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Abstract

Motivation: Biobanks are important infrastructures for life science research. Optimal sample han-

dling regarding e.g. collection and processing of biological samples is highly complex, with many

variables that could alter sample integrity and even more complex when considering multiple

study centers or using legacy samples with limited documentation on sample management. Novel

means to understand and take into account such variability would enable high-quality research on

archived samples.

Results: This study investigated whether pre-analytical sample variability could be predicted and

reduced by modeling alterations in the plasma metabolome, measured by NMR, as a function of

pre-centrifugation conditions (1–36 h pre-centrifugation delay time at 4 �C and 22 �C) in 16 individ-

uals. Pre-centrifugation temperature and delay times were predicted using random forest modeling

and performance was validated on independent samples. Alterations in the metabolome were

modeled at each temperature using a cluster-based approach, revealing reproducible effects of

delay time on energy metabolism intermediates at both temperatures, but more pronounced at

22 �C. Moreover, pre-centrifugation delay at 4 �C resulted in large, specific variability at 3 h, pre-

dominantly of lipids. Pre-analytical sample handling error correction resulted in significant

improvement of data quality, particularly at 22 �C. This approach offers the possibility to predict

pre-centrifugation delay temperature and time in biobanked samples before use in costly down-

stream applications. Moreover, the results suggest potential to decrease the impact of undesired,

delay-induced variability. However, these findings need to be validated in multiple, large sample

sets and with analytical techniques covering a wider range of the metabolome, such as LC-MS.

Availability and implementation: The sampleDrift R package is available at https://gitlab.com/

CarlBrunius/sampleDrift.
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1 Introduction

Biobanks have become one of the most important infrastructures for

research in life sciences and medicine. Modern biobank-based re-

search is not only based on biospecimen, but also integrates medical

data and high-throughput comprehensive molecular analysis such as

metabolomics. Sample collection and handling, from needle to

freezer, is a major logistical challenge and also the largest source of

laboratory errors (Anton et al., 2015; Ellervik and Vaught, 2015).

Evidence-based practises to minimize pre-analytical errors are crit-

ical and have typically been developed based on conventional bio-

chemical assessments, but more research is needed to provide

evidence of best practise for -omics techniques, including metabolo-

mics (Yin et al., 2013, 2015). Development and adherence to stand-

ard operating procedures (SOPs) can reduce the bias inherent in

sample handling, but currently used SOPs are often based on best

practises and not on experimental findings (Anton et al., 2015).

Despite large efforts and investments to implement highly stand-

ardized procedures and Information and Communications

Technology (ICT) systems enabling monitoring and tracking of time

and temperatures from needle to freezer in large-scale studies, it may

still be difficult to collect and handle samples in an optimal way due

to multiple study centers involved and long transportation to central

laboratories and freezers (Breier et al., 2014). In several modern

large-scale population cohorts, such as UK Biobank, Lifelines in the

Netherlands and LifeGene in Sweden, compromises aiming for cost-

effectiveness have resulted, for example, in handling flows where

samples are kept at 4 �C for up to 24 h until they can be aliquoted

and frozen (Almqvist et al., 2011; Anton et al., 2015; Elliott et al.,

2008; Jobard et al., 2016; Malm et al., 2016). Such handling condi-

tions have been reported to have limited impacts on many analytes

(Elliott et al., 2008; Qundos et al., 2013). However, the metabolome

represents great chemical diversity, with plasma stability of individ-

ual metabolites spanning a wide range from highly stable to labile,

and results from recent metabolomics studies have indeed indicated

that changes in the plasma and serum metabolome can occur under

conditions typically used in collection and handling of samples for

large-scale epidemiological studies (Anton et al., 2015; Bernini

et al., 2011; Kamlage et al., 2014; Yang et al., 2013; Yin et al.,

2013, 2015). Moreover, it is tempting in many research projects to

use large sample collections that have unique metadata associated or

contain rare samples from an urgent patient population, but have

been stored for decades and typically lack any documentation on

how samples have been collected, processed and stored (Moore

et al., 2011).

