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Deterministic distribution of 
four-photon Dicke state over an 
arbitrary collective-noise channel 
with cross-Kerr nonlinearity
Mei-Yu Wang1, Feng-Li Yan1 & Ting Gao2

We present two deterministic quantum entanglement distribution protocols for a four-photon 
Dicke polarization entangled state resorting to the frequency and spatial degrees of freedom, which 
are immune to an arbitrary collective-noise channel. Both of the protocols adopt the X homodyne 
measurement based on the cross-Kerr nonlinearity to complete the task of the single-photon detection 
with nearly unit probability in principle. After the four receivers share the photons, they add some local 
unitary operations to obtain a standard four-photon Dicke polarization entangled state.

Entanglement1–3 plays an important role in quantum information processing, mainly including quantum  
computation4 and quantum communication. It is the information carrier in some interesting branches of quan-
tum communication, such as quantum key distribution5, quantum secret sharing6–8, quantum secure direct  
communication9–11, teleportation12, quantum dense coding13,14, and so on. In all of the above applications, two- 
or multi-qubit maximally entangled states must be shared as quantum channels by the parties at different loca-
tions. As photons are ideal carriers for long-distance transmission of quantum states, people always choose their 
entangled states in the polarization degree of freedom (DOF) to fulfill these tasks discussed previously. However, 
during a practical transmission, the polarization DOF of photons is easily influenced by the thermal fluctuation, 
vibration, and the imperfection of an optical fiber. That is, they suffer from the channel noise inevitably whether 
they are single photons or multi-qubit entangled photons. Thus, various error correction and error-rejection 
processes are proposed. A method of distilling a maximally entangled state is entanglement purification, which 
can be used to decrease the influence of the channel noise and will be an efficient method in the case that the dis-
tance is not so long. For instance, Bennett et al.15 proposed an original entanglement purification protocol (EPP) 
for purifying a Werner state based on quantum controlled-NOT gates in 1996. In 2001, Pan et al.16 proposed an 
EPP based on linear optics, without resorting to controlled-NOT gates, which is feasible in experiment. Sheng  
et al.17 proposed an EPP based on cross-Kerr nonlinearity. However, entanglement purfication is essentially used 
to achieve a subset of maximally entangled states from less-entangled ones after infinite operations. All conven-
tional EPPs cannot get perfect maximally entangled photons by far as they work probabilistically in principle. 
Thus, the faithful distribution of maximally pure entangled states between different and distant locations is valu-
able for the realization of long-distance quantum communication.

The polarization entanglement of photons18–20 is easily disturbed by the noise in quantum channel, so it is not 
an elegant way to directly transmit the polarization entanglement of photons over a noisy channel. Recently, some 
other DOFs attract much attention, such as the frequency DOF, the spatial mode, orbital angular momentum and 
so on. For example, since the bit-flip error and phase-flip error can be corrected correspondingly as the frequency 
entanglement state is a maximally entangled pure state, and the frequency entanglement does not easily suffer 
from the channel noise in principle21, Sheng and Deng22 proposed an Einstein-Podolsky-Rosen pair distribution 
protocol over an arbitrary collective-noise channel exploiting conversion between polarization and frequency 
modes. The protocol can be generalized to the distribution of n-qubit (n >​ 2) Greenberger-Horne-Zeilinger 
(GHZ) state. This protocol is very important because multi-qubit entangled states have many advantages over the 
two-qubit entangled states in quantum information. Since then, in 2011, Lu et al.23 proposed an efficient W 
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polarization entangled state distribution protocol over an arbitrary collective-noise channel with the help of the 
cross-Kerr nonlinearity. In 2013, Dong et al.24 rendered a perfect entanglement distribution protocol of a 
four-photon χ-type polarization-entangled state exploiting spatial DOF to depress the effect of collective noise. 
For four-qubit entangled states, Verstraete et al.25 showed that there are nine families of states under stochastic 
local operations and classical communication, such as the above mentioned four-qubit χ-type states, four-qubit 
GHZ states, four-qubit W states, and four-qubit cluster states. However, other nonequivalent classes of quantum 
states with interesting symmetries exist. For example, a novel four-qubit entangled state D4

