, either a three-state or an eight-state

predictive model could be produced. An eight-state model could be applied to perform three-

state predictions simply by reducing the output SSE codes to three states. However, our pre-

tests showed that the accuracy of such manipulation was not comparable to that of a predictive

model specifically constructed for three-state predictions. In this study, the three- and eight-

state prediction experiments were done using different predictive models.

Settings of the principle factors

Window size. The window spanning technique is commonly implemented in SSP, and

previous studies had used various window sizes ranging from a couple of residues [40] to tens

of residues [6]. A small window may delicately compile information of secondary structures

with short units [3, 50], while a large window may help detect long-range residue interactions

[6, 66, 93]. We tested the SSP performance of SSE-PSSM with single- to 21-residue windows.

As shown in S1 Fig, the accuracy increased rapidly as the window extended from 1 to 3 resi-

dues; then, the performance seemed to reach a plateau. The highest Q3 and Q8 occurred at

6–7 residues and the highest SOV3 and SOV8 at 5 residues. Since SOV is more critical than

the Q accuracy and extending the window by one residue will increase the number of features

by one fold, which will greatly increase the time cost of machine learning, we decided to use

the window size of 5 residues.
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SSE alphabets and their combinations. In addition to the commonly used three-state

and the DSSP-defined eight-state SSE codes, the kappa-alpha and SARST alphabets [76, 77]

were examined for feasibility in constructing the SSE-PSSM feature set. Three-state prediction

experiments on feature sets derived from the SSE-PSSMs of these alphabets and several combi-

nations were performed using QuerySet-T and TargetSet-nr25 with a 5-residue window.

Results listed in S9 Table indicated that combining the PSSMs of DSSP, kappa-alpha, and

SARST codes might achieve the best accuracy, but the enhancement over the SSE-PSSM of

DSSP codes was not much (0.4% in Q3). Considering the simplicity for future implementa-

tions of the SSE-PSSM, we decided to use only the PSSM of eight-state DSSP codes in this

study.

Combination of the SSE-PSSM with well-developed secondary structure

prediction programs

The source codes of model training of the applied SSP programs were not available. In order

to integrate the SSE-PSSM into their systems, an indirect strategy was applied. First, after

inputting a query protein to a given SSP program, for each residue, obtain the predicted proba-

bilities of SSE codes. According to the category of the method, there may be 3 or 8 probabili-

ties. Second, if the output of the program is just one predicted SSE code, set the probability to

be 1 for the code and assign 0 probability to the others. Third, the obtained probability values

are used as features combined with the SSE-PSSM for training predictive models and perform-

ing predictions by our machine learning system. In this way, the SSE-PSSM could be “indi-

rectly” incorporated into a compiled SSP program. This strategy had been used previously. For

example, the template-based SSP method PROTEUS [94] integrated the output of PSIPRED

[1], JNET [54], and its TRANSSEC into a machine learning feature set to make predictions by

a neural network. If there were homologous structural fragments (i.e., templates) identified for

the query sequence, PROTEUS would overlap the structural fragments over the predicted sec-

ondary structure to be its final output. With its template mode disabled, the Q3 of PROTEUS

was 79.4%, which reasonably preserved and integrated the accuracy of applied programs:

PSIPRED 78.1%, JNET 73.2%, and TRANSSEC 70.3% [94]. To verify whether our indirect fea-

ture-integration strategy also worked reasonably, we compared the accuracy of the SSP meth-

ods executed solely and their accuracy after the second-level machine learning wrap. S10 Table

shows that the differences of accuracy between the native programs and the machine learning

wrapped pipelines were generally small.

Supporting information

S1 Fig. Performance of different window sizes.

(PDF)

S1 File. The nrPDB25-2015 dataset.

(FASTA)

S2 File. The nrPDB90-2015 dataset.

(FASTA)

S3 File. The CASP13 and TSsspro8 independent test datasets.

(XLSX)

S4 File. BLOSUM25-SSE: The substitution matrix of SSEs generated based on structural

homologs of�25% sequence identity.

(PDF)

PLOS ONE A new feature set for protein secondary structure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0255076 July 28, 2021 22 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s005
https://doi.org/10.1371/journal.pone.0255076


S5 File. The encoded amino acids.

(TXT)

S1 Table. Performance of the combined feature set of amino acid and SSE PSSMs.

(XLSX)

S2 Table. Performance of preliminary incorporation of SSE-PSSM into state-of-the-art

SSP methods using PSI-BLAST to generate PSSM.

(XLSX)

S3 Table. Performance of preliminary incorporation of the traditional amino acid PSSM

into several state-of-the-art SSP methods.

(XLSX)

S4 Table. Performance of preliminary incorporation of SSE-PSSM into state-of-the-art

SSP methods using HHBlits to generate PSSM.

(XLSX)

S5 Table. Performance pretests for the state-of-the-art SSP methods utilized in this study

using different PSSM generating engines and independent test datasets.

(XLSX)

S6 Table. Influence of the proportion of low or null occurrence codes in position propen-

sity matrix on the SSP accuracy of several residue alphabets.

(PDF)

S7 Table. The computation time of several SSP methods running on target datasets with a

large difference in size.

(XLSX)

S8 Table. PSI-BLAST settings of the applied SSP methods.

(XLSX)

S9 Table. Accuracy of feature sets comprising different combinations of SSE-PSSMs.