In order to avoid bias in scientific results, researchers need to

know whether they can use a specific sample collection to address

specific research questions, with the aim of using the right sample

collection for the right research question. This calls for development

of strategies to avoid such bias. One approach could be to use spe-

cific endogenous markers for sample quality, as a way to differenti-

ate samples that have been handled under different conditions

(Anton et al., 2015; Trezzi et al., 2016). Another approach could be

to model the kinetics of different metabolites in samples over differ-

ent temperature and time conditions, two important pre-analytical

sample management parameters detrimental of quality, and use such

models to correct for pre-analytical errors. Predictive modeling

could be particularly useful when meta-data on time and tempera-

ture are lacking, in order to assess the sample pre-analytical history.

In the present study, our aim was to investigate the feasibility of

modeling and correcting for effects of pre-centrifugation delay time

and temperature on the plasma metabolome, i.e. where handling

delay occurs in whole blood, where metabolism is potentially heav-

ily ongoing.

2 Materials and methods

2.1 Biological samples
For modeling of the effects of pre-analytical sample management on

the plasma metabolome, blood samples were collected at Karolinska

Institutet Biobank from 16 non-fasting healthy donors, eight males

and eight females, in the age range 24–62 years. Blood was drawn

into 10 � 4 mL K2-EDTA tubes (BD cat. no. 368861). All samples

were gently mixed and stored for 1, 3, 8, 24 and 36 h at 4 �C or

22 �C, before centrifugation at 20�C at 2000 g for 10 minutes, fol-

lowed by aliquotation into 100 mL fractions in 2D-barcoded micro-

tubes (heat-sealed REMP-96-300; Brooks Life Science System) using

a Tecan Evo liquid handling robot. All samples were then stored at

�80˚C until analysis.

For external validation of modeling performance, we analyzed

leftover EDTA plasma from 111 random sample donors collected at

various sites as part of different research studies. Sampling condi-

tions were similar to those described above, with the exception that

all samples, after gentle mixing at the site of collection were sent to

Karolinska Institutet Biobank for centralized processing and storage.

The accuracy of the pre-centrifugation time of the external sample

set was limited to three levels: 3–8 h, 8–24 h or 24–30 h.

The study was approved by the Regional Ethics Review Board in

Stockholm (Dnr 2013/703-32).

2.2 NMR analysis
Samples were conditioned at -20 �C over-night before being taken

out to thaw at 4 �C. To achieve sufficient sample volume, two ali-

quots of each sample were pooled in 96-well deepwell plates

(Sarstedt cat. No. 82.1971.002) using an Eppendorf Multipette E3.

Subsequently, each sample (100mL) was mixed with buffer (100 mL,

75 mM sodium phosphate pH 7.4, 2 mM imidazole, 0.5 mM 3-(tri-

methylsilyl)-1-propanesulfonic acid-d6, 0.05% sodium azide, 20%

v/v D2O) in another deepwell plate using a SamplePro L liquid hand-

ler (Bruker Biospin, Rheinstetten, Germany). Serum-buffer mix (180

mL) was transferred to 3 mm SampleJet NMR tube racks (Bruker

BioSpin, F€allanden, Switzerland) with the SamplePro L. All plates

and racks were kept at 2 �C during sample preparation.

NMR data were acquired on an Oxford 800 MHz magnet

equipped with a Bruker Avance III HD console, a 3 mm TCI cryo

probe, and a cooled SampleJet sample changer keeping sample racks

at 6 �C. As part of the pulse calibration, the linewidth of the 2H sig-

nal was monitored and recursively optimized and evaluated after

shimming to allow data acquisition only on samples with a half-

height linewidth of 2 Hz or better. A CPMG relaxation filter, perfect

echo experiment with excitation sculpting for water suppression

was used (‘zgespe’ pulse sequence) for acquisition of 1D data, with a

sweep width of 20 ppm, 128 scans, an acquisition time of 2.04 s, a

relaxation delay of 1.3 s, and a total CPMG pulse train time of

193 ms. Processing of data entailed 0.3 Hz exponential line-

broadening, zero-filling, and referencing to the DSS-d6 peak. Data

acquisition and processing were performed with TopSpin 3.2pl6

(Bruker BioSpin, Rheinstetten, Germany). 2D natural abundance
1H-13C HSQC (‘hsqcetgpsisp2.2’ pulse sequence) and 1H-1H-