(2) —the four-qubit 
Dicke state with two excitations that is symmetric under all permutations of qubits26, has the form as
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where H and V denote horizontal and vertical linear polarizations respectively. The four-photon state D4
(2) , like 

|W〉​4, is highly persistent against photon loss and projective measurements. In particular, Kiesel et al.27 showed 
that, in spite of the impossibility to transform a three photon GHZ type into a W state by local manipulation, both 
can be obtained via a projective measurement of the same photon in the state D4

(2) . Dicke states constitute a 
particularly relevant class of highly entangled, they have interesting applications in quantum information process-
ing tasks, such as 1 →​ (N −​ 1) telecloning or open-destination teleportation28,29 and quantum games30,31. 
Experimentally, high-fidelity Dicke states with small particle numbers have been created with photons32,33.

In this paper, we present two deterministic quantum entanglement distribution protocols for four-photon 
Dicke state in polarization over an arbitrary collective-noise channel with the help of the cross-Kerr nonlinear-
ity. The two protocols exploit the frequency DOF and spatial DOF to against channel noise respectively, which 
are immune to an arbitrary collective-noise channel. Both of these two protocols adopt the X homodyne meas-
urement based on the cross-Kerr nonlinearity to complete the task of the single-photon detection with nearly 
unit probability in principle. After the four receivers share the photons, they add some local unitary operations 
to obtain a standard four-photon Dicke polarization entangled state deterministically. We describe the explicit 
distribution scheme of the Dicke polarization entangled state with frequency entanglement in Section 2. The 
deterministic quantum entanglement distribution with spatial entanglement is shown in Section 3. Finally, the 
discussion and conclusion are presented in Section 4.

Entanglement distribution of the Dicke state by frequency degree of freedom
For the sake of the clearness, let us first introduce the cross-Kerr nonlinearity, which was first used by Chuang and 
Yamamoto to realize the simple optical quantum computation34. The interaction Hamiltonian has the form 

κ=−ˆ ˆ ˆH n nk s p, here n̂s n̂( )p  is the photon-number operators of the signal (probe) mode, and κ is the strength of 
the nonlinearity. If the signal field contains n photons and the probe field is in an initial coherent state with ampli-
tude α, the cross-Kerr nonlinearity interaction causes the combined signal-probe system to evolve as follows:

 α α α= =κ θ− ˆ ˆ ˆn n ne e e , (2)
H t

s p
tn n

s p s
n

p
i / i ik s p

where θ =​ κt with t being the interaction time. It is easy to observe that the Fock state is unaffected by the interac-
tion but the coherent state picks up a phase shift nθ directly proportional to the number of photons n in the signal 
mode. One can exactly obtain the information of photons in the Fock state but not destroy them by detecting the 
probe mode with a general homodyne-heterodyne measurement. The cross-Kerr nonlinearity between photons 
offers an ideal playground for quantum state engineering, and a number of applications have been studied, such as  
constructing nondestructive quantum nondemoliton detectors (QND)35,36, deterministic entanglement distillation37,  
logic-qubit entanglement38,39, generation of multiphoton entangled state40–44. In what follows, we explain the 
distribution process of the four-photon Dicke state over an arbitrary collective-noise channel with frequency 
DOF. On experiment, with present technology, the entanglement of photons in frequency DOF is not difficult to 
be prepared with spontaneous parametric down-conversion45,46. Frequency DOF has been used in a series of 
quantum information schemes because of its stability. We suppose that the center, say Susan wishes Alice, Bob, 
Charlie and David to share a polarization photon state D4

(2)  as described in Eq. (1). By means of method in refs 
45,46 she prepares a four-photon Dicke state
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where, the notions |ω1ω1ω2ω2〉​, |ω1ω2ω1ω2〉​, 


, |ω2ω2ω1ω1〉​ are six different frequency modes of the four photons. 
The subscripts A, B, C, and D mean that the four photons are distributed to Alice, Bob, Charlie and David, respec-
tively. Suppose the collective noises in the four channels have the same form but different noise parameters which 
alter with time in principle, i.e.,