(PDF)

S10 Table. Accuracy of state-of-the-art SSP methods running in indirect combination with

the SSE-PSSM features.

(PDF)

Acknowledgments

We would like to thank Chia-Hua Lo and Chia-Tzu Ho, students of WCL, for their great help

in data analyses and preparation of the Supplemental Information files. This study was greatly

accelerated owing to the computing power offered by Prof. Jinn-Moon Yang and Jenn-Kang

Hwang at National Yang Ming Chiao Tung University and Prof. Ping-Chiang Lyu at National

Tsing Hua University, Taiwan.

Author Contributions

Conceptualization: Wei-Cheng Lo.

Data curation: Teng-Ruei Chen, Sheng-Hung Juan, Yu-Wei Huang, Yen-Cheng Lin, Wei-

Cheng Lo.

Funding acquisition: Wei-Cheng Lo.

PLOS ONE A new feature set for protein secondary structure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0255076 July 28, 2021 23 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0255076.s016
https://doi.org/10.1371/journal.pone.0255076


Investigation: Teng-Ruei Chen, Sheng-Hung Juan, Wei-Cheng Lo.

Methodology: Sheng-Hung Juan, Wei-Cheng Lo.

Project administration: Wei-Cheng Lo.

Resources: Yu-Wei Huang, Wei-Cheng Lo.

Software: Teng-Ruei Chen, Sheng-Hung Juan, Yu-Wei Huang, Yen-Cheng Lin.

Supervision: Wei-Cheng Lo.

Validation: Teng-Ruei Chen, Sheng-Hung Juan, Yu-Wei Huang, Yen-Cheng Lin, Wei-Cheng

Lo.

Visualization: Yu-Wei Huang.

Writing – original draft: Teng-Ruei Chen, Wei-Cheng Lo.

Writing – review & editing: Sheng-Hung Juan, Yu-Wei Huang, Yen-Cheng Lin, Wei-Cheng

Lo.

References
1. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J

Mol Biol 292: 195–202. https://doi.org/10.1006/jmbi.1999.3091 PMID: 10493868

2. Faraggi E, Zhang T, Yang Y, Kurgan L, Zhou Y (2012) SPINE X: improving protein secondary structure

prediction by multistep learning coupled with prediction of solvent accessible surface area and back-

bone torsion angles. J Comput Chem 33: 259–267. https://doi.org/10.1002/jcc.21968 PMID: 22045506

3. Yaseen A, Li Y (2014) Context-based features enhance protein secondary structure prediction accu-

racy. J Chem Inf Model 54: 992–1002. https://doi.org/10.1021/ci400647u PMID: 24571803

4. Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, et al. (2015) Improving prediction of secondary

structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep

learning. Sci Rep 5: 11476. https://doi.org/10.1038/srep11476 PMID: 26098304

5. Wang Z, Zhao F, Peng J, Xu J (2011) Protein 8-class secondary structure prediction using conditional

neural fields. Proteomics 11: 3786–3792. https://doi.org/10.1002/pmic.201100196 PMID: 21805636

6. Magnan CN, Baldi P (2014) SSpro/ACCpro 5: almost perfect prediction of protein secondary structure

and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformat-

ics 30: 2592–2597. https://doi.org/10.1093/bioinformatics/btu352 PMID: 24860169

7. Wang S, Peng J, Ma JZ, Xu JB (2016) Protein Secondary Structure Prediction Using Deep Convolu-

tional Neural Fields. Scientific Reports 6.

8. Heffernan R, Paliwal K, Lyons J, Singh J, Yang Y, et al. (2018) Single-sequence-based prediction of

protein secondary structures and solvent accessibility by deep whole-sequence learning. J Comput

Chem 39: 2210–2216. https://doi.org/10.1002/jcc.25534 PMID: 30368831

9. Fang C, Shang Y, Xu D (2018) MUFOLD-SS: New deep inception-inside-inception networks for protein

secondary structure prediction. Proteins 86: 592–598. https://doi.org/10.1002/prot.25487 PMID:

29492997

10. Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, et al. (2019) NetSurfP-2.0: Improved pre-

diction of protein structural features by integrated deep learning. Proteins 87: 520–527. https://doi.org/

10.1002/prot.25674 PMID: 30785653

11. Torrisi M, Kaleel M, Pollastri G (2019) Deeper Profiles and Cascaded Recurrent and Convolutional Neu-

ral Networks for state-of-the-art Protein Secondary Structure Prediction. Sci Rep 9: 12374. https://doi.

org/10.1038/s41598-019-48786-x PMID: 31451723

12. Pauling L, Corey RB (1951) Configurations of Polypeptide Chains With Favored Orientations Around

Single Bonds: Two New Pleated Sheets. Proc Natl Acad Sci U S A 37: 729–740. https://doi.org/10.

1073/pnas.37.11.729 PMID: 16578412

13. Pauling L, Corey RB, Branson HR (1951) The structure of proteins; two hydrogen-bonded helical config-

urations of the polypeptide chain. Proc Natl Acad Sci U S A 37: 205–211. https://doi.org/10.1073/pnas.