TOCSY (‘mlevgpphw5’ pulse sequence) were acquired on the same

spectrometer, on 1 h, 4 �C and 36 h, 22 �C pooled samples, in order

to aid identification of metabolite signals in the 1D dataset. For the

HSQCs, spectral widths of 20 (1H) and 100 (13C) ppm, 16 scans,
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38 ms acquisition time, a 3 s relaxation delay, a 1JC–H of 145 Hz and

acquisition of 2048 data points (for 1H) and 1536 increments (for
13C) were used. For the corresponding TOCSY experiments, a spec-

tral width of 13.95 ppm was used in both dimensions, and the other

acquisition parameters were 16 scans, an acquisition time of 183 ms,

and a relaxation delay of 2 s. A total of 4096 and 1024 points were

acquired in the direct and indirect dimensions, respectively. The

temperature during all NMR experiments was kept at 25 �C. The

160 samples for modeling and the 111 samples for external valid-

ation were analyzed in separate batches, 9 months apart.

2.3 Data pretreatment
Processed 1D NMR data were imported into R v 3.2.0 (R Core

Team, 2015), aligned using the ‘speaq’ R package v 1.2.1 (Vu et al.,

2011), and shift-normalized to TSP at d¼0. Metabolic features

(n¼478) were obtained using continuous wavelet transformation

peak picking and extracting peak heights at corresponding shifts.

Despite the automated shimming and evaluation routine described

above, batch effects in line shape were observed between the 160

samples used for modeling and the 111 samples used for external

validation, where the latter samples had narrower peak shape and

therefore higher peak height/area ratio. To address this batch effect,

peak intensities were sample-wise normalized by the probabilistic

quotient method (Dieterle et al., 2006). Full R script for feature ex-

traction is available from the authors upon request.

2.4 Metabolite identification
A combination of spectral deconvolution with Chenomx 8.2

(Chenomx Inc., Edmonton, Canada), 2D NMR data and the use of

the human metabolome database, in combination with an in-house

R script for statistical correlation spectroscopy (Cloarec et al.,

2005), was used to tentatively assign metabolite signals to specific

metabolites.

2.5 Predictive modeling of pre-centrifugation

temperature
Multivariate predictive modeling of pre-centrifugation temperature

using feature data was performed to explore the possibilities to pre-

dict pre-centrifugation temperature for the purpose of data correc-

tion in such situations where sample management metadata are not

available, such as for legacy samples. For the classification between

4 �C and 22 �C, a random forest analysis with unbiased variable se-

lection within a repeated double cross-validation scheme

(Supplementary Material) was used (Buck et al., 2016; Filzmoser

et al., 2009; Westerhuis et al., 2008). Random forest has previously

been observed to produce robust and accurate classification analyses

in metabolomics experiments (Gromski et al., 2014; Hochrein et al.,

2012; Scott et al., 2013). Model performance was assessed by per-

mutation analysis (n¼100) (Szyma�nska et al., 2012) and externally

validated by prediction of pre-centrifugation temperature for 111

samples not included in the model construction. Contributions of

variables to modeling results were visualized by a PLS-DA biplot.

2.6 Predictive modeling of pre-centrifugation time
Time series data, i.e. from samples with 1, 3, 8, 24 and 36 h delay

time before centrifugation, were first separated by temperature into a

4 �C set and a 22 �C set, which were then modeled separately.

Predictive modeling was similarly conducted using random forest re-

gression of NMR metabolomics data, using pre-centrifugation time as

dependent variable. A similar cross-validation protocol and permuta-

tion strategy (n¼100) as for the modeling of pre-centrifugation

temperature was employed (Supplementary Material). External valid-

ation was conducted by prediction of pre-centrifugation time for 111

samples not included in the model construction and known to have

been stored at 22 �C during handling before freezing. Contributions

of variables to modeling results were visualized by PLS regression

biplots.

2.7 Modeling of pre-centrifugation time-induced

changes
Modeling was performed separately for 4 �C and 22 �C data.

Metabolite features with similar profiles of changes over time were

then automatically clustered together (Suppl. Methods), producing

n¼16 separate drift clusters at 4 �C and n¼20 clusters at 22 �C.