α β α β

α β α β

→ + → +

→ + → +

H H V H H V
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, ,

, , (4)
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C D
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where |αi|2 +​ |βi|2 =​ 1 (i =​ 1, 2, 3, 4). The four-photon entangled state in Eq. (3) suffering from collective-noise 
channels is written as
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After the noise channels, the resulting photons will pass through the polarization beam splitters (PBSs) which 
transmit the horizontal polarization mode |H〉​ and reflect the vertical polarization mode |V〉​. When Alice, Bob, 
Charlie and David combine their photons and their coherent probe beams with cross-Kerr nonlinearity media 
(shown in Fig. 1), the state Ψ ′ABCD with the four coherent states evolves as
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If a photon appears in the mode 1 (3, 5 or 7), the cross-Kerr nonlinearity puts a phase shift θ on the coherent 
state |α〉​A (|α〉​B, |α〉​C or |α〉​D). Meanwhile, if a photon appears in the mode 2 (4, 6 or 8), the coherent state |α〉​A 
(|α〉​B, |α〉​C or |α〉​D) picks up no phase shift. After the X homodyne measurements on their coherent beams inde-
pendently, Alice, Bob, Charlie and David will get some different phase shifts, and the four photons will collapse 
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Figure 1.  Schematic drawing of Dicke state distribution over a collective-noise channel with the help of 
the cross-Kerr nonlinearities. PBSs are polarization beam splitters. Cross-Kerr nonlinearities will cause the 
coherent beam to pick up a phase shift θ if there is a photon in the modes 1, 3, 5 and 7.
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into different states with different phase shifts. For example, if Alice, Bob, Charlie and David have the same phase 
shift θ, the four photons will collapse into the state
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which appears at output modes 1357 with the probability of |α1α2α3α4|2. In a similar way, the other fifteen entan-
gled states |φi〉​ABCD: 2 ≤​ i ≤​ 16 can be distinguished. Here
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The next step of our Dicke state disrtibution protocol is to convert the frequency DOF entangled states  
{|φi〉​ABCD} to polarization DOF entangled ones. Without loss of generality, we take |φ1〉​ABCD as an example to 
describe the principle of the entanglement reconstructing process, shown in Fig. 2. Four polarization independ-
ent wavelength division multiplexers (WDMs) can be used to guide photons to different spatial modes according 
to their frequencies. That is, photons with the frequencies ω1 and ω2 will be guided to the corresponding spatial 
modes a1(b1, c1, d1) and a2(b2, c2, d2). Four half-wave plates (HWPs) are used to complete the transformation 
H V  in suitable positions. After the four photons are coupled by the four PBSs, its state becomes
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and will be in the output spatial modes a1, b1, c1 and d1. The remaining states in {|φi〉​ABCD : 2 ≤​ i ≤​ 16} are analogical 
with it. Following the similar way, Alice, Bob, Charlie and David can obtain 16 maximally entangled states in the 
polarization and frequency degrees of freedom. Finally, four participants can erase the distinguishability for the 
frequency of their photons with the help of quantum frequency up-conversion47 and turn them into a standard 
polarization entangled Dicke state with local unitary operations. The collapsed states corresponding to the X 
homodyne measurement, together with the explicit output modes, the corresponding probabilities, and the corre-
sponding local operations on photons can be seen in Table 1. The Dicke state distribution protocol has been suc-
cessful and the success probability is φ α α α α α α α β β β β β= ∑ = + + + == P p( ) 1i i1

16
1 2 3 4

2
1 2 3 4

2
1 2 3 4

2 . 
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That is, this entanglement distribution process can be implemented with a unit probability in principle over 
collective-noise channels since it is independent of the noise parameters {α1, β1, α2, β2, α3, β3, α4, β4}.
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Figure 2.  Schematic illustration of converting frequency entanglements to polarization entanglements. 
WDMs represent wavelength division multi-plexers, HWPs denote half-wave plates which realize the 
conversion between |H〉​ and |V〉​.