37.4.205 PMID: 14816373

PLOS ONE A new feature set for protein secondary structure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0255076 July 28, 2021 24 / 28

https://doi.org/10.1006/jmbi.1999.3091
http://www.ncbi.nlm.nih.gov/pubmed/10493868
https://doi.org/10.1002/jcc.21968
http://www.ncbi.nlm.nih.gov/pubmed/22045506
https://doi.org/10.1021/ci400647u
http://www.ncbi.nlm.nih.gov/pubmed/24571803
https://doi.org/10.1038/srep11476
http://www.ncbi.nlm.nih.gov/pubmed/26098304
https://doi.org/10.1002/pmic.201100196
http://www.ncbi.nlm.nih.gov/pubmed/21805636
https://doi.org/10.1093/bioinformatics/btu352
http://www.ncbi.nlm.nih.gov/pubmed/24860169
https://doi.org/10.1002/jcc.25534
http://www.ncbi.nlm.nih.gov/pubmed/30368831
https://doi.org/10.1002/prot.25487
http://www.ncbi.nlm.nih.gov/pubmed/29492997
https://doi.org/10.1002/prot.25674
https://doi.org/10.1002/prot.25674
http://www.ncbi.nlm.nih.gov/pubmed/30785653
https://doi.org/10.1038/s41598-019-48786-x
https://doi.org/10.1038/s41598-019-48786-x
http://www.ncbi.nlm.nih.gov/pubmed/31451723
https://doi.org/10.1073/pnas.37.11.729
https://doi.org/10.1073/pnas.37.11.729
http://www.ncbi.nlm.nih.gov/pubmed/16578412
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1073/pnas.37.4.205
http://www.ncbi.nlm.nih.gov/pubmed/14816373
https://doi.org/10.1371/journal.pone.0255076


14. Yang Y, Gao J, Wang J, Heffernan R, Hanson J, et al. (2018) Sixty-five years of the long march in pro-

tein secondary structure prediction: the final stretch? Brief Bioinform 19: 482–494. https://doi.org/10.

1093/bib/bbw129 PMID: 28040746

15. Lyons J, Paliwal KK, Dehzangi A, Heffernan R, Tsunoda T, et al. (2016) Protein fold recognition using

HMM-HMM alignment and dynamic programming. Journal of Theoretical Biology 393: 67–74. https://

doi.org/10.1016/j.jtbi.2015.12.018 PMID: 26801876

16. McDonnell AV, Menke M, Palmer N, King J, Cowen L, et al. (2006) Fold recognition and accurate

sequence-structure alignment of sequences directing beta-sheet proteins. Proteins-Structure Function

and Bioinformatics 63: 976–985. https://doi.org/10.1002/prot.20942 PMID: 16547930

17. Przybylski D, Rost B (2004) Improving fold recognition without folds. Journal of Molecular Biology 341:

255–269. https://doi.org/10.1016/j.jmb.2004.05.041 PMID: 15312777

18. Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from frag-

ments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal

of Molecular Biology 268: 209–225. https://doi.org/10.1006/jmbi.1997.0959 PMID: 9149153

19. Zhang Y, Skolnick J (2004) Automated structure prediction of weakly homologous proteins on a geno-

mic scale’. Proceedings of the National Academy of Sciences of the United States of America 101:

7594–7599. https://doi.org/10.1073/pnas.0305695101 PMID: 15126668

20. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection

and structure prediction. Nucleic Acids Res 33: W244–248. https://doi.org/10.1093/nar/gki408 PMID:

15980461

21. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, et al. (2014) SWISS-MODEL: modelling pro-

tein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42: W252–258.

https://doi.org/10.1093/nar/gku340 PMID: 24782522

22. Dorn M, Silva MBE, Buriol LS, Lamb LC (2014) Three-dimensional protein structure prediction: Methods

and computational strategies. Computational Biology and Chemistry 53: 251–276. https://doi.org/10.

1016/j.compbiolchem.2014.10.001 PMID: 25462334

23. Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C (2009) Pivotal roles of the outer membrane poly-

saccharide export and polysaccharide copolymerase protein families in export of extracellular polysac-

charides in gram-negative bacteria. Microbiol Mol Biol Rev 73: 155–177. https://doi.org/10.1128/

MMBR.00024-08 PMID: 19258536

24. Ambrosi C, Gassmann O, Pranskevich JN, Boassa D, Smock A, et al. (2010) Pannexin1 and Pan-

nexin2 channels show quaternary similarities to connexons and different oligomerization numbers from

each other. J Biol Chem 285: 24420–24431. https://doi.org/10.1074/jbc.M110.115444 PMID:

20516070

25. Makarova KS, Aravind L, Wolf YI, Koonin EV (2011) Unification of Cas protein families and a simple

scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 6: 38. https://doi.org/10.1186/

1745-6150-6-38 PMID: 21756346

26. Kifer I, Nussinov R, Wolfson HJ (2008) Constructing templates for protein structure prediction by simu-

lation of protein folding pathways. Proteins-Structure Function and Bioinformatics 73: 380–394. https://

doi.org/10.1002/prot.22073 PMID: 18433063

27. Nalini V, Bax B, Driessen H, Moss DS, Lindley PF, et al. (1994) Close packing of an oligomeric eye lens

beta-crystallin induces loss of symmetry and ordering of sequence extensions. J Mol Biol 236: 1250–

1258. https://doi.org/10.1016/0022-2836(94)90025-6 PMID: 8120900

28. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of

native disorder in proteins from the three kingdoms of life. J Mol Biol 337: 635–645. https://doi.org/10.