Cubic spline regression was applied to model the drift profile per clus-

ter (Fig. 1). An analogous approach for data correction was recently

developed and successfully applied to correct for instrumental drift in

large sample series LC-MS data by clustering and modeling of fea-

tures with similar instrumental drift patterns (Brunius et al., 2016).

2.8 Corrections for errors inherent to pre-centrifugation

time
For each sample, change in metabolites over pre-centrifugation time

was calculated per metabolite cluster, i.e. for metabolites with simi-

lar drift pattern over time, using sample-specific pre-centrifugation

time as input, based on either recorded pre-centrifugation time

(metadata-approach) or prediction estimates from multivariate

modeling (prediction-approach) as time input. The calculated drift

was then used to normalize feature data to 1 h pre-centrifugation

time (Supplementary Material). Similarly to modeling (above), an

Fig. 1. Drift modeling of four clusters with different drift patterns from 22 �C

data (Table 1). The two upper graphs represent clusters with small to minimal

drift during pre-centrifugation delay time with either significant (left) or non-

significant (right) improvement of feature CV after correction. The two lower

graphs represent clusters with either decreased (left) or increased (right) fea-

ture intensity with increased pre-centrifugation time and significant CV im-

provement after correction. For each cluster, the upper graph shows the

cluster-averaged scaled feature intensities in grey and the cluster drift func-

tion in black. The lower half shows the same features in the same y-scale after

application of cluster-based drift correction
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analogous approach has recently been successfully developed and

applied to correct for instrumental drift in LC-MS data (Brunius

et al., 2016).

2.9 Software
Modeling of metabolite drift during pre-centrifugation delay and

multivariate statistical modeling were performed in the open source

statistical environment R v 3.2.0 (R Core Team, 2015). Algorithms,

data and workflow are available in the R package ‘sampleDrift’ at

https://gitlab.com/CarlBrunius/sampleDrift. Predictive modeling for

biomarker discovery of pre-analytical sample management was per-

formed using an in-house R package ‘MUVR’, which is available

from the authors on request.

3 Results and discussion

Predictive modeling of pre-centrifugation temperature and time was

performed to simulate a situation where accurate sample manage-

ment metadata are not available, e.g. legacy samples or samples col-

lected in-clinic without time-stamping. Applying multivariate

predictive modeling, we managed to accurately predict pre-

centrifugation temperature and time parameters for later use in data

correction.

In the predictive modeling of pre-centrifugation temperature

(Fig. 2), only seven of 160 observations (4.4%) were misclassified

with respect to pre-centrifugation temperature (ppermutation¼2.32e-

14; Supplementary Fig. S2). The results showed that samples

undergo reproducible, temperature-dependent alterations in the

metabolomic profile within a time frame of approximately 1 h pre-

centrifugation time from needle to centrifugation, under standar-

dized and commonly used conditions.

Our results suggest it would be possible, using NMR data only,

to differentiate samples lacking accurate metadata on pre-

centrifugation temperature, where 4 �C (refrigerator) and 22 �C

(room temperature) represent the most likely practical conditions. In

total, 14 metabolite features were extracted with the unbiased vari-

able selection procedure as determinants of statistical discrimination

between temperatures. These features were primarily identified as

pyruvate, lactate and ornithine (Supplementary Table S1;

Supplementary Fig. S3), indicating energy and amino acid metabol-

ism as discriminating between pre-centrifugation temperatures. The

importance of energy metabolism intermediates as highly discrimi-

nating features highlights the absolute need for standardized sam-

pling conditions, in particular the need for an adequate resting

period prior to blood withdrawal, since both lactate and pyruvate

concentrations in blood are known to be affected by physical exer-

cise (Johnson and Edwards, 1937). The importance of pyruvate as

the main driver for temperature prediction was confirmed by com-

paring the receiver operator curves for the multivariate predictions

(Supplementary Fig. S1). Moreover, lactate has previously been

shown to increase with time in whole blood, especially at room tem-

perature (Seymour et al., 2011), and was also suggested to be part of

a marker of sample quality for metabolomics (Trezzi et al., 2016).

The implication of ornithine and possibly arginine supports previous

findings by Anton et al. (2015), who reported these amino acids to

be affected primarily by temperature during delay times.