|φi〉​ O.P. D.P.
L.O. 
(A)

L.O. 
(B)

L.O. 
(C)

L.O. 
(D)

|φ1〉​ a1b1c1d1 |α1α2α3α4|2 none none none none

|φ2〉​ a1b1c1d2 |α1α2α3β4|2 none none none HWP

|φ3〉​ a1b1c2d1 |α1α2β3α4|2 none none HWP none

|φ4〉​ a1b1c2d2 |α1α2β3β4|2 none none HWP HWP

|φ5〉​ a1b2c1d1 |α1β2α3α4|2 none HWP none none

|φ6〉​ a1b2c1d2 |α1β2α3β4|2 none HWP none HWP

|φ7〉​ a1b2c2d1 |α1β2β3α4|2 none HWP HWP none

|φ8〉​ a1b2c2d2 |α1β2β3β4|2 HWP none none none

|φ9〉​ a2b1c1d1 |β1α2α3α4|2 HWP none none none

|φ10〉​ a2b1c1d2 |β1α2α3β4|2 HWP none none HWP

|φ11〉​ a2b1c2d1 |β1α2β3α4|2 HWP none HWP none

|φ12〉​ a2b1c2d2 |β1α2β3β4|2 none HWP none none

|φ13〉​ a2b2c1d1 |β1β2α3α4|2 HWP HWP none none

|φ14〉​ a2b2c1d2 |β1β2α3β4|2 none none HWP none

|φ15〉​ a2b2c2d1 |β1β2β3α4|2 none none none HWP

|φ16〉​ a2b2c2d2 |β1β2β3β4|2 none none none none

Table 1.   The distribution of the Dicke state with frequency entanglement. |φi〉​ denotes the collapsed 
polarization state after the X homodyne measurements, ‘O.P.’ represents the output mode where photon is 
detected, ‘D.P.’ denotes the corresponding detection probability, and ‘L.O.’ is the operations for photons.
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Entanglement distribution of the Dicke state by spatial degree of freedom
Besides the frequency DOF, the spatial DOF is also robust to the channel noise. As for the spatial entanglement, 
the bit-flip error does not exist and the phase-flip error can be eliminated by controlling the lengths of channels 
exactly, so the spatial DOF can also be used to create the entanglement in polarization DOF. In this section, we 
demonstrate another scheme for distribution of entanglement with the spatial entanglement.

Suppose the center Susan has a polarization entangled Dicke state shown in Eq. (1), which can be generated by 
means of method in refs 32,33. First, she transforms the entangled mode of the Dicke state from the polarization 
DOF mode to the spatial DOF mode, by utilizing the combination of PBSs and HWPs, as shown in Fig. 3. Then 
the state to be transmitted in Susan’s is changed to

Ψ = +

+ + + +

H H H H a b c d a b c d

a b c d a b c d a b c d a b c d
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6
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with local unitary operations. Here a, b, c, and d represent the four spatial modes of the entangled system. 
Subsequently, the four photons are transmitted through the collective-noise channels. Here we suppose channels 
x1 and x2 (x =​ a, b, c, d) are so close that the noise affected on photons are identical, which is given as

α β α β
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→ + → +
→ + → +
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: , : ,
: , : , (11)

1 1 2 2

3 3 4 4

where |αi|2 +​ |βi|2 =​ 1 (i =​ 1, 2, 3, 4). The state denoted as Eq. (10) suffered from collective-noise channels is 
evolved to

α β α β α β α βΨ ′ = + + + +

+ + + + + .