1016/j.jmb.2004.02.002 PMID: 15019783

29. Deng X, Eickholt J, Cheng JL (2009) PreDisorder: ab initio sequence-based prediction of protein disor-

dered regions. Bmc Bioinformatics 10. https://doi.org/10.1186/1471-2105-10-436 PMID: 20025768

30. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) PONDR-FIT: a meta-predictor of

intrinsically disordered amino acids. Biochim Biophys Acta 1804: 996–1010. https://doi.org/10.1016/j.

bbapap.2010.01.011 PMID: 20100603

31. Zhang T, Faraggi E, Xue B, Dunker AK, Uversky VN, et al. (2012) SPINE-D: Accurate Prediction of

Short and Long Disordered Regions by a Single Neural-Network Based Method. Journal of Biomolecu-

lar Structure & Dynamics 29: 799–813. https://doi.org/10.1080/073911012010525022 PMID:

22208280

32. Iwakura M, Nakamura T, Yamane C, Maki K (2000) Systematic circular permutation of an entire protein

reveals essential folding elements. Nat Struct Biol 7: 580–585. https://doi.org/10.1038/76811 PMID:

10876245

PLOS ONE A new feature set for protein secondary structure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0255076 July 28, 2021 25 / 28

https://doi.org/10.1093/bib/bbw129
https://doi.org/10.1093/bib/bbw129
http://www.ncbi.nlm.nih.gov/pubmed/28040746
https://doi.org/10.1016/j.jtbi.2015.12.018
https://doi.org/10.1016/j.jtbi.2015.12.018
http://www.ncbi.nlm.nih.gov/pubmed/26801876
https://doi.org/10.1002/prot.20942
http://www.ncbi.nlm.nih.gov/pubmed/16547930
https://doi.org/10.1016/j.jmb.2004.05.041
http://www.ncbi.nlm.nih.gov/pubmed/15312777
https://doi.org/10.1006/jmbi.1997.0959
http://www.ncbi.nlm.nih.gov/pubmed/9149153
https://doi.org/10.1073/pnas.0305695101
http://www.ncbi.nlm.nih.gov/pubmed/15126668
https://doi.org/10.1093/nar/gki408
http://www.ncbi.nlm.nih.gov/pubmed/15980461
https://doi.org/10.1093/nar/gku340
http://www.ncbi.nlm.nih.gov/pubmed/24782522
https://doi.org/10.1016/j.compbiolchem.2014.10.001
https://doi.org/10.1016/j.compbiolchem.2014.10.001
http://www.ncbi.nlm.nih.gov/pubmed/25462334
https://doi.org/10.1128/MMBR.00024-08
https://doi.org/10.1128/MMBR.00024-08
http://www.ncbi.nlm.nih.gov/pubmed/19258536
https://doi.org/10.1074/jbc.M110.115444
http://www.ncbi.nlm.nih.gov/pubmed/20516070
https://doi.org/10.1186/1745-6150-6-38
https://doi.org/10.1186/1745-6150-6-38
http://www.ncbi.nlm.nih.gov/pubmed/21756346
https://doi.org/10.1002/prot.22073
https://doi.org/10.1002/prot.22073
http://www.ncbi.nlm.nih.gov/pubmed/18433063
https://doi.org/10.1016/0022-2836%2894%2990025-6
http://www.ncbi.nlm.nih.gov/pubmed/8120900
https://doi.org/10.1016/j.jmb.2004.02.002
https://doi.org/10.1016/j.jmb.2004.02.002
http://www.ncbi.nlm.nih.gov/pubmed/15019783
https://doi.org/10.1186/1471-2105-10-436
http://www.ncbi.nlm.nih.gov/pubmed/20025768
https://doi.org/10.1016/j.bbapap.2010.01.011
https://doi.org/10.1016/j.bbapap.2010.01.011
http://www.ncbi.nlm.nih.gov/pubmed/20100603
https://doi.org/10.1080/073911012010525022
http://www.ncbi.nlm.nih.gov/pubmed/22208280
https://doi.org/10.1038/76811
http://www.ncbi.nlm.nih.gov/pubmed/10876245
https://doi.org/10.1371/journal.pone.0255076


33. Wright G, Basak AK, Wieligmann K, Mayr EM, Slingsby C (1998) Circular permutation of betaB2-crys-

tallin changes the hierarchy of domain assembly. Protein Sci 7: 1280–1285. https://doi.org/10.1002/

pro.5560070602 PMID: 9655330

34. Fiser A (2010) Template-based protein structure modeling. Methods Mol Biol 673: 73–94. https://doi.

org/10.1007/978-1-60761-842-3_6 PMID: 20835794

35. Madhusudhan MS, Marti-Renom MA, Sanchez R, Sali A (2006) Variable gap penalty for protein

sequence-structure alignment. Protein Eng Des Sel 19: 129–133. https://doi.org/10.1093/protein/

gzj005 PMID: 16423846

36. Vakser IA (2014) Protein-protein docking: from interaction to interactome. Biophys J 107: 1785–1793.

https://doi.org/10.1016/j.bpj.2014.08.033 PMID: 25418159

37. Julenius K, Molgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis, and structural

characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153–164. https://

doi.org/10.1093/glycob/cwh151 PMID: 15385431

38. Julenius K (2007) NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology 17:

868–876. https://doi.org/10.1093/glycob/cwm050 PMID: 17494086

39. Donate LE, Rufino SD, Canard LH, Blundell TL (1996) Conformational analysis and clustering of short

and medium size loops connecting regular secondary structures: a database for modeling and predic-

tion. Protein Sci 5: 2600–2616. https://doi.org/10.1002/pro.5560051223 PMID: 8976569