Surprisingly, an imidazole peak at d¼7.267 was also identified as a

discriminating metabolite. Imidazole, which was added in equal

amounts to all samples as part of the buffer, had a lower concentra-

tion at prolonged delay time, especially at 22 �C (Supplementary

Fig. S4) and the high degree of systematic decrease indicated that it

was not an artefact. Imidazole was observed to have an irregular

peak shape and we thus hypothesized a relationship between imid-

azole peak height and formation of lactate. However, lactate was

found to be negatively correlated also with imidazole peak area

(Supplementary Fig. S4). While the reason for the decrease in free

imidazole levels is not clear, we speculate that binding with

Fe-EDTA complexes (El-Sherif et al., 2012), formed by increased

extraction from iron containing proteins on prolonged pre-

centrifugation delay may be a possible mechanism, since whole

blood total concentration of iron is on the level of 7–10 mmol/L,

whereas serum iron concentration is only 10–30 mmol/L. In

addition, there may be contributions from photolytic degrad-

ation (http://www.inchem.org/documents/sids/sids/288324.pdf) and

increased binding with degraded proteins. Other minor, unidentified

compounds were also found to discriminate between pre-

centrifugation temperatures, although the implications of these find-

ings are not clear.

Modeling of pre-centrifugation time at room temperature re-

sulted in very high prediction accuracy compared with reported pre-

centrifugation times (R2¼0.92, Q2¼0.90, P¼2.66e-15) (Fig. 2;

Supplementary Fig. S2). These results clearly show that distinct and

reproducible changes in the metabolome occur over time,

Fig. 2. Cross-validated prediction of pre-centrifugation temperature (left) and pre-centrifugation time at 22 �C (center) or 4 �C (right). The pre-centrifugation tem-

perature modeling correctly predicted 96% of samples as either stored at 4 �C (black) or 22 �C (grey). In pre-centrifugation time modeling, predicted times (y-axes)

were strongly associated with actual times (x-axes). Predictions were better for pre-centrifugation time modeling at 22 �C, which reflected the larger effects on the

metabolome at higher temperatures. All models were highly significant (P from permutation analysis; Supplementary Fig. S2)
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highlighting the possibility to accurately predict pre-centrifugation

time. In the prediction model at 22 �C, 16 metabolite features were

extracted as main determinants (Supplementary Table S1;

Supplementary Fig. S3). These features belonged predominantly to

lactate and glucose, again implicating a considerable and reprodu-

cible effect of pre-centrifugation sample management on intermedi-

ates of energy metabolism and again highlighting the predictive

value of lactate as a marker (Trezzi et al., 2016). Annotation also

included imidazole and some unidentified metabolites. Some of the

lactate peaks were partially superimposed with threonine, which

may possibly strengthen findings by Anton et al. (Anton et al.,

2015), who showed that ratios between amino acids, particularly

threonine, are indicative of pre-analytical sample management.

Predictive performance of modeling at 4 �C was strong, albeit

less accurate than modeling at room temperature (R2¼0.77,

Q2¼0.67, P¼3.09e-10) (Fig. 3; Supplementary Fig. S2) and also

required more features (n¼28) to model metabolite drift inherent to

pre-centrifugation time. These features corresponded to lactate, glu-

cose and pyruvate, as well as hypoxanthine, acetate, ornithine, histi-

dine and some other minor and/or unknown compounds

(Supplementary Table S1; Supplementary Fig. S3). The reproducible

alteration in amino acid profile was in accordance with Anton et al.

(Anton et al., 2015), whereas the role of the other, minor com-

pounds is not clear. The consistency with Anton et al regarding the

effects of pre-analytical sample management is particularly interest-

ing, considering that their study was performed on serum and han-

dling delay was imposed post-centrifugation, contrary to the present

study.

The accuracy of the predictive modeling of pre-centrifugation

temperature and time was confirmed by external validation. Only

two out of 111 observations were misclassified as being stored at

4 �C. Considering that multivariate modeling was trained on data

from only 16 individuals, the results indicate remarkably low

inter-person variability in relation to variability induced by differ-

ence in temperature, among the selected discriminative features.