H V H V H V H V
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Finally, the four photons arrive at receivers Alice, Bob, Charlie and David. In the receiving process, every 
receiver introduces a probe beam with cross-Kerr nonlinearity media (shown in Fig. 4) and then performs the X 
homodyne measurement independently. As a result, the polarization part of the four-photon Dicke state collapses 
into |HHHH〉​, |HHHV〉​, 



 with the probabilities of |α1α2α3α4|2, |α1α2α3β4|2, 


. In the end, the four photons pass 
through the combination of HWP and PBSs, and the transmitted state can be transformed to the original Dicke 
state with some local unitary operations. All X measurement outcomes (polarization states), together with the 
explicit output and the corresponding local operations on photons can be seen in Table 2. The successful distribution  
of the four-photon polarization entangled Dicke state is confirmed and the total probability is P =​ |α1α2α3α4|2 +​  
|α1α2α3β4|2 +​ 



 +​ |β1β2β3β4|2 =​ 1.
We can generalize the above scheme to the case for distribution of 2n-qubit system (n >​ 2) in a highly entan-

gled and symmetric Dicke state over an arbitrary collective-noise channel. The highly symmetric Dicke state 
D n

n
2
( )  is given by

Pa
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 c
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Figure 3.  Schematic illustration of transmitting a four-photon Dicke polarization entangled state. The 
symbols ‘a, b, c, d’ denote photon paths, and the subscripts ‘1, 2’ denote the corresponding upper and lower 
channels, through which four photons of the entangled state are transmitted.
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where −C( )n
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2
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2  is a normalization factor with C n

n
2  as binomial coefficient, and ∑​σ Pσ(…​) means the sum over all 

permutations of the photonic qubits. Through the setup shown in Fig. 3, the state to be transmitted is transformed 
into

∑Φ = …
σ
σ

− ⊗C H P a b c( ) ,
(14)s n

n n
i j k2

1
2 2

where i, j, k, …​ ∈​ 1, 2. After passing through the collective-noise channels, the 2n-qubit system evolves as

∑ ∑α βΦ ′ = + … .
σ
σ

−

=
C H V P a b c( ) ( )

(15)s n
n

m

n

m m i j k2
1
2

1

2

Similar to Fig. 4, every receiver use their QNDs with cross-Kerr nonlinearity to check the polarization part of 
the 2n-photon Dicke state, and then, the 2n photons pass through the combination of HWP and PBSs. Finally the 
transmitted state can be transformed to the original Dicke state D n

n
2
( )  with some bit-flip operations on part of the 

2n photons.

2xC

1xC1xC

2xC

XX
PBS

HWP

Figure 4.  Schematic illustration of receiving a four-photon Dicke polarization entangled state. The symbol 
‘x’ denotes photon paths (a, b, c, d). The composition of PBSs and X homodyne measurement determine the 
polarization part of the evolved state.

P.S. O.P. D.P.
L.O. 
(A)

L.O. 
(B)

L.O. 
(C)

L.O. 
(D)