40. Lee YZ, Lo WC, Sue SC (2017) Computational Prediction of New Intein Split Sites. Methods Mol Biol

1495: 259–268. https://doi.org/10.1007/978-1-4939-6451-2_17 PMID: 27714622

41. Lo WC, Wang LF, Liu YY, Dai T, Hwang JK, et al. (2012) CPred: a web server for predicting viable circu-

lar permutations in proteins. Nucleic Acids Res 40: W232–237. https://doi.org/10.1093/nar/gks529

PMID: 22693212

42. Lo WC, Dai T, Liu YY, Wang LF, Hwang JK, et al. (2012) Deciphering the preference and predicting the

viability of circular permutations in proteins. PLoS One 7: e31791. https://doi.org/10.1371/journal.pone.

0031791 PMID: 22359629

43. Lee YT, Su TH, Lo WC, Lyu PC, Sue SC (2012) Circular permutation prediction reveals a viable back-

bone disconnection for split proteins: an approach in identifying a new functional split intein. PLoS One

7: e43820. https://doi.org/10.1371/journal.pone.0043820 PMID: 22937103

44. Li ZX, Yang YD, Zhan J, Dai L, Zhou YQ (2013) Energy Functions in De Novo Protein Design: Current

Challenges and Future Prospects. Annual Review of Biophysics, Vol 42 42: 315–335. https://doi.org/

10.1146/annurev-biophys-083012-130315 PMID: 23451890

45. Xiong P, Wang M, Zhou X, Zhang T, Zhang J, et al. (2014) Protein design with a comprehensive statisti-

cal energy function and boosted by experimental selection for foldability. Nat Commun 5: 5330. https://

doi.org/10.1038/ncomms6330 PMID: 25345468

46. Gebhard LG, Risso VA, Santos J, Ferreyra RG, Noguera ME, et al. (2006) Mapping the distribution of

conformational information throughout a protein sequence. J Mol Biol 358: 280–288. https://doi.org/10.

1016/j.jmb.2006.01.095 PMID: 16510154

47. Michalsky E, Goede A, Preissner R (2003) Loops In Proteins (LIP)—a comprehensive loop database

for homology modelling. Protein Eng 16: 979–985. https://doi.org/10.1093/protein/gzg119 PMID:

14983078

48. Hu X, Wang H, Ke H, Kuhlman B (2007) High-resolution design of a protein loop. Proc Natl Acad Sci

U S A 104: 17668–17673. https://doi.org/10.1073/pnas.0707977104 PMID: 17971437

49. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-

bonded and geometrical features. Biopolymers 22: 2577–2637. https://doi.org/10.1002/bip.360221211

PMID: 6667333

50. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple meth-

ods for predicting the secondary structure of globular proteins. J Mol Biol 120: 97–120. https://doi.org/

10.1016/0022-2836(78)90297-8 PMID: 642007

51. Luger K, Hommel U, Herold M, Hofsteenge J, Kirschner K (1989) Correct folding of circularly permuted

variants of a beta alpha barrel enzyme in vivo. Science 243: 206–210. https://doi.org/10.1126/science.

2643160 PMID: 2643160

52. Rost B, Sander C (1993) Improved prediction of protein secondary structure by use of sequence profiles

and neural networks. Proc Natl Acad Sci U S A 90: 7558–7562. https://doi.org/10.1073/pnas.90.16.

7558 PMID: 8356056

53. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST:

a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402. https://doi.

org/10.1093/nar/25.17.3389 PMID: 9254694

PLOS ONE A new feature set for protein secondary structure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0255076 July 28, 2021 26 / 28