Unfortunately, exact information about pre-centrifugation times at

22 �C was not available, only information on whether samples

were prepared on the same day as blood was drawn, the next day,

or the day after that. However, predicted pre-centrifugation times

were significantly different between samples prepared on the same

day, next day, or day after that (P<2.2e-16, Fig. 3). It should be

noted that the predicted pre-centrifugation times were, on average,

slightly higher than expected. It is likely that a batch effect be-

tween modeling and external validation data could have contrib-

uted to this observed discrepancy, since batches were analyzed a

substantial time apart. Another potential contributing factor could

be that the data used to construct the models were not entirely rep-

resentative of the external validation dataset, due to e.g. transpor-

tation from clinic to central laboratory, seasonal differences, or

systematic population differences. Nevertheless, the results in

terms of predicted pre-centrifugation times appear very useful for

predicting sample metadata.

In the drift modeling, features that showed reproducible drift

profiles between individuals were grouped into clusters, representing

specific patterns (Tables 1 and 2). This data-mining approach thus

resulted in an unbiased representation of multiple drift profiles

among the observed features (Fig. 1). At 22 �C, these clusters con-

tained features that had drift that was either low (<10% CV; 29%

of features) or moderate (<20% CV; 46% of features), representing

metabolites with relative pre-centrifugation stability at 22 �C up to

36 h. There were also clusters containing features with more severe

drift (>20% CV; 20% of features), i.e. corresponding to metabolites

more severely affected by pre-centrifugation delay time. The clusters

that were most affected by pre-centrifugation delay time contained

signals predominantly from glucose (decrease), lactate (increase)

and pyruvate (increase), as well as several unidentified metabolites,

highlighting the effect of pre-centrifugation time on energy metabol-

ism intermediates. Expectedly, pre-centrifugation time at 4 �C

increased the proportion of features with a low degree of drift (36%

of features) and decreased the proportion with severe drift (13% of

features) (Table 2). At 4 �C, the most affected clusters again con-

tained glucose (decrease), lactate (increase) and pyruvate (increase),

but also lipids and some amino acids with a specific increase at 3 h,

as well as unidentified metabolites (Table 2).

At 22 �C, 26 out of 478 features (5.4%) were considered to have

an irreproducible drift pattern due to large inter-individual variabil-

ity (Supplementary Material), and were therefore removed prior to

modeling. Unexpectedly, more features were considered a priori ir-

reproducible at 4 �C (34 features; 7.1%) compared with 22 �C. The

global variability in feature intensity showed that at 4 �C, the initial

pre-centrifugation delay time (especially noticeable at 3 h) contrib-

uted to the largest deviations, primarily among lipids, compared

with the 1 h reference state (Fig. 4). This increased variability may

reflect the comparatively larger temperature gradient from body

temperature to refrigerator compared with room temperature, in

combination with slow and uneven thermal transfer in the refriger-

ator. The high irreproducibility at 4 �C could also be due to

increased haemolysis upon cooling, with strong inter-individual

variation regarding timing and amount of cell rupture. At longer

delay times, the number of ruptured cell in individual samples will

again become more even, thus decreasing the contribution of haem-

olysis to irreproducibility. The large observed variability at 4 �C, es-

pecially at 3 h refrigerated delay time, deserves special attention in

future studies. Global variability in feature intensity at 22 �C, on the

other hand, quite expectedly showed variability that increased

with pre-centrifugation time and, in general, was higher than at 4 �C

(Fig. 4).

Fig. 3. Predicted pre-centrifugation time at 22 �C for external validation sam-

ples (n¼ 111). Samples were prepared on either the same day as sampling,

the next day, or the day after that. Predicted pre-centrifugation times were

significantly different between levels (P<2.2e-16). All pair-wise comparisons

were significant after Tukey adjustment (P<0.001)
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Table 1. Cluster-based modeling and data correction for kinetic drift of NMR plasma metabolomics data with pre-centrifugation delay time