|HHHH〉​ ′ ′ ′ ′a b c d2 2 2 2 |α1α2α3α4|2 none none none none

|HHHV〉​ ′ ′ ′ ′a b c d2 2 2 1 |α1α2α3β4|2 none none none HWP

|HHVH〉​ ′ ′ ′ ′a b c d2 2 1 2 |α1α2β3α4|2 none none HWP none

|HHVV〉​ ′ ′ ′ ′a b c d2 2 1 1 |α1α2β3β4|2 none none HWP HWP

|HVHH〉​ ′ ′ ′ ′a b c d2 1 2 2 |α1β2α3α4|2 none HWP none none

|HVHV〉​ ′ ′ ′ ′a b c d2 1 2 1 |α1β2α3β4|2 none HWP none HWP

|HVVH〉​ ′ ′ ′ ′a b c d2 1 1 2 |α1β2β3α4|2 none HWP HWP none

|HVVV〉​ ′ ′ ′ ′a b c d2 1 1 1 |α1β2β3β4|2 HWP none none none

|VHHH〉​ ′ ′ ′ ′a b c d1 2 2 2 |β1α2α3α4|2 HWP none none none

|VHHV〉​ ′ ′ ′ ′a b c d1 2 2 1 |β1α2α3β4|2 none HWP HWP none

|VHVH〉​ ′ ′ ′ ′a b c d1 2 1 2 |β1α2β3α4|2 HWP none HWP none

|VHVV〉​ ′ ′ ′ ′a b c d1 2 1 1 |β1α2β3β4|2 none HWP none none

|VVHH〉​ ′ ′ ′ ′a b c d1 1 2 2 |β1β2α3α4|2 none none HWP HWP

|VVHV〉​ ′ ′ ′ ′a b c d1 1 2 1 |β1β2α3β4|2 none none HWP none

|VVVH〉​ ′ ′ ′ ′a b c d1 1 1 2 |β1β2β3α4|2 none none none HWP

|VVVV〉​ ′ ′ ′ ′a b c d1 1 1 1 |β1β2β3β4|2 none none none none

Table 2.   The distribution of the Dicke state with spatial entanglement. ‘P.S.’ denotes the collapsed 
polarization state after X homodyne measurement, ‘ O.P.’ represents the output port where photon is detected, 
‘D.P.’ denotes the corresponding detection probability, and ‘L.O.’ is the operations for photons.
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Discussion and Conclusion
In the process of describing the principle of our protocols, we exploit the cross-Kerr nonlinearity interaction 
between photons and the coherent states. Although a lot of works have been studied in the area of cross-Kerr 
nonlinearities, we should acknowledge that it is still a quite controversial concept to have a clean cross-Kerr 
nonlinearity in the optical single-photon regime with present science and technology. In nature, cross-Kerr non-
linearity is extremely small and unsuitable for single photon interaction. Fortunately, it was suggested that the 
nonlinearity magnitude could be θ ~ 10−2 with the help of electromagnetically induced transparency48. Moreover, 
in the regime of weak cross-Kerr nonlinearity, the demanded strength of nonlinearity can be compensated by 
using a probe coherent state with very large amplitude. For a realistic system, however, the intensity of the coher-
ent beam cannot be boundlessly large because a laser beam with too strong intensity will bring about other effects 
in Kerr medium due to the effects of decoherence. Recently, as pointed out by Gea-Banacloche49, the large phase 
shifts via the giant Kerr effect with single-photon wave packets is impossible at present. A proper candidate for 
weak cross-Kerr nonlinearity should be atomic ensemble, and the fundamental problem with the cross-Kerr 
nonlinearity in atomic ensemble was discussed by Gea-Banacloche49, and He and Scherer50.

Besides the influence of cross-Kerr medium, the experiment feasibility of the present protocols also depends 
on the veracity of the X homodyne measurement. For the X homodyne measurement, we only consider the error 
chiefly coming from the overlap adjacent curves because of the fact that the coherent states of the probe beam 
with different phase shifts are not completely orthogonal. In fact, it is only one type of detection error in homo-
dyne, other errors, such as the noises in detection, the reduced fidelity to the process in Eq. (2) due to multi-mode 
effect and decoherence, etc., also exist in a realistic implementation. Exploiting the appropriate measurement 
methods, the disadvantageous influence can be overcome or alleviated and the error probability will be decreased. 
In 2010, Wittmann et al. investigated quantum measurement strategies capable of discriminating two coherent 
states using a homodyne detector and a photon number resolving (PNR) detector51. In order to lower the error 
probability, the postselection strategy is applied to the measurement data of homodyne detector as well as a PNR 
detector. They indicated that the performance of the new displacement controlled PNR is better than homodyne 
receiver.

To summarize, we have proposed two quantum entanglement distribution protocols of a four-photon Dicke 
polarization entangled state over collective-noise channel with the assistance of the cross-Kerr nonlinearity. 
During transmission, the polarization DOF is easily disturbed over the collective-noise channel, we perform the 
entanglement conversion between polarization DOF and frequency DOF to eliminate the effect collective noise 
in the first quantum entanglement distribution protocol. After transmission, four receivers exploit the polariza-
tion independent WDMs to guide photons to different spatial modes according to their frequencies. At the same 
time, we fulfill another quantum entanglement distribution with the application of the spatial entanglement, 
which affords facilities for the experimental implementation and application because of releasing the polariza-
tion independent WDMs. These two protocols can be implemented deterministically in principle. By virtue of 
the availability of optical elements and techniques involved, we hope the present schemes for the distribution 
of entangled state in the polarization DOF can be experimentally implemented in the long-distance quantum 
communications.
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