https://doi.org/10.1002/pro.5560070602
https://doi.org/10.1002/pro.5560070602
http://www.ncbi.nlm.nih.gov/pubmed/9655330
https://doi.org/10.1007/978-1-60761-842-3%5F6
https://doi.org/10.1007/978-1-60761-842-3%5F6
http://www.ncbi.nlm.nih.gov/pubmed/20835794
https://doi.org/10.1093/protein/gzj005
https://doi.org/10.1093/protein/gzj005
http://www.ncbi.nlm.nih.gov/pubmed/16423846
https://doi.org/10.1016/j.bpj.2014.08.033
http://www.ncbi.nlm.nih.gov/pubmed/25418159
https://doi.org/10.1093/glycob/cwh151
https://doi.org/10.1093/glycob/cwh151
http://www.ncbi.nlm.nih.gov/pubmed/15385431
https://doi.org/10.1093/glycob/cwm050
http://www.ncbi.nlm.nih.gov/pubmed/17494086
https://doi.org/10.1002/pro.5560051223
http://www.ncbi.nlm.nih.gov/pubmed/8976569
https://doi.org/10.1007/978-1-4939-6451-2%5F17
http://www.ncbi.nlm.nih.gov/pubmed/27714622
https://doi.org/10.1093/nar/gks529
http://www.ncbi.nlm.nih.gov/pubmed/22693212
https://doi.org/10.1371/journal.pone.0031791
https://doi.org/10.1371/journal.pone.0031791
http://www.ncbi.nlm.nih.gov/pubmed/22359629
https://doi.org/10.1371/journal.pone.0043820
http://www.ncbi.nlm.nih.gov/pubmed/22937103
https://doi.org/10.1146/annurev-biophys-083012-130315
https://doi.org/10.1146/annurev-biophys-083012-130315
http://www.ncbi.nlm.nih.gov/pubmed/23451890
https://doi.org/10.1038/ncomms6330
https://doi.org/10.1038/ncomms6330
http://www.ncbi.nlm.nih.gov/pubmed/25345468
https://doi.org/10.1016/j.jmb.2006.01.095
https://doi.org/10.1016/j.jmb.2006.01.095
http://www.ncbi.nlm.nih.gov/pubmed/16510154
https://doi.org/10.1093/protein/gzg119
http://www.ncbi.nlm.nih.gov/pubmed/14983078
https://doi.org/10.1073/pnas.0707977104
http://www.ncbi.nlm.nih.gov/pubmed/17971437
https://doi.org/10.1002/bip.360221211
http://www.ncbi.nlm.nih.gov/pubmed/6667333
https://doi.org/10.1016/0022-2836%2878%2990297-8
https://doi.org/10.1016/0022-2836%2878%2990297-8
http://www.ncbi.nlm.nih.gov/pubmed/642007
https://doi.org/10.1126/science.2643160
https://doi.org/10.1126/science.2643160
http://www.ncbi.nlm.nih.gov/pubmed/2643160
https://doi.org/10.1073/pnas.90.16.7558
https://doi.org/10.1073/pnas.90.16.7558
http://www.ncbi.nlm.nih.gov/pubmed/8356056
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
https://doi.org/10.1371/journal.pone.0255076


54. Cuff JA, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein sec-

ondary structure prediction. Proteins 40: 502–511. PMID: 10861942

55. Heinemann U, Hahn M (1995) Circular permutation of polypeptide chains: implications for protein fold-

ing and stability. Prog Biophys Mol Biol 64: 121–143. https://doi.org/10.1016/0079-6107(95)00013-5

PMID: 8987381

56. Lin K, Simossis VA, Taylor WR, Heringa J (2005) A simple and fast secondary structure prediction

method using hidden neural networks. Bioinformatics 21: 152–159. https://doi.org/10.1093/

bioinformatics/bth487 PMID: 15377504

57. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure predic-

tion. Bioinformatics 21: 1719–1720. https://doi.org/10.1093/bioinformatics/bti203 PMID: 15585524

58. Kim H, Park H (2003) Protein secondary structure prediction based on an improved support vector

machines approach. Protein Engineering 16: 553–560. https://doi.org/10.1093/protein/gzg072 PMID:

12968073

59. Ward JJ, McGuffin LJ, Buxton BF, Jones DT (2003) Secondary structure prediction with support vector

machines. Bioinformatics 19: 1650–1655. https://doi.org/10.1093/bioinformatics/btg223 PMID:

12967961

60. Guo J, Chen H, Sun ZR, Lin YL (2004) A novel method for protein secondary structure prediction using

dual-layer SVM and profiles. Proteins-Structure Function and Bioinformatics 54: 738–743. https://doi.

org/10.1002/prot.10634 PMID: 14997569

61. Won KJ, Hamelryck T, Prugel-Bennett A, Krogh A (2007) An evolutionary method for learning HMM

structure: prediction of protein secondary structure. BMC Bioinformatics 8: 357. https://doi.org/10.

1186/1471-2105-8-357 PMID: 17888163

62. Rost B (2001) Review: protein secondary structure prediction continues to rise. J Struct Biol 134: 204–

218. https://doi.org/10.1006/jsbi.2001.4336 PMID: 11551180

63. Dor O, Zhou Y (2007) Achieving 80% ten-fold cross-validated accuracy for secondary structure predic-

tion by large-scale training. Proteins 66: 838–845. https://doi.org/10.1002/prot.21298 PMID: 17177203

64. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids

Res 36: W197–201. https://doi.org/10.1093/nar/gkn238 PMID: 18463136

65. Mirabello C, Pollastri G (2013) Porter, PaleAle 4.0: high-accuracy prediction of protein secondary struc-

ture and relative solvent accessibility. Bioinformatics 29: 2056–2058. https://doi.org/10.1093/

bioinformatics/btt344 PMID: 23772049

66. Heffernan R, Yang Y, Paliwal K, Zhou Y (2017) Capturing non-local interactions by long short-term

memory bidirectional recurrent neural networks for improving prediction of protein secondary structure,

backbone angles, contact numbers and solvent accessibility. Bioinformatics 33: 2842–2849. https://

doi.org/10.1093/bioinformatics/btx218 PMID: 28430949

67. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A (2018) Critical assessment of methods

of protein structure prediction (CASP)-Round XII. Proteins 86 Suppl 1: 7–15. https://doi.org/10.1002/

prot.25415 PMID: 29082672

68. Remmert M, Biegert A, Hauser A, Soding J (2011) HHblits: lightning-fast iterative protein sequence

searching by HMM-HMM alignment. Nat Methods 9: 173–175. https://doi.org/10.1038/nmeth.1818

PMID: 22198341

69. Kearns MJ (1990) The computational complexity of machine learning. Cambridge, Mass.: MIT Press.

xvi, 165 p. p.