at 22 �C

Feature CVa

n Original Metadatab Predictionc Dominant identified features

Cluster1 34 0.06 0.05*** 0.05*** aas

Cluster2 47 0.058 0.057*** 0.058*** 3OH-butyrate, citrate, aas

Cluster3 28 0.26 0.26 0.26 Mostly unknown, weak signals

Cluster4 20 0.18 0.16*** 0.16*** Alcohols, lipids/ffas

Cluster5 43 0.10 0.086*** 0.087*** aas

Cluster6 56 0.056 0.055*** 0.055*** aas

Cluster7 20 0.11 0.077*** 0.08*** aas, 3OH-butyrate

Cluster8 60 0.11 0.11 0.11 aas, lipids/ffas

Cluster9 21 0.33 0.15*** 0.14*** Glucose

Cluster10 34 0.13 0.12*** 0.12*** Lipids/ffas, aas

Cluster11 3 0.37 0.33 0.33 Acetate

Cluster12 25 0.11 0.11*** 0.11*** Lipids/ffas, 3OH-butyrate, aas

Cluster13 2 0.35 0.35 0.35 Unknown weak signals

Cluster14 14 0.38 0.19*** 0.17*** Glucose

Cluster15 12 0.25 0.12*** 0.12*** Glucose

Cluster16 2 0.52 0.49 0.46 Glucose (suppressed)

Cluster17 7 0.28 0.1*** 0.13*** Pyruvate

Cluster18 11 0.15 0.079*** 0.086*** aas

Cluster19 6 0.62 0.11*** 0.21*** Lactate

Cluster20 7 0.20 0.14*** 0.14*** Lipids/ffas

Modeled 452 0.14 0.10*** 0.11***

Irreproducible 26 Mostly unknown, weak signals

Total 478

Note: Correction for kinetic drift was performed using recorded bench-time metadata or prediction estimates (to simulate legacy samples) as time input. aas,

amino acids; ffas, free fatty acids. *p<0.05, **p<0.01, ***p<0.001.
aCV of feature intensities within cluster over 1–36 h.
bAfter drift correction based on actual pre-centrifugation time from metadata.
cAfter drift correction based on predicted pre-centrifugation time.

Table 2. Cluster-based modeling and data correction for kinetic drift of NMR plasma metabolomics data with pre-centrifugation delay time

at 4 �C

Feature CVa

n Original Metadatab Predictionc Dominant identified features

Cluster1 42 0.12 0.12*** 0.12** 3OH-butyrate, aas

Cluster2 32 0.17 0.17*** 0.17*** aas, alcohols

Cluster3 22 0.30 0.30 0.30 Pyruvate, acetate, histidine

Cluster4 38 0.19 0.19*** 0.19*** Sugars

Cluster5 14 0.099 0.097*** 0.098* aas

Cluster6 49 0.094 0.093*** 0.094 aas, 3OH-butyrate

Cluster7 36 0.18 0.18*** 0.18 Lipids/ffas, 3OH-butyrate, aas, citrate

Cluster8 18 0.35 0.33*** 0.34** Lipids/ffas

Cluster9 13 0.28 0.27*** 0.28* Lipids/ffas, aas

Cluster10 35 0.12 0.097*** 0.10*** Glucose

Cluster11 21 0.10 0.10*** 0.10*** aas

Cluster12 8 0.10 0.09*** 0.091*** Glucose

Cluster13 24 0.085 0.085** 0.085 3OH-butyrate, aas

Cluster14 41 0.075 0.075*** 0.075*** aas

Cluster15 7 0.24 0.14*** 0.16*** Lactate

Cluster16 44 0.087 0.085*** 0.086*** aas

Modeled 444 0.14 0.14*** 0.14***

Irreproducible 34 Mostly lipids/ffas and unknown, weak signals

Total 478

Note: Correction for kinetic drift was performed using recorded bench-time metadata or prediction estimates (to simulate legacy samples) as time input. aas,

amino acids; ffas, free fatty acids. *p<0.05, **p<0.01, ***p<0.001.
aCV of feature intensities within cluster over 1–36 h.
bAfter drift correction based on actual pre-centrifugation time from metadata.
cAfter drift correction based on predicted pre-centrifugation time.
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Drift was modeled for clusters containing features with specific