70. Rost B, Sander C, Schneider R (1994) Redefining the goals of protein secondary structure prediction. J

Mol Biol 235: 13–26. https://doi.org/10.1016/s0022-2836(05)80007-5 PMID: 8289237

71. Zemla A, Venclovas C, Fidelis K, Rost B (1999) A modified definition of Sov, a segment-based measure

for protein secondary structure prediction assessment. Proteins 34: 220–223. PMID: 10022357

72. Moult J, Hubbard T, Bryant SH, Fidelis K, Pedersen JT (1997) Critical assessment of methods of protein

structure prediction (CASP): round II. Proteins Suppl 1: 2–6. PMID: 9485489

73. Juan SH, Chen TR, Lo WC (2020) A simple strategy to enhance the speed of protein secondary struc-

ture prediction without sacrificing accuracy. PLoS One 15: e0235153. https://doi.org/10.1371/journal.

pone.0235153 PMID: 32603341

74. Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, et al. (2008) Data growth and its

impact on the SCOP database: new developments. Nucleic Acids Res 36: D419–425. https://doi.org/

10.1093/nar/gkm993 PMID: 18000004

75. Rose PW, Prlic A, Bi C, Bluhm WF, Christie CH, et al. (2015) The RCSB Protein Data Bank: views of

structural biology for basic and applied research and education. Nucleic Acids Res 43: D345–356.

https://doi.org/10.1093/nar/gku1214 PMID: 25428375

PLOS ONE A new feature set for protein secondary structure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0255076 July 28, 2021 27 / 28

http://www.ncbi.nlm.nih.gov/pubmed/10861942
https://doi.org/10.1016/0079-6107%2895%2900013-5
http://www.ncbi.nlm.nih.gov/pubmed/8987381
https://doi.org/10.1093/bioinformatics/bth487
https://doi.org/10.1093/bioinformatics/bth487
http://www.ncbi.nlm.nih.gov/pubmed/15377504
https://doi.org/10.1093/bioinformatics/bti203
http://www.ncbi.nlm.nih.gov/pubmed/15585524
https://doi.org/10.1093/protein/gzg072
http://www.ncbi.nlm.nih.gov/pubmed/12968073
https://doi.org/10.1093/bioinformatics/btg223
http://www.ncbi.nlm.nih.gov/pubmed/12967961
https://doi.org/10.1002/prot.10634
https://doi.org/10.1002/prot.10634
http://www.ncbi.nlm.nih.gov/pubmed/14997569
https://doi.org/10.1186/1471-2105-8-357
https://doi.org/10.1186/1471-2105-8-357
http://www.ncbi.nlm.nih.gov/pubmed/17888163
https://doi.org/10.1006/jsbi.2001.4336
http://www.ncbi.nlm.nih.gov/pubmed/11551180
https://doi.org/10.1002/prot.21298
http://www.ncbi.nlm.nih.gov/pubmed/17177203
https://doi.org/10.1093/nar/gkn238
http://www.ncbi.nlm.nih.gov/pubmed/18463136
https://doi.org/10.1093/bioinformatics/btt344
https://doi.org/10.1093/bioinformatics/btt344
http://www.ncbi.nlm.nih.gov/pubmed/23772049
https://doi.org/10.1093/bioinformatics/btx218
https://doi.org/10.1093/bioinformatics/btx218
http://www.ncbi.nlm.nih.gov/pubmed/28430949
https://doi.org/10.1002/prot.25415
https://doi.org/10.1002/prot.25415
http://www.ncbi.nlm.nih.gov/pubmed/29082672
https://doi.org/10.1038/nmeth.1818
http://www.ncbi.nlm.nih.gov/pubmed/22198341
https://doi.org/10.1016/s0022-2836%2805%2980007-5
http://www.ncbi.nlm.nih.gov/pubmed/8289237
http://www.ncbi.nlm.nih.gov/pubmed/10022357
http://www.ncbi.nlm.nih.gov/pubmed/9485489
https://doi.org/10.1371/journal.pone.0235153
https://doi.org/10.1371/journal.pone.0235153
http://www.ncbi.nlm.nih.gov/pubmed/32603341
https://doi.org/10.1093/nar/gkm993
https://doi.org/10.1093/nar/gkm993
http://www.ncbi.nlm.nih.gov/pubmed/18000004
https://doi.org/10.1093/nar/gku1214
http://www.ncbi.nlm.nih.gov/pubmed/25428375
https://doi.org/10.1371/journal.pone.0255076


76. Yang JM, Tung CH (2006) Protein structure database search and evolutionary classification. Nucleic

Acids Res 34: 3646–3659. https://doi.org/10.1093/nar/gkl395 PMID: 16885238

77. Lo WC, Huang PJ, Chang CH, Lyu PC (2007) Protein structural similarity search by Ramachandran

codes. BMC Bioinformatics 8: 307. https://doi.org/10.1186/1471-2105-8-307 PMID: 17716377

78. Chen TR, Lo CH, Juan SH, Lo WC (2021) The influence of dataset homology and a rigorous evaluation

strategy on protein secondary structure prediction. PLoS One 16: e0254555. https://doi.org/10.1371/

journal.pone.0254555 PMID: 34260641

79. Wu KP, Lin HN, Chang JM, Sung TY, Hsu WL (2004) HYPROSP: a hybrid protein secondary structure

prediction algorithm—a knowledge-based approach. Nucleic Acids Res 32: 5059–5065. https://doi.org/

10.1093/nar/gkh836 PMID: 15448186

80. Bondugula R, Xu D (2007) MUPRED: a tool for bridging the gap between template based methods and

sequence profile based methods for protein secondary structure prediction. Proteins 66: 664–670.

https://doi.org/10.1002/prot.21177 PMID: 17109407

81. Huang TT, Hwang JK, Chen CH, Chu CS, Lee CW, et al. (2015) (PS)2: protein structure prediction

server version 3.0. Nucleic Acids Res 43: W338–342. https://doi.org/10.1093/nar/gkv454 PMID:

25943546

82. PDB (2015) Redundancy in the Protein Data Bank, http://www.rcsb.org/pdb/statistics/clusterStatistics.

do.

83. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequenc-

ing data. Bioinformatics 28: 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 PMID:

23060610

84. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:

2460–2461. https://doi.org/10.1093/bioinformatics/btq461 PMID: 20709691

85. Steinegger M, Soding J (2018) Clustering huge protein sequence sets in linear time. Nat Commun 9:

2542. https://doi.org/10.1038/s41467-018-04964-5 PMID: 29959318

86. UniProt C (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42: D191–

198. https://doi.org/10.1093/nar/gkt1140 PMID: 24253303

87. Lo WC, Lyu PC (2008) CPSARST: an efficient circular permutation search tool applied to the detection

of novel protein structural relationships. Genome Biol 9: R11. https://doi.org/10.1186/gb-2008-9-1-r11

PMID: 18201387

88. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci

U S A 89: 10915–10919. https://doi.org/10.1073/pnas.89.22.10915 PMID: 1438297

89. Zhou J, Troyanskaya OG (2014) Deep supervised and convolutional generative stochastic network for

protein secondary structure prediction. Proceedings of the 31st International Conference on Interna-

tional Conference on Machine Learning—Volume 32. Beijing, China: JMLR.org. pp. I-745-I-753.

90. Zhang B, Li J, Lu Q (2018) Prediction of 8-state protein secondary structures by a novel deep learning

architecture. BMC Bioinformatics 19: 293. https://doi.org/10.1186/s12859-018-2280-5 PMID:

30075707

91. Nelson DL, Cox MM (2004) Amino Acids, Peptides, and Proteins. Lehninger Principles of Biochemistry.

4th ed. New York: W.H. Freeman and company. pp. 75–115.

92. Li Z, Yu Y (2016) Protein secondary structure prediction using cascaded convolutional and recurrent

neural networks. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-

gence. New York, New York, USA: AAAI Press. pp. 2560–2567.

93. Zhou J, Wang H, Zhao Z, Xu R, Lu Q (2018) CNNH_PSS: protein 8-class secondary structure predic-

tion by convolutional neural network with highway. BMC Bioinformatics 19: 60. https://doi.org/10.1186/

s12859-018-2067-8 PMID: 29745837

94. Montgomerie S, Sundararaj S, Gallin WJ, Wishart DS (2006) Improving the accuracy of protein second-

ary structure prediction using structural alignment. BMC Bioinformatics 7: 301. https://doi.org/10.1186/

1471-2105-7-301 PMID: 16774686

PLOS ONE A new feature set for protein secondary structure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0255076 July 28, 2021 28 / 28

https://doi.org/10.1093/nar/gkl395
http://www.ncbi.nlm.nih.gov/pubmed/16885238
https://doi.org/10.1186/1471-2105-8-307
http://www.ncbi.nlm.nih.gov/pubmed/17716377
https://doi.org/10.1371/journal.pone.0254555
https://doi.org/10.1371/journal.pone.0254555
http://www.ncbi.nlm.nih.gov/pubmed/34260641
https://doi.org/10.1093/nar/gkh836
https://doi.org/10.1093/nar/gkh836
http://www.ncbi.nlm.nih.gov/pubmed/15448186
https://doi.org/10.1002/prot.21177
http://www.ncbi.nlm.nih.gov/pubmed/17109407
https://doi.org/10.1093/nar/gkv454
http://www.ncbi.nlm.nih.gov/pubmed/25943546
http://www.rcsb.org/pdb/statistics/clusterStatistics.do
http://www.rcsb.org/pdb/statistics/clusterStatistics.do
https://doi.org/10.1093/bioinformatics/bts565
http://www.ncbi.nlm.nih.gov/pubmed/23060610
https://doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
https://doi.org/10.1038/s41467-018-04964-5
http://www.ncbi.nlm.nih.gov/pubmed/29959318
https://doi.org/10.1093/nar/gkt1140
http://www.ncbi.nlm.nih.gov/pubmed/24253303
https://doi.org/10.1186/gb-2008-9-1-r11
http://www.ncbi.nlm.nih.gov/pubmed/18201387
https://doi.org/10.1073/pnas.89.22.10915
http://www.ncbi.nlm.nih.gov/pubmed/1438297
https://doi.org/10.1186/s12859-018-2280-5
http://www.ncbi.nlm.nih.gov/pubmed/30075707
https://doi.org/10.1186/s12859-018-2067-8
https://doi.org/10.1186/s12859-018-2067-8
http://www.ncbi.nlm.nih.gov/pubmed/29745837
https://doi.org/10.1186/1471-2105-7-301
https://doi.org/10.1186/1471-2105-7-301
http://www.ncbi.nlm.nih.gov/pubmed/16774686
https://doi.org/10.1371/journal.pone.0255076