and reproducible patterns, and the drift patterns obtained were used

to correct for the effects of drift, using the pre-centrifugation time

from either actual metadata or multivariate prediction (Tables 1 and

2). Both approaches achieved highly significant and approximately

equal improvement of the data quality, as measured by a decrease in

average feature CV at 1–36 h upon correction both at 22 �C

(approx. -26%, P<6.41e-23) and at 4 �C (approx. -3%, P<2.02e-

12). Correspondingly, the deviation in feature intensity from refer-

ence state at 1 h was decreased (Fig. 4). This was particularly evident

at 22 �C, where average feature intensity deviation decreased by up

to 60% over the 36 h pre-centrifugation time. A similar, but smaller,

decrease of up to 23% was also observed at 4 �C. At 22 �C, there

were only four clusters for which there was no significant improve-

ment in data quality (Table 1). These clusters contained either stable

lipids and amino acids or low intensity features with high inter-

person variability. At 4 �C, only one cluster had no significant

improvement in data quality (Table 2; Cluster 3; 22 features). This

cluster contained pyruvate, acetate and several unknown, low inten-

sity signals, again with high inter-person variability. Moreover, two

clusters had high CV values even after significant improvement

(Table 2; Clusters 8 & 9; 31 features), most likely due to a combin-

ation of the smaller effect size for correction of 4 �C data and the men-

tioned irregularities at 3 h delay time. These two clusters contained

lipids and amino acids, identification of which suggested N-acetylated

amino acids superimposed with proline. The cluster-based drift cor-

rection of data at 22 �C reduced the total proportion of features with

CV>30% from a total of 17.2% to 8.2%, including those 5.4% fea-

tures excluded a priori due to irreproducible drift patterns. At 4 �C the

corresponding proportion of features with CV>30% decreased from

a total of 15.1% to 14.2%, including those 7.1% features excluded a

priori due to irreproducible drift patterns. It is apparent that data

from samples collected at 22 �C stand to gain more from this data cor-

rection approach, although correction at 4 �C is still useful, particu-

larly for those metabolites that appear to be most strongly affected by

pre-centrifugation delay times, i.e. energy metabolism intermediates

and primarily lactate.

For predictive and drift modeling, data were available only for a

limited number of participants. Fully unbiased validation, i.e. com-

plete separation of training, validation and testing sets, was there-

fore not practically feasible. Statistical overfitting was instead

minimized by employing an extended cross-validation framework.

Moreover, models for prediction of pre-centrifugation temperature

and time were also externally validated using an independent sample

set, for which, however, samples were stored only at 22 �C and also

with low resolution in pre-centrifugation time metadata. Regardless

of these limitations, the external validation showed remarkable po-

tential for prediction of pre-centrifugation sample management his-

tory. Still, considering the limited sample size for modeling and also

the mentioned limitations in the external validation set, these find-

ings need to be replicated and validated using other, preferably

much larger, datasets, both for predictive and drift modeling.

4 Conclusions

Predictive modeling effectively distinguished between pre-

centrifugation temperatures for samples with�1 h pre-centrifugation

time, based predominantly on differences in intermediates from en-

ergy and amino acid metabolism. At the different temperatures, mod-

els were able to accurately predict pre-centrifugation time, especially

at 22 �C. These results were confirmed by external validation of 111

EDTA plasma samples. Pre-centrifugation temperature and time had

a considerable impact on the metabolite profile and the majority of

metabolite alterations occurred in drift patterns that were highly re-

producible between individuals. Alterations were more pronounced at

22 �C compared with 4 �C and several distinct drift patterns (clusters),

corresponding to specific groups of metabolites, were observed for

these alterations. Correction of drift patterns improved the data qual-

ity, especially at 22 �C. Pre-centrifugation times up to 36h at 4 �C had

a small effect on the overall metabolite changes captured by NMR,

except at 3 h delay time for unknown reasons. Pre-centrifugation

delay times at room temperature should be avoided, due to major

changes in a large proportion of the metabolites measured. However,

the correction approach developed has the potential to diminish the

impact of such changes, regardless of whether pre-centrifugation sam-

ple management metadata are available, although these findings need

to be validated in multiple, large sample sets and with analytical tech-

niques covering a wider range of the metabolome, such as LC-MS.

This study improves understanding of the influence of pre-analytical

sample handling conditions on metabolomics analysis results and

demonstrates the ability of modeling to improve experimental data

by taking into account reproducible pre-analytical, sample history-

derived changes in individual metabolite levels, where handling

conditions (pre-centrifugation temperature and time delay) could be

predicted from experimental data.
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